1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Recursive Gaussian filter
*/
#ifndef _RECURSIVEGAUSSIAN_KERNEL_CU_
#define _RECURSIVEGAUSSIAN_KERNEL_CU_
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include <helper_math.h>
#define BLOCK_DIM 16
#define CLAMP_TO_EDGE 1
// Transpose kernel (see transpose CUDA Sample for details)
__global__ void d_transpose(uint *odata, uint *idata, int width, int height) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ uint block[BLOCK_DIM][BLOCK_DIM + 1];
// read the matrix tile into shared memory
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
if ((xIndex < width) && (yIndex < height)) {
unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];
}
cg::sync(cta);
// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
if ((xIndex < height) && (yIndex < width)) {
unsigned int index_out = yIndex * height + xIndex;
odata[index_out] = block[threadIdx.x][threadIdx.y];
}
}
// RGBA version
// reads from 32-bit uint array holding 8-bit RGBA
// convert floating point rgba color to 32-bit integer
__device__ uint rgbaFloatToInt(float4 rgba) {
rgba.x = __saturatef(rgba.x); // clamp to [0.0, 1.0]
rgba.y = __saturatef(rgba.y);
rgba.z = __saturatef(rgba.z);
rgba.w = __saturatef(rgba.w);
return (uint(rgba.w * 255) << 24) | (uint(rgba.z * 255) << 16) |
(uint(rgba.y * 255) << 8) | uint(rgba.x * 255);
}
// convert from 32-bit int to float4
__device__ float4 rgbaIntToFloat(uint c) {
float4 rgba;
rgba.x = (c & 0xff) / 255.0f;
rgba.y = ((c >> 8) & 0xff) / 255.0f;
rgba.z = ((c >> 16) & 0xff) / 255.0f;
rgba.w = ((c >> 24) & 0xff) / 255.0f;
return rgba;
}
/*
simple 1st order recursive filter
- processes one image column per thread
parameters:
id - pointer to input data (RGBA image packed into 32-bit integers)
od - pointer to output data
w - image width
h - image height
a - blur parameter
*/
__global__ void d_simpleRecursive_rgba(uint *id, uint *od, int w, int h,
float a) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x >= w) return;
id += x; // advance pointers to correct column
od += x;
// forward pass
float4 yp = rgbaIntToFloat(*id); // previous output
for (int y = 0; y < h; y++) {
float4 xc = rgbaIntToFloat(*id);
float4 yc =
xc + a * (yp - xc); // simple lerp between current and previous value
*od = rgbaFloatToInt(yc);
id += w;
od += w; // move to next row
yp = yc;
}
// reset pointers to point to last element in column
id -= w;
od -= w;
// reverse pass
// ensures response is symmetrical
yp = rgbaIntToFloat(*id);
for (int y = h - 1; y >= 0; y--) {
float4 xc = rgbaIntToFloat(*id);
float4 yc = xc + a * (yp - xc);
*od = rgbaFloatToInt((rgbaIntToFloat(*od) + yc) * 0.5f);
id -= w;
od -= w; // move to previous row
yp = yc;
}
}
/*
recursive Gaussian filter
parameters:
id - pointer to input data (RGBA image packed into 32-bit integers)
od - pointer to output data
w - image width
h - image height
a0-a3, b1, b2, coefp, coefn - filter parameters
*/
__global__ void d_recursiveGaussian_rgba(uint *id, uint *od, int w, int h,
float a0, float a1, float a2, float a3,
float b1, float b2, float coefp,
float coefn) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x >= w) return;
id += x; // advance pointers to correct column
od += x;
// forward pass
float4 xp = make_float4(0.0f); // previous input
float4 yp = make_float4(0.0f); // previous output
float4 yb = make_float4(0.0f); // previous output by 2
#if CLAMP_TO_EDGE
xp = rgbaIntToFloat(*id);
yb = coefp * xp;
yp = yb;
#endif
for (int y = 0; y < h; y++) {
float4 xc = rgbaIntToFloat(*id);
float4 yc = a0 * xc + a1 * xp - b1 * yp - b2 * yb;
*od = rgbaFloatToInt(yc);
id += w;
od += w; // move to next row
xp = xc;
yb = yp;
yp = yc;
}
// reset pointers to point to last element in column
id -= w;
od -= w;
// reverse pass
// ensures response is symmetrical
float4 xn = make_float4(0.0f);
float4 xa = make_float4(0.0f);
float4 yn = make_float4(0.0f);
float4 ya = make_float4(0.0f);
#if CLAMP_TO_EDGE
xn = xa = rgbaIntToFloat(*id);
yn = coefn * xn;
ya = yn;
#endif
for (int y = h - 1; y >= 0; y--) {
float4 xc = rgbaIntToFloat(*id);
float4 yc = a2 * xn + a3 * xa - b1 * yn - b2 * ya;
xa = xn;
xn = xc;
ya = yn;
yn = yc;
*od = rgbaFloatToInt(rgbaIntToFloat(*od) + yc);
id -= w;
od -= w; // move to previous row
}
}
#endif // #ifndef _GAUSSIAN_KERNEL_H_
|