1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
This sample has two kernels, one doing the rendering every frame, and
another one used to generate the mip map levels at startup.
For rendering we use a "virtual" texturing approach, where one 2d texture
stores pointers to the actual textures used. This can be achieved by the
new cudaTextureObject introduced in CUDA 5.0 and requiring sm3+ hardware.
The mipmap generation kernel uses cudaSurfaceObject and cudaTextureObject
passed as kernel arguments to compute the higher mip map level based on
the lower.
*/
#ifndef _BINDLESSTEXTURE_KERNEL_CU_
#define _BINDLESSTEXTURE_KERNEL_CU_
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <vector>
#include <helper_cuda.h>
#include <helper_math.h>
#include "bindlessTexture.h"
// set this to just see the mipmap chain of first image
//#define SHOW_MIPMAPS
// local references to resources
Image atlasImage;
std::vector<Image> contentImages;
float highestLod = 1.0f;
#ifndef MAX
#define MAX(a, b) ((a > b) ? a : b)
#endif
//////////////////////////////////////////////////////////////////////////
__host__ __device__ __inline__ uint2 encodeTextureObject(
cudaTextureObject_t obj) {
return make_uint2((uint)(obj & 0xFFFFFFFF), (uint)(obj >> 32));
}
__host__ __device__ __inline__ cudaTextureObject_t decodeTextureObject(
uint2 obj) {
return (((cudaTextureObject_t)obj.x) | ((cudaTextureObject_t)obj.y) << 32);
}
__device__ __inline__ float4 to_float4(uchar4 vec) {
return make_float4(vec.x, vec.y, vec.z, vec.w);
}
__device__ __inline__ uchar4 to_uchar4(float4 vec) {
return make_uchar4((uchar)vec.x, (uchar)vec.y, (uchar)vec.z, (uchar)vec.w);
}
//////////////////////////////////////////////////////////////////////////
// Rendering
// the atlas texture stores the 64 bit cudaTextureObjects
// we use it for "virtual" texturing
__global__ void d_render(uchar4 *d_output, uint imageW, uint imageH, float lod,
cudaTextureObject_t atlasTexture) {
uint x = blockIdx.x * blockDim.x + threadIdx.x;
uint y = blockIdx.y * blockDim.y + threadIdx.y;
float u = x / (float)imageW;
float v = y / (float)imageH;
if ((x < imageW) && (y < imageH)) {
// read from 2D atlas texture and decode texture object
uint2 texCoded = tex2D<uint2>(atlasTexture, u, v);
cudaTextureObject_t tex = decodeTextureObject(texCoded);
// read from cuda texture object, use template to specify what data will be
// returned. tex2DLod allows us to pass the lod (mip map level) directly.
// There is other functions with CUDA 5, e.g. tex2DGrad, that allow you
// to pass derivatives to perform automatic mipmap/anisotropic filtering.
float4 color = tex2DLod<float4>(tex, u, 1 - v, lod);
// In our sample tex is always valid, but for something like your own
// sparse texturing you would need to make sure to handle the zero case.
// write output color
uint i = y * imageW + x;
d_output[i] = to_uchar4(color * 255.0);
}
}
extern "C" void renderAtlasImage(dim3 gridSize, dim3 blockSize,
uchar4 *d_output, uint imageW, uint imageH,
float lod) {
// psuedo animate lod
lod = fmodf(lod, highestLod * 2);
lod = highestLod - fabs(lod - highestLod);
#ifdef SHOW_MIPMAPS
lod = 0.0f;
#endif
d_render<<<gridSize, blockSize>>>(d_output, imageW, imageH, lod,
atlasImage.textureObject);
checkCudaErrors(cudaGetLastError());
}
//////////////////////////////////////////////////////////////////////////
// MipMap Generation
// A key benefit of using the new surface objects is that we don't need any
// global binding points anymore. We can directly pass them as function
// arguments.
