File: index.html

package info (click to toggle)
nvidia-cuda-toolkit 11.8.0-5~deb12u1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm
  • size: 18,338,396 kB
  • sloc: ansic: 172,472; cpp: 57,058; javascript: 21,597; python: 12,656; xml: 12,438; makefile: 2,949; sh: 2,056; perl: 352
file content (3983 lines) | stat: -rw-r--r-- 348,245 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
<!DOCTYPE html
  PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-us" xml:lang="en-us">
   <head>
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8"></meta>
      <meta http-equiv="X-UA-Compatible" content="IE=edge"></meta>
      <meta name="copyright" content="(C) Copyright 2005"></meta>
      <meta name="DC.rights.owner" content="(C) Copyright 2005"></meta>
      <meta name="DC.Type" content="concept"></meta>
      <meta name="DC.Title" content="Kernel Profiling Guide"></meta>
      <meta name="abstract" content="Nsight Compute profiling guide."></meta>
      <meta name="description" content="Nsight Compute profiling guide."></meta>
      <meta name="DC.Coverage" content="Nsight Compute"></meta>
      <meta name="DC.subject" content="Kernel Profiling Guide"></meta>
      <meta name="keywords" content="Kernel Profiling Guide"></meta>
      <meta name="DC.Format" content="XHTML"></meta>
      <meta name="DC.Identifier" content="abstract"></meta>
      <link rel="stylesheet" type="text/css" href="../common/formatting/commonltr.css"></link>
      <link rel="stylesheet" type="text/css" href="../common/formatting/site.css"></link>
      <title>Kernel Profiling Guide :: Nsight Compute Documentation</title>
      <!--[if lt IE 9]>
      <script src="../common/formatting/html5shiv-printshiv.min.js"></script>
      <![endif]-->
      <script type="text/javascript" charset="utf-8" src="../common/scripts/tynt/tynt.js"></script>
      --&gt;
      
      <script src="https://assets.adobedtm.com/5d4962a43b79/c1061d2c5e7b/launch-191c2462b890.min.js"></script>
      <script type="text/javascript" charset="utf-8" src="../common/formatting/jquery.min.js"></script>
      <script type="text/javascript" charset="utf-8" src="../common/formatting/jquery.ba-hashchange.min.js"></script>
      <script type="text/javascript" charset="utf-8" src="../common/formatting/jquery.scrollintoview.min.js"></script>
      <script type="text/javascript" src="../search/htmlFileList.js"></script>
      <script type="text/javascript" src="../search/htmlFileInfoList.js"></script>
      <script type="text/javascript" src="../search/nwSearchFnt.min.js"></script>
      <script type="text/javascript" src="../search/stemmers/en_stemmer.min.js"></script>
      <script type="text/javascript" src="../search/index-1.js"></script>
      <script type="text/javascript" src="../search/index-2.js"></script>
      <script type="text/javascript" src="../search/index-3.js"></script>
      <link rel="canonical" href="https://developer.nvidia.com/ProfilingGuide/index.html"></link>
      <link rel="stylesheet" type="text/css" href="../common/formatting/qwcode.highlight.css"></link>
   </head>
   <body>
      
