1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
// Copyright (c) 2014-2023, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <assert.h>
#include <builtin_types.h>
#include <cuda.h>
#include <math.h>
#include <nvvm.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#define ERROR_IF(expr) \
if (expr) { \
fprintf(stderr, "Failed check at %s:%d\n", __FILE__, __LINE__); \
exit(EXIT_FAILURE); \
}
// If 'err' is non-zero, emit an error message and exit.
#define checkCudaErrors(err) __checkCudaErrors(err, __FILE__, __LINE__)
static void __checkCudaErrors(CUresult err, const char *filename, int line) {
assert(filename);
if (CUDA_SUCCESS != err) {
const char *ename = NULL;
const CUresult res = cuGetErrorName(err, &ename);
fprintf(stderr,
"CUDA API Error %04d: \"%s\" from file <%s>, "
"line %i.\n",
err, ((CUDA_SUCCESS == res) ? ename : "Unknown"), filename, line);
exit(err);
}
}
// Compile the NVVM IR into PTX.
static char *generatePTX(const char *ll, size_t size, const char *filename,
int devMajor, int devMinor) {
assert(ll && filename);
// Create a program instance for libNVVM.
nvvmProgram program;
nvvmResult result = nvvmCreateProgram(&program);
if (result != NVVM_SUCCESS) {
fprintf(stderr, "nvvmCreateProgram: Failed\n");
exit(EXIT_FAILURE);
}
// Add the NVVM IR as a module to our libNVVM program.
result = nvvmAddModuleToProgram(program, ll, size, filename);
if (result != NVVM_SUCCESS) {
fprintf(stderr, "nvvmAddModuleToProgram: Failed\n");
exit(EXIT_FAILURE);
}
// Dynamically construct the compute capability.
char arch[32] = {0};
snprintf(arch, sizeof(arch) - 1, "-arch=compute_%d%d", devMajor, devMinor);
// Compile the IR into PTX.
const char *options[] = {arch};
result = nvvmCompileProgram(program, 1, options);
if (result != NVVM_SUCCESS) {
char *Msg = NULL;
size_t LogSize;
fprintf(stderr, "nvvmCompileProgram: Failed\n");
nvvmGetProgramLogSize(program, &LogSize);
Msg = (char *)malloc(LogSize);
nvvmGetProgramLog(program, Msg);
fprintf(stderr, "%s\n", Msg);
free(Msg);
exit(EXIT_FAILURE);
}
size_t ptxSize = 0;
result = nvvmGetCompiledResultSize(program, &ptxSize);
if (result != NVVM_SUCCESS) {
fprintf(stderr, "nvvmGetCompiledResultSize: Failed\n");
exit(EXIT_FAILURE);
}
char *ptx = malloc(ptxSize);
assert(ptx);
result = nvvmGetCompiledResult(program, ptx);
if (result != NVVM_SUCCESS) {
fprintf(stderr, "nvvmGetCompiledResult: Failed\n");
free(ptx);
exit(EXIT_FAILURE);
}
result = nvvmDestroyProgram(&program);
if (result != NVVM_SUCCESS) {
fprintf(stderr, "nvvmDestroyProgram: Failed\n");
free(ptx);
exit(EXIT_FAILURE);
}
return ptx;
}
static char *loadProgramSource(const char *filename, size_t *size) {
assert(filename && size);
*size = 0;
char *source = NULL;
FILE *fh = fopen(filename, "rb");
if (fh) {
struct stat statbuf;
stat(filename, &statbuf);
source = (char *)malloc(statbuf.st_size + 1);
if (source) {
fread(source, statbuf.st_size, 1, fh);
source[statbuf.st_size] = 0;
*size = statbuf.st_size + 1;
}
} else {
fprintf(stderr, "Error reading file %s\n", filename);
exit(EXIT_FAILURE);
}
return source;
}
// Return the device compute capability in major and minor.
static CUdevice cudaDeviceInit(int *major, int *minor) {
assert(major && minor);
// Count the number of CUDA compute capable devices..
CUresult err = cuInit(0);
int deviceCount = 0;
if (CUDA_SUCCESS == err)
checkCudaErrors(cuDeviceGetCount(&deviceCount));
if (deviceCount == 0) {
fprintf(stderr, "cudaDeviceInit error: no devices supporting CUDA\n");
exit(EXIT_FAILURE);
}
// Get the first device discovered (device 0) and print its name.
CUdevice cuDevice = 0;
checkCudaErrors(cuDeviceGet(&cuDevice, 0));
char name[128] = {0};
checkCudaErrors(cuDeviceGetName(name, sizeof(name), cuDevice));
printf("Using CUDA Device [0]: %s\n", name);
// Get and test the compute capability.
checkCudaErrors(cuDeviceGetAttribute(
major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
checkCudaErrors(cuDeviceGetAttribute(
minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice));
printf("compute capability = %d.%d\n", *major, *minor);
if (*major < 5) {
fprintf(stderr, "Device 0 is not sm_50 or later\n");
exit(EXIT_FAILURE);
}
// Check if managed memory is supported.
int supportsUvm = 0;
checkCudaErrors(cuDeviceGetAttribute(
&supportsUvm, CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY, cuDevice));
if (!supportsUvm) {
printf("This device does not support managed memory.");
exit(EXIT_SUCCESS);
}
// Check if unified addressing is supported (host and device share same
// the address space).
