1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample evaluates fair call and put prices for a
* given set of European options by Black-Scholes formula.
* See supplied whitepaper for more explanations.
*/
#include <cuda_runtime.h>
#include <nvrtc_helper.h>
#include <helper_functions.h> // helper functions for string parsing
////////////////////////////////////////////////////////////////////////////////
// Process an array of optN options on CPU
////////////////////////////////////////////////////////////////////////////////
extern "C" void BlackScholesCPU(float *h_CallResult, float *h_PutResult,
float *h_StockPrice, float *h_OptionStrike,
float *h_OptionYears, float Riskfree,
float Volatility, int optN);
////////////////////////////////////////////////////////////////////////////////
// Process an array of OptN options on GPU
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Helper function, returning uniformly distributed
// random float in [low, high] range
////////////////////////////////////////////////////////////////////////////////
float RandFloat(float low, float high) {
float t = (float)rand() / (float)RAND_MAX;
return (1.0f - t) * low + t * high;
}
////////////////////////////////////////////////////////////////////////////////
// Data configuration
////////////////////////////////////////////////////////////////////////////////
const int OPT_N = 4000000;
const int NUM_ITERATIONS = 512;
const int OPT_SZ = OPT_N * sizeof(float);
const float RISKFREE = 0.02f;
const float VOLATILITY = 0.30f;
#define DIV_UP(a, b) (((a) + (b)-1) / (b))
////////////////////////////////////////////////////////////////////////////////
// Main program
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
// Start logs
printf("[%s] - Starting...\n", argv[0]);
//'h_' prefix - CPU (host) memory space
float
// Results calculated by CPU for reference
*h_CallResultCPU,
*h_PutResultCPU,
// CPU copy of GPU results
*h_CallResultGPU, *h_PutResultGPU,
// CPU instance of input data
*h_StockPrice, *h_OptionStrike, *h_OptionYears;
//'d_' prefix - GPU (device) memory space
CUdeviceptr
// Results calculated by GPU
d_CallResult,
d_PutResult,
// GPU instance of input data
d_StockPrice, d_OptionStrike, d_OptionYears;
double delta, ref, sum_delta, sum_ref, max_delta, L1norm, gpuTime;
StopWatchInterface *hTimer = NULL;
int i;
sdkCreateTimer(&hTimer);
printf("Initializing data...\n");
printf("...allocating CPU memory for options.\n");
h_CallResultCPU = (float *)malloc(OPT_SZ);
h_PutResultCPU = (float *)malloc(OPT_SZ);
h_CallResultGPU = (float *)malloc(OPT_SZ);
h_PutResultGPU = (float *)malloc(OPT_SZ);
h_StockPrice = (float *)malloc(OPT_SZ);
h_OptionStrike = (float *)malloc(OPT_SZ);
h_OptionYears = (float *)malloc(OPT_SZ);
char *cubin, *kernel_file;
size_t cubinSize;
kernel_file = sdkFindFilePath("BlackScholes_kernel.cuh", argv[0]);
// Compile the kernel BlackScholes_kernel.
compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 0);
CUmodule module = loadCUBIN(cubin, argc, argv);
CUfunction kernel_addr;
checkCudaErrors(cuModuleGetFunction(&kernel_addr, module, "BlackScholesGPU"));
printf("...allocating GPU memory for options.\n");
checkCudaErrors(cuMemAlloc(&d_CallResult, OPT_SZ));
checkCudaErrors(cuMemAlloc(&d_PutResult, OPT_SZ));
checkCudaErrors(cuMemAlloc(&d_StockPrice, OPT_SZ));
checkCudaErrors(cuMemAlloc(&d_OptionStrike, OPT_SZ));
checkCudaErrors(cuMemAlloc(&d_OptionYears, OPT_SZ));
printf("...generating input data in CPU mem.\n");
srand(5347);
// Generate options set
for (i = 0; i < OPT_N; i++) {
h_CallResultCPU[i] = 0.0f;
