1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Simple 3D volume renderer
#ifndef _VOLUMERENDER_KERNEL_CU_
#define _VOLUMERENDER_KERNEL_CU_
#include <helper_cuda.h>
#include <helper_math.h>
typedef unsigned int uint;
typedef unsigned char uchar;
cudaArray *d_volumeArray = 0;
cudaArray *d_transferFuncArray;
typedef unsigned char VolumeType;
// typedef unsigned short VolumeType;
cudaTextureObject_t texObject; // For 3D texture
cudaTextureObject_t transferTex; // For 1D transfer function texture
typedef struct { float4 m[3]; } float3x4;
__constant__ float3x4 c_invViewMatrix; // inverse view matrix
struct Ray {
float3 o; // origin
float3 d; // direction
};
// intersect ray with a box
// http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter3.htm
__device__ int intersectBox(Ray r, float3 boxmin, float3 boxmax, float *tnear,
float *tfar) {
// compute intersection of ray with all six bbox planes
float3 invR = make_float3(1.0f) / r.d;
float3 tbot = invR * (boxmin - r.o);
float3 ttop = invR * (boxmax - r.o);
// re-order intersections to find smallest and largest on each axis
float3 tmin = fminf(ttop, tbot);
float3 tmax = fmaxf(ttop, tbot);
// find the largest tmin and the smallest tmax
float largest_tmin = fmaxf(fmaxf(tmin.x, tmin.y), fmaxf(tmin.x, tmin.z));
float smallest_tmax = fminf(fminf(tmax.x, tmax.y), fminf(tmax.x, tmax.z));
*tnear = largest_tmin;
*tfar = smallest_tmax;
return smallest_tmax > largest_tmin;
}
// transform vector by matrix (no translation)
__device__ float3 mul(const float3x4 &M, const float3 &v) {
float3 r;
r.x = dot(v, make_float3(M.m[0]));
r.y = dot(v, make_float3(M.m[1]));
r.z = dot(v, make_float3(M.m[2]));
return r;
}
// transform vector by matrix with translation
__device__ float4 mul(const float3x4 &M, const float4 &v) {
float4 r;
r.x = dot(v, M.m[0]);
r.y = dot(v, M.m[1]);
r.z = dot(v, M.m[2]);
r.w = 1.0f;
return r;
}
__device__ uint rgbaFloatToInt(float4 rgba) {
rgba.x = __saturatef(rgba.x); // clamp to [0.0, 1.0]
rgba.y = __saturatef(rgba.y);
rgba.z = __saturatef(rgba.z);
rgba.w = __saturatef(rgba.w);
return (uint(rgba.w * 255) << 24) | (uint(rgba.z * 255) << 16) |
(uint(rgba.y * 255) << 8) | uint(rgba.x * 255);
}
__global__ void d_render(uint *d_output, uint imageW, uint imageH,
float density, float brightness, float transferOffset,
float transferScale, cudaTextureObject_t tex,
cudaTextureObject_t transferTex) {
const int maxSteps = 500;
const float tstep = 0.01f;
const float opacityThreshold = 0.95f;
const float3 boxMin = make_float3(-1.0f, -1.0f, -1.0f);
const float3 boxMax = make_float3(1.0f, 1.0f, 1.0f);
uint x = blockIdx.x * blockDim.x + threadIdx.x;
uint y = blockIdx.y * blockDim.y + threadIdx.y;
if ((x >= imageW) || (y >= imageH)) return;
float u = (x / (float)imageW) * 2.0f - 1.0f;
float v = (y / (float)imageH) * 2.0f - 1.0f;
// calculate eye ray in world space
Ray eyeRay;
eyeRay.o =
make_float3(mul(c_invViewMatrix, make_float4(0.0f, 0.0f, 0.0f, 1.0f)));
eyeRay.d = normalize(make_float3(u, v, -2.0f));
eyeRay.d = mul(c_invViewMatrix, eyeRay.d);
// find intersection with box
float tnear, tfar;
int hit = intersectBox(eyeRay, boxMin, boxMax, &tnear, &tfar);
if (!hit) return;
if (tnear < 0.0f) tnear = 0.0f; // clamp to near plane
// march along ray from front to back, accumulating color
float4 sum = make_float4(0.0f);
float t = tnear;
float3 pos = eyeRay.o + eyeRay.d * tnear;
float3 step = eyeRay.d * tstep;
for (int i = 0; i < maxSteps; i++) {
// read from 3D texture
// remap position to [0, 1] coordinates
float sample = tex3D<float>(tex, pos.x * 0.5f + 0.5f, pos.y * 0.5f + 0.5f,
pos.z * 0.5f + 0.5f);
// sample *= 64.0f; // scale for 10-bit data
// lookup in transfer function texture
float4 col =
tex1D<float4>(transferTex, (sample - transferOffset) * transferScale);
col.w *= density;
// "under" operator for back-to-front blending
// sum = lerp(sum, col, col.w);
// pre-multiply alpha
