File: uvmlite.c

package info (click to toggle)
nvidia-cuda-samples 12.4.1~dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 313,216 kB
  • sloc: cpp: 82,042; makefile: 53,971; xml: 15,381; ansic: 8,630; sh: 91; python: 74
file content (323 lines) | stat: -rw-r--r-- 10,837 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Copyright (c) 2014-2023, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of NVIDIA CORPORATION nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <assert.h>
#include <builtin_types.h>
#include <cuda.h>
#include <math.h>
#include <nvvm.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>

#define ERROR_IF(expr)                                              \
  if (expr) {                                                       \
    fprintf(stderr, "Failed check at %s:%d\n", __FILE__, __LINE__); \
    exit(EXIT_FAILURE);                                             \
  }

// If 'err' is non-zero, emit an error message and exit.
#define checkCudaErrors(err) __checkCudaErrors(err, __FILE__, __LINE__)
static void __checkCudaErrors(CUresult err, const char *filename, int line) {
  assert(filename);
  if (CUDA_SUCCESS != err) {
    const char *ename = NULL;
    const CUresult res = cuGetErrorName(err, &ename);
    fprintf(stderr,
            "CUDA API Error %04d: \"%s\" from file <%s>, "
            "line %i.\n",
            err, ((CUDA_SUCCESS == res) ? ename : "Unknown"), filename, line);
    exit(err);
  }
}

// Compile the NVVM IR into PTX.
static char *generatePTX(const char *ll, size_t size, const char *filename,
                         int devMajor, int devMinor) {
  assert(ll && filename);

  // Create a program instance for libNVVM.
  nvvmProgram program;
  nvvmResult result = nvvmCreateProgram(&program);
  if (result != NVVM_SUCCESS) {
    fprintf(stderr, "nvvmCreateProgram: Failed\n");
    exit(EXIT_FAILURE);
  }

  // Add the NVVM IR as a module to our libNVVM program.
  result = nvvmAddModuleToProgram(program, ll, size, filename);
  if (result != NVVM_SUCCESS) {
    fprintf(stderr, "nvvmAddModuleToProgram: Failed\n");
    exit(EXIT_FAILURE);
  }

  // Dynamically construct the compute capability.
  char arch[32] = {0};
  snprintf(arch, sizeof(arch) - 1, "-arch=compute_%d%d", devMajor, devMinor);

  // Compile the IR into PTX.
  const char *options[] = {arch};
  result = nvvmCompileProgram(program, 1, options);
  if (result != NVVM_SUCCESS) {
    char *Msg = NULL;
    size_t LogSize;
    fprintf(stderr, "nvvmCompileProgram: Failed\n");
    nvvmGetProgramLogSize(program, &LogSize);
    Msg = (char *)malloc(LogSize);
    nvvmGetProgramLog(program, Msg);
    fprintf(stderr, "%s\n", Msg);
    free(Msg);
    exit(EXIT_FAILURE);
  }

  size_t ptxSize = 0;
  result = nvvmGetCompiledResultSize(program, &ptxSize);
  if (result != NVVM_SUCCESS) {
    fprintf(stderr, "nvvmGetCompiledResultSize: Failed\n");
    exit(EXIT_FAILURE);
  }

  char *ptx = malloc(ptxSize);
  assert(ptx);
  result = nvvmGetCompiledResult(program, ptx);
  if (result != NVVM_SUCCESS) {
    fprintf(stderr, "nvvmGetCompiledResult: Failed\n");
    free(ptx);
    exit(EXIT_FAILURE);
  }

  result = nvvmDestroyProgram(&program);
  if (result != NVVM_SUCCESS) {
    fprintf(stderr, "nvvmDestroyProgram: Failed\n");
    free(ptx);
    exit(EXIT_FAILURE);
  }

  return ptx;
}

static char *loadProgramSource(const char *filename, size_t *size) {
  assert(filename && size);
  *size = 0;
  char *source = NULL;
  FILE *fh = fopen(filename, "rb");
  if (fh) {
    struct stat statbuf;
    stat(filename, &statbuf);
    source = (char *)malloc(statbuf.st_size + 1);
    if (source) {
      fread(source, statbuf.st_size, 1, fh);
      source[statbuf.st_size] = 0;
      *size = statbuf.st_size + 1;
    }
  } else {
    fprintf(stderr, "Error reading file %s\n", filename);
    exit(EXIT_FAILURE);
  }
  return source;
}

// Return the device compute capability in major and minor.
static CUdevice cudaDeviceInit(int *major, int *minor) {
  assert(major && minor);
  // Count the number of CUDA compute capable devices..
  CUresult err = cuInit(0);
  int deviceCount = 0;
  if (CUDA_SUCCESS == err)
    checkCudaErrors(cuDeviceGetCount(&deviceCount));
  if (deviceCount == 0) {
    fprintf(stderr, "cudaDeviceInit error: no devices supporting CUDA\n");
    exit(EXIT_FAILURE);
  }

  // Get the first device discovered (device 0) and print its name.
  CUdevice cuDevice = 0;
  checkCudaErrors(cuDeviceGet(&cuDevice, 0));
  char name[128] = {0};
  checkCudaErrors(cuDeviceGetName(name, sizeof(name), cuDevice));
  printf("Using CUDA Device [0]: %s\n", name);

  // Get and test the compute capability.
  checkCudaErrors(cuDeviceGetAttribute(
      major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
  checkCudaErrors(cuDeviceGetAttribute(
      minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice));
  printf("compute capability = %d.%d\n", *major, *minor);
  if (*major < 5) {
    fprintf(stderr, "Device 0 is not sm_50 or later\n");
    exit(EXIT_FAILURE);
  }