      <header id="header"><span id="company">NVIDIA</span><span id="site-title">Nsight Compute Documentation</span><form id="search" method="get" action="search">
            <input type="text" name="search-text"></input><fieldset id="search-location">
               <legend>Search In:</legend>
               <label><input type="radio" name="search-type" value="site"></input>Entire Site</label>
               <label><input type="radio" name="search-type" value="document"></input>Just This Document</label></fieldset>
            <button type="reset">clear search</button>
            <button id="submit" type="submit">search</button></form>
      </header>
      <div id="site-content">
         <nav id="site-nav">
            <div class="category closed"><a href="../index.html" title="The root of the site.">Nsight Compute
                  v2022.3.0</a></div>
            <div class="category"><a href="index.html" title="Kernel Profiling Guide">Kernel Profiling Guide</a></div>
            <ul>
               <li>
                  <div class="section-link"><a href="#introduction">1.&nbsp;Introduction</a></div>
                  <ul>
                     <li>
                        <div class="section-link"><a href="#profiling-applications">1.1.&nbsp;Profiling Applications</a></div>
                     </li>
                  </ul>
               </li>
               <li>
                  <div class="section-link"><a href="#metric-collection">2.&nbsp;Metric Collection</a></div>
                  <ul>
                     <li>
                        <div class="section-link"><a href="#sets-and-sections">2.1.&nbsp;Sets and Sections</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#sections-and-rules">2.2.&nbsp;Sections and Rules</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#replay">2.3.&nbsp;Replay</a></div>
                        <ul>
                           <li>
                              <div class="section-link"><a href="#kernel-replay">2.3.1.&nbsp;Kernel Replay</a></div>
                           </li>
                           <li>
                              <div class="section-link"><a href="#application-replay">2.3.2.&nbsp;Application Replay</a></div>
                           </li>
                           <li>
                              <div class="section-link"><a href="#range-replay">2.3.3.&nbsp;Range Replay</a></div>
                              <ul>
                                 <li>
                                    <div class="section-link"><a href="#range-replay-define-range">2.3.3.1.&nbsp;Defining Ranges</a></div>
                                 </li>
                                 <li>
                                    <div class="section-link"><a href="#range-replay-supported-apis">2.3.3.2.&nbsp;Supported APIs</a></div>
                                 </li>
                              </ul>
                           </li>
                        </ul>
                     </li>
                     <li>
                        <div class="section-link"><a href="#profile-series">2.4.&nbsp;Profile Series</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#overhead">2.5.&nbsp;Overhead</a></div>
                     </li>
                  </ul>
               </li>
               <li>
                  <div class="section-link"><a href="#metrics-guide">3.&nbsp;Metrics Guide</a></div>
                  <ul>
                     <li>
                        <div class="section-link"><a href="#metrics-hw-model">3.1.&nbsp;Hardware Model</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#metrics-structure">3.2.&nbsp;Metrics Structure</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#metrics-decoder">3.3.&nbsp;Metrics Decoder</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#range-and-precision">3.4.&nbsp;Range and Precision</a></div>
                     </li>
                  </ul>
               </li>
               <li>
                  <div class="section-link"><a href="#metrics-reference">4.&nbsp;Metrics Reference</a></div>
               </li>
               <li>
                  <div class="section-link"><a href="#sampling">5.&nbsp;Sampling</a></div>
                  <ul>
                     <li>
                        <div class="section-link"><a href="#statistical-sampler">5.1.&nbsp;Warp Scheduler States</a></div>
                     </li>
                  </ul>
               </li>
               <li>
                  <div class="section-link"><a href="#reproducibility">6.&nbsp;Reproducibility</a></div>
                  <ul>
                     <li>
                        <div class="section-link"><a href="#serialization">6.1.&nbsp;Serialization</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#clock-control">6.2.&nbsp;Clock Control</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#cache-control">6.3.&nbsp;Cache Control</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#persistence-mode">6.4.&nbsp;Persistence Mode</a></div>
                     </li>
                  </ul>
               </li>
               <li>
                  <div class="section-link"><a href="#special-configurations">7.&nbsp;Special Configurations</a></div>
                  <ul>
                     <li>
                        <div class="section-link"><a href="#special-configurations-mig">7.1.&nbsp;Multi Instance GPU</a></div>
                     </li>
                  </ul>
               </li>
               <li>
                  <div class="section-link"><a href="#roofline">8.&nbsp;Roofline Charts</a></div>
                  <ul>
                     <li>
                        <div class="section-link"><a href="#roofline-overview">8.1.&nbsp;Overview</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#roofline-analysis">8.2.&nbsp;Analysis</a></div>
                     </li>
                  </ul>
               </li>
               <li>
                  <div class="section-link"><a href="#memory-chart">9.&nbsp;Memory Chart</a></div>
                  <ul>
                     <li>
                        <div class="section-link"><a href="#memory-chart-overview">9.1.&nbsp;Overview</a></div>
                     </li>
                  </ul>
               </li>
               <li>
                  <div class="section-link"><a href="#memory-tables">10.&nbsp;Memory Tables</a></div>
                  <ul>
                     <li>
                        <div class="section-link"><a href="#memory-tables-smem">10.1.&nbsp;Shared Memory</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#memory-tables-l1">10.2.&nbsp;L1/TEX Cache</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#memory-tables-l2">10.3.&nbsp;L2 Cache</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#memory-tables-l2-evict-policy">10.4.&nbsp;L2 Cache Eviction Policies</a></div>
                     </li>
                     <li>
                        <div class="section-link"><a href="#memory-tables-dram">10.5.&nbsp;Device Memory</a></div>
                     </li>
                  </ul>
               </li>
               <li>
                  <div class="section-link"><a href="#faq">11.&nbsp;FAQ</a></div>
               </li>
            </ul>
         </nav>
         <div id="resize-nav"></div>
         <nav id="search-results">
            <h2>Search Results</h2>
            <ol></ol>
         </nav>
         