__global__ void d_mipmap(cudaSurfaceObject_t mipOutput,
cudaTextureObject_t mipInput, uint imageW,
uint imageH) {
uint x = blockIdx.x * blockDim.x + threadIdx.x;
uint y = blockIdx.y * blockDim.y + threadIdx.y;
float px = 1.0 / float(imageW);
float py = 1.0 / float(imageH);
if ((x < imageW) && (y < imageH)) {
// take the average of 4 samples
// we are using the normalized access to make sure non-power-of-two textures
// behave well when downsized.
float4 color = (tex2D<float4>(mipInput, (x + 0) * px, (y + 0) * py)) +
(tex2D<float4>(mipInput, (x + 1) * px, (y + 0) * py)) +
(tex2D<float4>(mipInput, (x + 1) * px, (y + 1) * py)) +
(tex2D<float4>(mipInput, (x + 0) * px, (y + 1) * py));
color /= 4.0;
color *= 255.0;
color = fminf(color, make_float4(255.0));
surf2Dwrite(to_uchar4(color), mipOutput, x * sizeof(uchar4), y);
}
}
void generateMipMaps(cudaMipmappedArray_t mipmapArray, cudaExtent size) {
size_t width = size.width;
size_t height = size.height;
#ifdef SHOW_MIPMAPS
cudaArray_t levelFirst;
checkCudaErrors(cudaGetMipmappedArrayLevel(&levelFirst, mipmapArray, 0));
#endif
uint level = 0;
while (width != 1 || height != 1) {
width /= 2;
width = MAX((size_t)1, width);
height /= 2;
height = MAX((size_t)1, height);
cudaArray_t levelFrom;
checkCudaErrors(cudaGetMipmappedArrayLevel(&levelFrom, mipmapArray, level));
cudaArray_t levelTo;
checkCudaErrors(
cudaGetMipmappedArrayLevel(&levelTo, mipmapArray, level + 1));
cudaExtent levelToSize;
checkCudaErrors(cudaArrayGetInfo(NULL, &levelToSize, NULL, levelTo));
checkHost(levelToSize.width == width);
checkHost(levelToSize.height == height);
checkHost(levelToSize.depth == 0);
// generate texture object for reading
cudaTextureObject_t texInput;
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = levelFrom;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = 1;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeClamp;
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.addressMode[2] = cudaAddressModeClamp;
texDescr.readMode = cudaReadModeNormalizedFloat;
checkCudaErrors(
cudaCreateTextureObject(&texInput, &texRes, &texDescr, NULL));
// generate surface object for writing
cudaSurfaceObject_t surfOutput;
cudaResourceDesc surfRes;
memset(&surfRes, 0, sizeof(cudaResourceDesc));
surfRes.resType = cudaResourceTypeArray;
surfRes.res.array.array = levelTo;
checkCudaErrors(cudaCreateSurfaceObject(&surfOutput, &surfRes));
// run mipmap kernel
dim3 blockSize(16, 16, 1);
dim3 gridSize(((uint)width + blockSize.x - 1) / blockSize.x,
((uint)height + blockSize.y - 1) / blockSize.y, 1);
d_mipmap<<<gridSize, blockSize>>>(surfOutput, texInput, (uint)width,
(uint)height);
checkCudaErrors(cudaDeviceSynchronize());
checkCudaErrors(cudaGetLastError());
checkCudaErrors(cudaDestroySurfaceObject(surfOutput));
checkCudaErrors(cudaDestroyTextureObject(texInput));
#ifdef SHOW_MIPMAPS
// we blit the current mipmap back into first level
cudaMemcpy3DParms copyParams = {0};
copyParams.dstArray = levelFirst;
copyParams.srcArray = levelTo;
copyParams.extent = make_cudaExtent(width, height, 1);
copyParams.kind = cudaMemcpyDeviceToDevice;
checkCudaErrors(cudaMemcpy3D(©Params));
#endif
level++;
}
}
uint getMipMapLevels(cudaExtent size) {
size_t sz = MAX(MAX(size.width, size.height), size.depth);
uint levels = 0;
while (sz) {
sz /= 2;
levels++;
}
return levels;
}
//////////////////////////////////////////////////////////////////////////
// Initalization
extern "C" void randomizeAtlas() {
uint2 *h_data = (uint2 *)atlasImage.h_data;
// assign random texture object handles to our atlas image tiles
for (size_t i = 0; i < atlasImage.size.width * atlasImage.size.height; i++) {
#ifdef SHOW_MIPMAPS
h_data[i] = encodeTextureObject(contentImages[0].textureObject);