  // Check if managed memory is supported.
  int supportsUvm = 0;
  checkCudaErrors(cuDeviceGetAttribute(
      &supportsUvm, CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY, cuDevice));
  if (!supportsUvm) {
    printf("This device does not support managed memory.");
    exit(EXIT_SUCCESS);
  }

  // Check if unified addressing is supported (host and device share same
  // the address space).
  int supportsUva = 0;
  checkCudaErrors(cuDeviceGetAttribute(
      &supportsUva, CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, cuDevice));
  if (!supportsUva) {
    printf("This device does not support a unified address space.");
    exit(EXIT_SUCCESS);
  }

  return cuDevice;
}

static CUresult buildKernel(CUcontext *phContext, CUdevice *phDevice,
                            CUmodule *phModule, CUfunction *phKernel) {
  assert(phContext && phDevice && phModule && phKernel);

  // Initialize CUDA and obtain the device's compute capability.
  int major = 0, minor = 0;
  *phDevice = cudaDeviceInit(&major, &minor);

  // Create a context on the device.
  checkCudaErrors(cuCtxCreate(phContext, 0, *phDevice));

  // Get the NVVM IR from file.
  size_t size = 0;
  const char *filename = "uvmlite64.ll";
  char *ll = loadProgramSource(filename, &size);
  fprintf(stdout, "NVVM IR ll file loaded\n");

  // Use libNVVM to generate PTX.
  char *ptx = generatePTX(ll, size, filename, major, minor);
  fprintf(stdout, "PTX generated:\n");
  fprintf(stdout, "%s\n", ptx);

  // Load module from PTX.
  checkCudaErrors(cuModuleLoadDataEx(phModule, ptx, 0, NULL, NULL));

  // Locate the kernel entry point.
  checkCudaErrors(cuModuleGetFunction(phKernel, *phModule, "test_kernel"));

  free(ll);
  free(ptx);
  return CUDA_SUCCESS;
}

int main(void) {
  const unsigned int nThreads = 1;
  const unsigned int nBlocks = 1;

  // Pointers to the variables in the managed memory.
  // See uvmlite64.ll for their definition.
  CUdeviceptr devp_xxx, devp_yyy;
  size_t size_xxx, size_yyy;
  int *p_xxx, *p_yyy;

  // Initialize the device and get a handle to the kernel
  CUcontext hContext = 0;
  CUdevice hDevice = 0;
  CUmodule hModule = 0;
  CUfunction hKernel = 0;
  checkCudaErrors(buildKernel(&hContext, &hDevice, &hModule, &hKernel));

  // Whether or not a device supports unified addressing may be queried by
  // calling cuDeviceGetAttribute() with the deivce attribute
  // CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING.
  {
    int attrVal;
    checkCudaErrors(cuDeviceGetAttribute(
        &attrVal, CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, hDevice));
    ERROR_IF(attrVal != 1);
  }

  // Get the address of the variable xxx, yyy in the managed memory.
  checkCudaErrors(cuModuleGetGlobal(&devp_xxx, &size_xxx, hModule, "xxx"));
  checkCudaErrors(cuModuleGetGlobal(&devp_yyy, &size_yyy, hModule, "yyy"));

  // Whether or not the pointer points to managed memory may be queried by
  // calling cuPointerGetAttribute() with the pointer attribute
  // CU_POINTER_ATTRIBUTE_IS_MANAGED.
  {
    unsigned int attrVal;

    checkCudaErrors(cuPointerGetAttribute(
        &attrVal, CU_POINTER_ATTRIBUTE_IS_MANAGED, devp_xxx));
    ERROR_IF(attrVal != 1);
    checkCudaErrors(cuPointerGetAttribute(
        &attrVal, CU_POINTER_ATTRIBUTE_IS_MANAGED, devp_yyy));
    ERROR_IF(attrVal != 1);
  }

  // Since CUdeviceptr is opaque, it is safe to use cuPointerGetAttribute to get
  // the host pointers.
  {
    void *host_ptr_xxx, *host_ptr_yyy;

    checkCudaErrors(cuPointerGetAttribute(
        &host_ptr_xxx, CU_POINTER_ATTRIBUTE_HOST_POINTER, devp_xxx));
    checkCudaErrors(cuPointerGetAttribute(
        &host_ptr_yyy, CU_POINTER_ATTRIBUTE_HOST_POINTER, devp_yyy));

    p_xxx = (int *)host_ptr_xxx;
    p_yyy = (int *)host_ptr_yyy;
  }

  printf("The initial value of xxx initialized by the device = %d\n", *p_xxx);
  printf("The initial value of yyy initialized by the device = %d\n", *p_yyy);

  ERROR_IF(*p_xxx != 10);
  ERROR_IF(*p_yyy != 100);

  // The host adds 1 and 11 to xxx and yyy.
  *p_xxx += 1;
  *p_yyy += 11;

  printf("The host added 1 and 11 to xxx and yyy.\n");

  // Launch the kernel with the following parameters.
  {
    void *params[] = {(void *)&devp_xxx};
    checkCudaErrors(cuLaunchKernel(hKernel, nBlocks, 1, 1, nThreads, 1, 1, 0,
                                   NULL, params, NULL));
  }
  checkCudaErrors(cuCtxSynchronize());

  printf("kernel added 20 and 30 to xxx and yyy, respectively.\n");
  printf("The final value checked in the host: xxx = %d, yyy = %d\n", *p_xxx,
         *p_yyy);

  if (hModule) {
    checkCudaErrors(cuModuleUnload(hModule));
    hModule = 0;
  }
  if (hContext) {
    checkCudaErrors(cuCtxDestroy(hContext));
    hContext = 0;
  }

  return 0;
}