         <div id="contents-container">
            <div id="breadcrumbs-container">
               <div id="release-info">Kernel Profiling Guide
                  (<a href="../pdf/ProfilingGuide.pdf">PDF</a>)
                  
                  -
                  
                  v2022.3.0
                  (<a href="https://developer.nvidia.com">older</a>)
                  -
                  Last updated August 24, 2022
                  -
                  <a href="mailto:devtools@nvidia.com?subject=Nsight Compute Documentation Feedback: Kernel Profiling Guide">Send Feedback</a>
                  -
                  <span class="st_facebook"></span><span class="st_twitter"></span><span class="st_linkedin"></span><span class="st_reddit"></span><span class="st_slashdot"></span><span class="st_tumblr"></span><span class="st_sharethis"></span></div>
            </div>
            <article id="contents">
               <div class="topic nested0" id="abstract"><a name="abstract" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#abstract" name="abstract" shape="rect">Kernel Profiling Guide</a></h2>
                  <div class="body conbody">
                     <p class="shortdesc">Nsight Compute profiling guide.</p>
                     <p class="p">
                        Kernel Profiling Guide with metric types and meaning, data collection modes and FAQ for common problems.
                        
                     </p>
                  </div>
               </div>
               <div class="topic concept nested0" id="introduction"><a name="introduction" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#introduction" name="introduction" shape="rect">1.&nbsp;Introduction</a></h2>
                  <div class="body conbody">
                     <p class="p">
                        This guide describes various profiling topics related to <span class="keyword">NVIDIA Nsight Compute</span> and <span class="keyword">NVIDIA Nsight Compute CLI</span>.
                        Most of these apply to both the UI and the CLI version of the tool.
                        
                     </p>
                     <div class="p">
                        To use the tools effectively, it is recommended to read this guide, as well as at least the following chapters of the <dfn class="term">CUDA Programming Guide</dfn>:
                        
                        <ul class="ul">
                           <li class="li"><a class="xref" href="https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model" target="_blank" shape="rect">Programming Model</a></li>
                           <li class="li"><a class="xref" href="https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#hardware-implementation" target="_blank" shape="rect">Hardware Implementation</a></li>
                           <li class="li"><a class="xref" href="https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#performance-guidelines" target="_blank" shape="rect">Performance Guidelines</a></li>
                        </ul>
                        
                        
                        Afterwards, it should be enough to read the <dfn class="term">Quickstart</dfn> chapter of the <span class="keyword">NVIDIA Nsight Compute</span> or <span class="keyword">NVIDIA Nsight Compute CLI</span>
                        documentation, respectively, to start using the tools.
                        
                     </div>
                  </div>
                  <div class="topic concept nested1" id="profiling-applications"><a name="profiling-applications" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#profiling-applications" name="profiling-applications" shape="rect">1.1.&nbsp;Profiling Applications</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           During regular execution, a CUDA application process will be launched by the user.
                           It communicates directly with the CUDA user-mode driver, and potentially with the CUDA runtime library.
                           
                        </p>
                        <div class="fig fignone"><span class="desc figdesc">Regular Application Execution</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/regular-application-process.png"></img></div><br clear="none"></br></div>
                        <p class="p">
                           When profiling an application with <span class="keyword">NVIDIA Nsight Compute</span>, the behavior is different.
                           The user launches the <span class="keyword">NVIDIA Nsight Compute</span> frontend (either the UI or the CLI) on the host system,
                           which in turn starts the actual application as a new process on the target system.
                           While host and target are often the same machine, the target can also be a remote system with a potentially different operating
                           system.
                           
                        </p>
                        <p class="p">
                           The tool inserts its measurement libraries into the application process, which allow the profiler to intercept
                           communication with the CUDA user-mode driver.
                           In addition, when a kernel launch is detected, the libraries can collect the requested performance metrics from the GPU.
                           The results are then transferred back to the frontend.
                           