#else
h_data[i] = encodeTextureObject(
contentImages[rand() % contentImages.size()].textureObject);
#endif
}
// copy data to atlas array
cudaMemcpy3DParms copyParams = {0};
copyParams.srcPtr = make_cudaPitchedPtr(
atlasImage.h_data, atlasImage.size.width * sizeof(uint2),
atlasImage.size.width, atlasImage.size.height);
copyParams.dstArray = atlasImage.dataArray;
copyParams.extent = atlasImage.size;
copyParams.extent.depth = 1;
copyParams.kind = cudaMemcpyHostToDevice;
checkCudaErrors(cudaMemcpy3D(©Params));
};
extern "C" void deinitAtlasAndImages() {
for (size_t i = 0; i < contentImages.size(); i++) {
Image &image = contentImages[i];
if (image.h_data) {
free(image.h_data);
}
if (image.textureObject) {
checkCudaErrors(cudaDestroyTextureObject(image.textureObject));
}
if (image.mipmapArray) {
checkCudaErrors(cudaFreeMipmappedArray(image.mipmapArray));
}
}
if (atlasImage.h_data) {
free(atlasImage.h_data);
}
if (atlasImage.textureObject) {
checkCudaErrors(cudaDestroyTextureObject(atlasImage.textureObject));
}
if (atlasImage.dataArray) {
checkCudaErrors(cudaFreeArray(atlasImage.dataArray));
}
}
extern "C" void initAtlasAndImages(const Image *images, size_t numImages,
cudaExtent atlasSize) {
// create individual textures
contentImages.resize(numImages);
for (size_t i = 0; i < numImages; i++) {
Image &image = contentImages[i];
image.size = images[i].size;
image.size.depth = 0;
image.type = cudaResourceTypeMipmappedArray;
// how many mipmaps we need
uint levels = getMipMapLevels(image.size);
highestLod = MAX(highestLod, (float)levels - 1);
cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar4>();
checkCudaErrors(cudaMallocMipmappedArray(&image.mipmapArray, &desc,
image.size, levels));
// upload level 0
cudaArray_t level0;
checkCudaErrors(cudaGetMipmappedArrayLevel(&level0, image.mipmapArray, 0));
cudaMemcpy3DParms copyParams = {0};
copyParams.srcPtr =
make_cudaPitchedPtr(images[i].h_data, image.size.width * sizeof(uchar4),
image.size.width, image.size.height);
copyParams.dstArray = level0;
copyParams.extent = image.size;
copyParams.extent.depth = 1;
copyParams.kind = cudaMemcpyHostToDevice;
checkCudaErrors(cudaMemcpy3D(©Params));
// compute rest of mipmaps based on level 0
generateMipMaps(image.mipmapArray, image.size);
// generate bindless texture object
cudaResourceDesc resDescr;
memset(&resDescr, 0, sizeof(cudaResourceDesc));
resDescr.resType = cudaResourceTypeMipmappedArray;
resDescr.res.mipmap.mipmap = image.mipmapArray;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = 1;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.mipmapFilterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeClamp;
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.addressMode[2] = cudaAddressModeClamp;
texDescr.maxMipmapLevelClamp = float(levels - 1);
texDescr.readMode = cudaReadModeNormalizedFloat;
checkCudaErrors(cudaCreateTextureObject(&image.textureObject, &resDescr,
&texDescr, NULL));
}
// create atlas array
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<uint2>();
checkCudaErrors(cudaMallocArray(&atlasImage.dataArray, &channelDesc,
atlasSize.width, atlasSize.height));
atlasImage.h_data =
malloc(atlasSize.width * atlasSize.height * sizeof(uint2));
atlasImage.type = cudaResourceTypeArray;
atlasImage.size = atlasSize;
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = atlasImage.dataArray;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = true;
texDescr.filterMode = cudaFilterModePoint;
texDescr.addressMode[0] = cudaAddressModeClamp;
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&atlasImage.textureObject, &texRes,
&texDescr, NULL));
randomizeAtlas();
}
#endif // #ifndef _SIMPLETEXTURE3D_KERNEL_CU_
|