int supportsUva = 0;
checkCudaErrors(cuDeviceGetAttribute(
&supportsUva, CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, cuDevice));
if (!supportsUva) {
printf("This device does not support a unified address space.");
exit(EXIT_SUCCESS);
}
return cuDevice;
}
static CUresult buildKernel(CUcontext *phContext, CUdevice *phDevice,
CUmodule *phModule, CUfunction *phKernel) {
assert(phContext && phDevice && phModule && phKernel);
// Initialize CUDA and obtain the device's compute capability.
int major = 0, minor = 0;
*phDevice = cudaDeviceInit(&major, &minor);
// Create a context on the device.
checkCudaErrors(cuCtxCreate(phContext, 0, *phDevice));
// Get the NVVM IR from file.
size_t size = 0;
const char *filename = "uvmlite64.ll";
char *ll = loadProgramSource(filename, &size);
fprintf(stdout, "NVVM IR ll file loaded\n");
// Use libNVVM to generate PTX.
char *ptx = generatePTX(ll, size, filename, major, minor);
fprintf(stdout, "PTX generated:\n");
fprintf(stdout, "%s\n", ptx);
// Load module from PTX.
checkCudaErrors(cuModuleLoadDataEx(phModule, ptx, 0, NULL, NULL));
// Locate the kernel entry point.
checkCudaErrors(cuModuleGetFunction(phKernel, *phModule, "test_kernel"));
free(ll);
free(ptx);
return CUDA_SUCCESS;
}
int main(void) {
const unsigned int nThreads = 1;
const unsigned int nBlocks = 1;
// Pointers to the variables in the managed memory.
// See uvmlite64.ll for their definition.
CUdeviceptr devp_xxx, devp_yyy;
size_t size_xxx, size_yyy;
int *p_xxx, *p_yyy;
// Initialize the device and get a handle to the kernel
CUcontext hContext = 0;
CUdevice hDevice = 0;
CUmodule hModule = 0;
CUfunction hKernel = 0;
checkCudaErrors(buildKernel(&hContext, &hDevice, &hModule, &hKernel));
// Whether or not a device supports unified addressing may be queried by
// calling cuDeviceGetAttribute() with the deivce attribute
// CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING.
{
int attrVal;
checkCudaErrors(cuDeviceGetAttribute(
&attrVal, CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, hDevice));
ERROR_IF(attrVal != 1);
}
// Get the address of the variable xxx, yyy in the managed memory.
checkCudaErrors(cuModuleGetGlobal(&devp_xxx, &size_xxx, hModule, "xxx"));
checkCudaErrors(cuModuleGetGlobal(&devp_yyy, &size_yyy, hModule, "yyy"));
// Whether or not the pointer points to managed memory may be queried by
// calling cuPointerGetAttribute() with the pointer attribute
// CU_POINTER_ATTRIBUTE_IS_MANAGED.
{
unsigned int attrVal;
checkCudaErrors(cuPointerGetAttribute(
&attrVal, CU_POINTER_ATTRIBUTE_IS_MANAGED, devp_xxx));
ERROR_IF(attrVal != 1);
checkCudaErrors(cuPointerGetAttribute(
&attrVal, CU_POINTER_ATTRIBUTE_IS_MANAGED, devp_yyy));
ERROR_IF(attrVal != 1);
}
// Since CUdeviceptr is opaque, it is safe to use cuPointerGetAttribute to get
// the host pointers.
{
void *host_ptr_xxx, *host_ptr_yyy;
checkCudaErrors(cuPointerGetAttribute(
&host_ptr_xxx, CU_POINTER_ATTRIBUTE_HOST_POINTER, devp_xxx));
checkCudaErrors(cuPointerGetAttribute(
&host_ptr_yyy, CU_POINTER_ATTRIBUTE_HOST_POINTER, devp_yyy));
p_xxx = (int *)host_ptr_xxx;
p_yyy = (int *)host_ptr_yyy;
}
printf("The initial value of xxx initialized by the device = %d\n", *p_xxx);
printf("The initial value of yyy initialized by the device = %d\n", *p_yyy);
ERROR_IF(*p_xxx != 10);
ERROR_IF(*p_yyy != 100);
// The host adds 1 and 11 to xxx and yyy.
*p_xxx += 1;
*p_yyy += 11;
printf("The host added 1 and 11 to xxx and yyy.\n");
// Launch the kernel with the following parameters.
{
void *params[] = {(void *)&devp_xxx};
checkCudaErrors(cuLaunchKernel(hKernel, nBlocks, 1, 1, nThreads, 1, 1, 0,
NULL, params, NULL));
}
checkCudaErrors(cuCtxSynchronize());
printf("kernel added 20 and 30 to xxx and yyy, respectively.\n");
printf("The final value checked in the host: xxx = %d, yyy = %d\n", *p_xxx,
*p_yyy);
if (hModule) {
checkCudaErrors(cuModuleUnload(hModule));
hModule = 0;
}
if (hContext) {
checkCudaErrors(cuCtxDestroy(hContext));
hContext = 0;
}
return 0;
}
|