                        </p>
                        <div class="fig fignone"><span class="desc figdesc">Profiled Application Execution</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/profiled-process.png"></img></div><br clear="none"></br></div>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="metric-collection"><a name="metric-collection" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#metric-collection" name="metric-collection" shape="rect">2.&nbsp;Metric Collection</a></h2>
                  <div class="body conbody">
                     <p class="p">
                        Collection of performance metrics is the key feature of <span class="keyword">NVIDIA Nsight Compute</span>.
                        Since there is a huge list of metrics available, it is often easier to use some of the tool's
                        pre-defined <a class="xref" href="index.html#sets-and-sections" shape="rect">sets or sections</a> to collect a commonly used subset.
                        Users are free to adjust which metrics are collected for which kernels as needed, but it is important to
                        keep in mind the <a class="xref" href="index.html#overhead" shape="rect">Overhead</a> associated with data collection.
                        
                     </p>
                  </div>
                  <div class="topic concept nested1" id="sets-and-sections"><a name="sets-and-sections" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#sets-and-sections" name="sets-and-sections" shape="rect">2.1.&nbsp;Sets and Sections</a></h3>
                     <div class="body conbody">
                        <p class="p"><span class="keyword">NVIDIA Nsight Compute</span> uses <dfn class="term">Section Sets</dfn> (short <dfn class="term">sets</dfn>) to decide,
                           on a very high level, the amount of metrics to be collected.
                           Each set includes one or more <dfn class="term">Sections</dfn>, with each section specifying several logically associated metrics.
                           For example, one section might include only high-level SM and memory utilization metrics, while another could
                           include metrics associated with the memory units, or the HW scheduler.
                           
                        </p>
                        <p class="p">
                           The number and type of metrics specified by a section has significant impact on the overhead during profiling.
                           To allow you to quickly choose between a fast, less detailed profile and a slower, more comprehensive analysis,
                           you can select the respective section set.
                           See <a class="xref" href="index.html#overhead" shape="rect">Overhead</a> for more information on profiling overhead.
                           
                        </p>
                        <p class="p">
                           By default, a relatively small number of metrics is collected. Those mostly include high-level utilization information
                           as well as static launch and occupancy data. The latter two are regularly available without replaying the kernel launch.
                           The default set is collected when no <samp class="ph codeph">--set</samp>, <samp class="ph codeph">--section</samp> and no <samp class="ph codeph">--metrics</samp>
                           options are passed on the command line. The full set of sections can be collected with <samp class="ph codeph">--set full</samp>.
                           
                        </p>
                        <p class="p">
                           Use <samp class="ph codeph">--list-sets</samp> to see the list of currently available sets.
                           Use <samp class="ph codeph">--list-sections</samp> to see the list of currently available sections.
                           The default search directory and the location of pre-defined section files are also called <samp class="ph codeph">sections/</samp>.
                           All related command line options can be found in the <span class="keyword">NVIDIA Nsight Compute CLI</span> documentation.
                           