h_PutResultCPU[i] = -1.0f;
h_StockPrice[i] = RandFloat(5.0f, 30.0f);
h_OptionStrike[i] = RandFloat(1.0f, 100.0f);
h_OptionYears[i] = RandFloat(0.25f, 10.0f);
}
printf("...copying input data to GPU mem.\n");
// Copy options data to GPU memory for further processing
checkCudaErrors(cuMemcpyHtoD(d_StockPrice, h_StockPrice, OPT_SZ));
checkCudaErrors(cuMemcpyHtoD(d_OptionStrike, h_OptionStrike, OPT_SZ));
checkCudaErrors(cuMemcpyHtoD(d_OptionYears, h_OptionYears, OPT_SZ));
printf("Data init done.\n\n");
printf("Executing Black-Scholes GPU kernel (%i iterations)...\n",
NUM_ITERATIONS);
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
dim3 cudaBlockSize(128, 1, 1);
dim3 cudaGridSize(DIV_UP(OPT_N / 2, 128), 1, 1);
float risk = RISKFREE;
float volatility = VOLATILITY;
int optval = OPT_N;
void *arr[] = {(void *)&d_CallResult, (void *)&d_PutResult,
(void *)&d_StockPrice, (void *)&d_OptionStrike,
(void *)&d_OptionYears, (void *)&risk,
(void *)&volatility, (void *)&optval};
for (i = 0; i < NUM_ITERATIONS; i++) {
checkCudaErrors(cuLaunchKernel(kernel_addr, cudaGridSize.x, cudaGridSize.y,
cudaGridSize.z, /* grid dim */
cudaBlockSize.x, cudaBlockSize.y,
cudaBlockSize.z, /* block dim */
0, 0, /* shared mem, stream */
&arr[0], /* arguments */
0));
}
checkCudaErrors(cuCtxSynchronize());
sdkStopTimer(&hTimer);
gpuTime = sdkGetTimerValue(&hTimer) / NUM_ITERATIONS;
// Both call and put is calculated
printf("Options count : %i \n", 2 * OPT_N);
printf("BlackScholesGPU() time : %f msec\n", gpuTime);
printf("Effective memory bandwidth: %f GB/s\n",
((double)(5 * OPT_N * sizeof(float)) * 1E-9) / (gpuTime * 1E-3));
printf("Gigaoptions per second : %f \n\n",
((double)(2 * OPT_N) * 1E-9) / (gpuTime * 1E-3));
printf(
"BlackScholes, Throughput = %.4f GOptions/s, Time = %.5f s, Size = %u "
"options, NumDevsUsed = %u, Workgroup = %u\n",
(((double)(2.0 * OPT_N) * 1.0E-9) / (gpuTime * 1.0E-3)), gpuTime * 1e-3,
(2 * OPT_N), 1, 128);
printf("\nReading back GPU results...\n");
// Read back GPU results to compare them to CPU results
checkCudaErrors(cuMemcpyDtoH(h_CallResultGPU, d_CallResult, OPT_SZ));
checkCudaErrors(cuMemcpyDtoH(h_PutResultGPU, d_PutResult, OPT_SZ));
printf("Checking the results...\n");
printf("...running CPU calculations.\n\n");
// Calculate options values on CPU
BlackScholesCPU(h_CallResultCPU, h_PutResultCPU, h_StockPrice, h_OptionStrike,
h_OptionYears, RISKFREE, VOLATILITY, OPT_N);
printf("Comparing the results...\n");
// Calculate max absolute difference and L1 distance
// between CPU and GPU results
sum_delta = 0;
sum_ref = 0;
max_delta = 0;
for (i = 0; i < OPT_N; i++) {
ref = h_CallResultCPU[i];
delta = fabs(h_CallResultCPU[i] - h_CallResultGPU[i]);
if (delta > max_delta) {
max_delta = delta;
}
sum_delta += delta;
sum_ref += fabs(ref);
}
L1norm = sum_delta / sum_ref;
printf("L1 norm: %E\n", L1norm);
printf("Max absolute error: %E\n\n", max_delta);
printf("Shutting down...\n");
printf("...releasing GPU memory.\n");
checkCudaErrors(cuMemFree(d_OptionYears));
checkCudaErrors(cuMemFree(d_OptionStrike));
checkCudaErrors(cuMemFree(d_StockPrice));
checkCudaErrors(cuMemFree(d_PutResult));
checkCudaErrors(cuMemFree(d_CallResult));
printf("...releasing CPU memory.\n");
free(h_OptionYears);
free(h_OptionStrike);
free(h_StockPrice);
free(h_PutResultGPU);
free(h_CallResultGPU);
free(h_PutResultCPU);
free(h_CallResultCPU);
sdkDeleteTimer(&hTimer);
printf("Shutdown done.\n");
printf("\n[%s] - Test Summary\n", argv[0]);
if (L1norm > 1e-6) {
printf("Test failed!\n");
exit(EXIT_FAILURE);
}
printf("Test passed\n");
exit(EXIT_SUCCESS);
}
|