col.x *= col.w;
col.y *= col.w;
col.z *= col.w;
// "over" operator for front-to-back blending
sum = sum + col * (1.0f - sum.w);
// exit early if opaque
if (sum.w > opacityThreshold) break;
t += tstep;
if (t > tfar) break;
pos += step;
}
sum *= brightness;
// write output color
d_output[y * imageW + x] = rgbaFloatToInt(sum);
}
extern "C" void setTextureFilterMode(bool bLinearFilter) {
if (texObject) {
checkCudaErrors(cudaDestroyTextureObject(texObject));
}
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = d_volumeArray;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = true;
texDescr.filterMode =
bLinearFilter ? cudaFilterModeLinear : cudaFilterModePoint;
texDescr.addressMode[0] = cudaAddressModeWrap;
texDescr.addressMode[1] = cudaAddressModeWrap;
texDescr.addressMode[2] = cudaAddressModeWrap;
texDescr.readMode = cudaReadModeNormalizedFloat;
checkCudaErrors(
cudaCreateTextureObject(&texObject, &texRes, &texDescr, NULL));
}
extern "C" void initCuda(void *h_volume, cudaExtent volumeSize) {
// create 3D array
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<VolumeType>();
checkCudaErrors(cudaMalloc3DArray(&d_volumeArray, &channelDesc, volumeSize));
// copy data to 3D array
cudaMemcpy3DParms copyParams = {0};
copyParams.srcPtr =
make_cudaPitchedPtr(h_volume, volumeSize.width * sizeof(VolumeType),
volumeSize.width, volumeSize.height);
copyParams.dstArray = d_volumeArray;
copyParams.extent = volumeSize;
copyParams.kind = cudaMemcpyHostToDevice;
checkCudaErrors(cudaMemcpy3D(©Params));
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = d_volumeArray;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords =
true; // access with normalized texture coordinates
texDescr.filterMode = cudaFilterModeLinear; // linear interpolation
texDescr.addressMode[0] = cudaAddressModeClamp; // clamp texture coordinates
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.addressMode[2] = cudaAddressModeClamp;
texDescr.readMode = cudaReadModeNormalizedFloat;
checkCudaErrors(
cudaCreateTextureObject(&texObject, &texRes, &texDescr, NULL));
// create transfer function texture
float4 transferFunc[] = {
{ 0.0, 0.0, 0.0, 0.0, },
{ 1.0, 0.0, 0.0, 1.0, },
{ 1.0, 0.5, 0.0, 1.0, },
{ 1.0, 1.0, 0.0, 1.0, },
{ 0.0, 1.0, 0.0, 1.0, },
{ 0.0, 1.0, 1.0, 1.0, },
{ 0.0, 0.0, 1.0, 1.0, },
{ 1.0, 0.0, 1.0, 1.0, },
{ 0.0, 0.0, 0.0, 0.0, },
};
cudaChannelFormatDesc channelDesc2 = cudaCreateChannelDesc<float4>();
cudaArray *d_transferFuncArray;
checkCudaErrors(cudaMallocArray(&d_transferFuncArray, &channelDesc2,
sizeof(transferFunc) / sizeof(float4), 1));
checkCudaErrors(cudaMemcpy2DToArray(d_transferFuncArray, 0, 0, transferFunc,
0, sizeof(transferFunc), 1,
cudaMemcpyHostToDevice));
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = d_transferFuncArray;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords =
true; // access with normalized texture coordinates
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeClamp; // wrap texture coordinates
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(
cudaCreateTextureObject(&transferTex, &texRes, &texDescr, NULL));
}
extern "C" void freeCudaBuffers() {
checkCudaErrors(cudaDestroyTextureObject(texObject));
checkCudaErrors(cudaDestroyTextureObject(transferTex));
checkCudaErrors(cudaFreeArray(d_volumeArray));
checkCudaErrors(cudaFreeArray(d_transferFuncArray));
}
extern "C" void render_kernel(dim3 gridSize, dim3 blockSize, uint *d_output,
uint imageW, uint imageH, float density,
float brightness, float transferOffset,
float transferScale) {
d_render<<<gridSize, blockSize>>>(d_output, imageW, imageH, density,
brightness, transferOffset, transferScale,
texObject, transferTex);
}
extern "C" void copyInvViewMatrix(float *invViewMatrix, size_t sizeofMatrix) {
checkCudaErrors(
cudaMemcpyToSymbol(c_invViewMatrix, invViewMatrix, sizeofMatrix));
}
#endif // #ifndef _VOLUMERENDER_KERNEL_CU_
|