                        </p>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="sections-and-rules"><a name="sections-and-rules" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#sections-and-rules" name="sections-and-rules" shape="rect">2.2.&nbsp;Sections and Rules</a></h3>
                     <div class="body conbody">
                        <div class="p">
                           <div class="tablenoborder"><a name="sections-and-rules__available-sections" shape="rect">
                                 <!-- --></a><table cellpadding="4" cellspacing="0" summary="" id="sections-and-rules__available-sections" class="table" frame="border" border="1" rules="all">
                                 <caption><span class="tablecap">Table 1. Available Sections</span></caption>
                                 <thead class="thead" align="left">
                                    <tr class="row">
                                       <th class="entry" valign="top" width="33.33333333333333%" id="d54e239" rowspan="1" colspan="1">Identifier and Filename</th>
                                       <th class="entry" valign="top" width="66.66666666666666%" id="d54e242" rowspan="1" colspan="1">Description</th>
                                    </tr>
                                 </thead>
                                 <tbody class="tbody">
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">ComputeWorkloadAnalysis (Compute Workload Analysis)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          Detailed analysis of the compute resources of the streaming multiprocessors (SM), including the achieved instructions per
                                          clock (IPC) and the utilization of each available pipeline. Pipelines with very high utilization might limit the overall performance.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">InstructionStats (Instruction Statistics)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          Statistics of the executed low-level assembly instructions (SASS). The instruction mix provides insight into the types and
                                          frequency of the executed instructions. A narrow mix of instruction types implies a dependency on few instruction pipelines,
                                          while others remain unused. Using multiple pipelines allows hiding latencies and enables parallel execution.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">LaunchStats (Launch Statistics)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          Summary of the configuration used to launch the kernel. The launch configuration defines the size of the kernel grid, the
                                          division of the grid into blocks, and the GPU resources needed to execute the kernel. Choosing an efficient launch configuration
                                          maximizes device utilization.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">MemoryWorkloadAnalysis (Memory Workload Analysis)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance
                                          when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication bandwidth between those
                                          units (Max Bandwidth), or by reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy). Depending on
                                          the limiting factor, the memory chart and tables allow to identify the exact bottleneck in the memory system.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">Nvlink (Nvlink)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          High-level summary of NVLink utilization. It shows the total received and transmitted (sent) memory, as well as the overall
                                          link peak utilization.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">Nvlink_Tables (Nvlink_Tables)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          Detailed tables with properties for each NVLink.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">Nvlink_Topology (Nvlink_Topology)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          NVLink Topology diagram shows logical NVLink connections with transmit/receive throughput.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">Occupancy (Occupancy)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number of possible active warps. Another
                                          way to view occupancy is the percentage of the hardware's ability to process warps that is actively in use. Higher occupancy
                                          does not always result in higher performance, however, low occupancy always reduces the ability to hide latencies, resulting
                                          in overall performance degradation. Large discrepancies between the theoretical and the achieved occupancy during execution
                                          typically indicates highly imbalanced workloads.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">SchedulerStats (Scheduler Statistics)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          Summary of the activity of the schedulers issuing instructions. Each scheduler maintains a pool of warps that it can issue
                                          instructions for. The upper bound of warps in the pool (Theoretical Warps) is limited by the launch configuration. On every
                                          cycle each scheduler checks the state of the allocated warps in the pool (Active Warps). Active warps that are not stalled
                                          (Eligible Warps) are ready to issue their next instruction. From the set of eligible warps, the scheduler selects a single
                                          warp from which to issue one or more instructions (Issued Warp). On cycles with no eligible warps, the issue slot is skipped
                                          and no instruction is issued. Having many skipped issue slots indicates poor latency hiding.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">SourceCounters (Source Counters)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          Source metrics, including branch efficiency and sampled warp stall reasons. Warp Stall Sampling metrics are periodically sampled
                                          over the kernel runtime.
                                          They indicate when warps were stalled and couldn't be scheduled. See the documentation for a description of all stall reasons.
                                          Only focus on stalls if the schedulers fail to issue every cycle.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">SpeedOfLight (GPU Speed Of Light Throughput)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the
                                          achieved percentage of utilization with respect to the theoretical maximum.
                                          Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly identify the highest contributor.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="33.33333333333333%" headers="d54e239" rowspan="1" colspan="1">WarpStateStats (Warp State Statistics)</td>
                                       <td class="entry" valign="top" width="66.66666666666666%" headers="d54e242" rowspan="1" colspan="1">
                                          Analysis of the states in which all warps spent cycles during the kernel execution. The warp states describe a warp's readiness
                                          or inability to issue its next instruction. The warp cycles per instruction define the latency between two consecutive instructions.
                                          The higher the value, the more warp parallelism is required to hide this latency. For each warp state, the chart shows the
                                          average number of cycles spent in that state per issued instruction. Stalls are not always impacting the overall performance
                                          nor are they completely avoidable. Only focus on stall reasons if the schedulers fail to issue every cycle.
                                          
                                       </td>
                                    </tr>
                                 </tbody>
                              </table>
                           </div>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="replay"><a name="replay" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#replay" name="replay" shape="rect">2.3.&nbsp;Replay</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           Depending on which metrics are to be collected, kernels might need to be <dfn class="term">replayed</dfn>
                           one or more times, since not all metrics can be collected in a single <dfn class="term">pass</dfn>.
                           For example, the number of metrics originating from hardware (HW) performance counters that the GPU can collect at the same
                           time is limited.
                           In addition, patch-based software (SW) performance counters can have a high impact on kernel runtime
                           and would skew results for HW counters.
                           
                        </p>
                     </div>
                     <div class="topic concept nested2" id="kernel-replay"><a name="kernel-replay" shape="rect">
                           <!-- --></a><h3 class="title topictitle2"><a href="#kernel-replay" name="kernel-replay" shape="rect">2.3.1.&nbsp;Kernel Replay</a></h3>
                        <div class="body conbody">
                           <p class="p">
                              In <dfn class="term">Kernel Replay</dfn>, all metrics requested for a specific kernel instance in <span class="keyword">NVIDIA Nsight Compute</span> are grouped into one or more passes.
                              For the first pass, all GPU memory that can be accessed by the kernel is saved.
                              After the first pass, the subset of memory that is written by the kernel is determined.
                              Before each pass (except the first one), this subset is restored in its original location to have the kernel access the same
                              memory contents in each replay pass.
                              
                           </p>
                           <p class="p"><span class="keyword">NVIDIA Nsight Compute</span> attempts to use the fastest available storage location for this save-and-restore strategy.
                              For example, if data is allocated in device memory, and there is still enough device memory available, it is stored there
                              directly.
                              If it runs out of device memory, the data is transferred to the CPU host memory.
                              Likewise, if an allocation originates from CPU host memory, the tool first attempts to save it into the same memory location,
                              if possible.
                              
                           </p>
                           <p class="p">
                              As explained in <a class="xref" href="index.html#overhead" shape="rect">Overhead</a>, the time needed for this increases the more memory is accessed, especially written, by a kernel.
                              If <span class="keyword">NVIDIA Nsight Compute</span> determines that only a single replay pass is necessary to collect the requested metrics,
                              no save-and-restore is performed at all to reduce overhead.
                              
                           </p>
                           <div class="fig fignone"><span class="desc figdesc">Regular Application Execution</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/replay-regular-execution.png"></img></div><br clear="none"></br></div>
                           <div class="fig fignone"><span class="desc figdesc">Execution with Kernel Replay. All memory is saved, and memory written by the kernel is restored in-between replay passes.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/replay-kernel.png"></img></div><br clear="none"></br></div>
                        </div>
                     </div>
                     <div class="topic concept nested2" id="application-replay"><a name="application-replay" shape="rect">
                           <!-- --></a><h3 class="title topictitle2"><a href="#application-replay" name="application-replay" shape="rect">2.3.2.&nbsp;Application Replay</a></h3>
                        <div class="body conbody">
                           <p class="p">
                              In <dfn class="term">Application Replay</dfn>, all metrics requested for a specific kernel launch in <span class="keyword">NVIDIA Nsight Compute</span> are grouped into one or more passes.
                              In contrast to <a class="xref" href="index.html#kernel-replay" shape="rect">Kernel Replay</a>, the complete application is run multiple times,
                              so that in each run one of those passes can be collected per kernel.
                              
                           </p>
                           <p class="p">
                              For correctly identifying and combining performance counters collected from multiple application replay passes of a single
                              kernel launch into one result,
                              the application needs to be deterministic with respect to its kernel activities and their assignment to GPUs, contexts, streams,
                              and potentially NVTX ranges.
                              Normally, this also implies that the application needs to be deterministic with respect to its overall execution.
                              
                           </p>
                           <p class="p">
                              Application replay has the benefit that memory accessed by the kernel does not need to be saved and restored via the tool,
                              as each kernel launch executes only once during the lifetime of the application process.
                              Besides avoiding memory save-and-restore overhead, application replay also allows to disable <a class="xref" href="index.html#cache-control" shape="rect">Cache Control</a>.
                              This is especially useful if other GPU activities preceding a specific kernel launch are used by the application to set caches
                              to some expected state.
                              
                           </p>
                           <p class="p">
                              In addition, application replay can support profiling kernels that have interdependencies to the host during execution.
                              With kernel replay, this class of kernels typically hangs when being profiled, because the necessary responses from the host
                              are missing in all but the first pass.
                              In contrast, application replay ensures the correct behavior of the program execution in each pass.
                              
                           </p>
                           <p class="p">
                              In contrast to kernel replay, multiple passes collected via application replay imply that all host-side activities of the
                              application are duplicated, too.
                              If the application requires significant time for e.g. setup or file-system access, the overhead will increase accordingly.
                              
                           </p>
                           <div class="fig fignone"><span class="desc figdesc">Regular Application Execution</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/replay-regular-execution.png"></img></div><br clear="none"></br></div>
                           <div class="fig fignone"><span class="desc figdesc">Execution with Application Replay. No memory is saved or restored, but the cost of running the application itself is duplicated.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/replay-application.png"></img></div><br clear="none"></br></div>
                           <p class="p">
                              Across application replay passes, <span class="keyword">NVIDIA Nsight Compute</span> matches metric data for the individual, selected kernel launches.
                              The matching strategy can be selected using the <samp class="ph codeph">--app-replay-match</samp> option.
                              For matching, only kernels within the same process and running on the same device are considered.
                              By default, the <dfn class="term">grid</dfn> strategy is used, which matches launches according to their kernel name and grid size.
                              When multiple launches have the same attributes (e.g. name and grid size), they are matched in execution order.
                              
                           </p>
                           <div class="fig fignone"><span class="desc figdesc">Kernel matching during application replay using the <dfn class="term">grid</dfn> strategy.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/replay-application-kernel-matching.png"></img></div><br clear="none"></br></div>
                        </div>
                     </div>
                     <div class="topic concept nested2" id="range-replay"><a name="range-replay" shape="rect">
                           <!-- --></a><h3 class="title topictitle2"><a href="#range-replay" name="range-replay" shape="rect">2.3.3.&nbsp;Range Replay</a></h3>
                        <div class="body conbody">
                           <p class="p">
                              In <dfn class="term">Range Replay</dfn>, all requested metrics in <span class="keyword">NVIDIA Nsight Compute</span> are grouped into one or more passes.
                              In contrast to <a class="xref" href="index.html#kernel-replay" shape="rect">Kernel Replay</a> and <a class="xref" href="index.html#application-replay" shape="rect">Application Replay</a>, <dfn class="term">Range Replay</dfn>
                              captures and replays complete ranges of CUDA API calls and kernel launches within the profiled application.
                              Metrics are then not associated with individual kernels but with the entire range.
                              This allows the tool to execute kernels without serialization and thereby supports profiling kernels that
                              should be run concurrently for correctness or performance reasons.
                              
                           </p>
                           <div class="fig fignone"><span class="desc figdesc">Execution with Range Replay. An entire range of API calls and kernel launches is captured and replayed. Host and device memory
                                 is saved and restored as necessary.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/replay-range.png"></img></div><br clear="none"></br></div>
                        </div>
                        <div class="topic concept nested3" id="range-replay-define-range"><a name="range-replay-define-range" shape="rect">
                              <!-- --></a><h3 class="title topictitle2"><a href="#range-replay-define-range" name="range-replay-define-range" shape="rect">2.3.3.1.&nbsp;Defining Ranges</a></h3>
                           <div class="body conbody">
                              <p class="p">
                                 Range replay requires you to specify the range for profiling in the application.
                                 A range is defined by a start and an end marker and includes all CUDA API calls and kernels launched between these markers
                                 from any CPU thread.
                                 The application is responsible for inserting appropriate synchronization between threads to ensure that the anticipated set
                                 of
                                 API calls is captured. Range markers can be set using one of the following options:
                                 
                              </p>
                              <ul class="ul">
                                 <li class="li"><strong class="ph b">Profiler Start/Stop API</strong><p class="p">
                                       Set the start marker using <samp class="ph codeph">cu(da)ProfilerStart</samp> and the end marker using <samp class="ph codeph">cu(da)ProfilerStop</samp>.
                                       Note: The CUDA driver API variants of this API require to include <samp class="ph codeph">cudaProfiler.h</samp>.
                                       The CUDA runtime variants require to include <samp class="ph codeph">cuda_profiler_api.h</samp>.
                                       
                                    </p>
                                    <p class="p">
                                       This is the default for <span class="keyword">NVIDIA Nsight Compute</span>.
                                       
                                    </p>
                                 </li>
                                 <li class="li"><strong class="ph b">NVTX Ranges</strong><p class="p">
                                       Define the range using an <a class="xref" href="../NsightComputeCli/index.html#nvtx-filtering" shape="rect">NVTX Include</a> expression.
                                       The range capture starts with the first CUDA API call and ends at the last API call for which the expression is matched, respectively.
                                       If multiple expressions are specified, a range is defined as soon as any of them matches.
                                       Hence, multiple expressions can be used to conveniently capture and profile multiple ranges for the same application execution.
                                       
                                    </p>
                                    <p class="p">
                                       The application must have been instrumented with the NVTX API for any expressions to match.
                                       
                                    </p>
                                    <p class="p">
                                       This mode is enabled by passing <samp class="ph codeph">--nvtx --nvtx-include &lt;expression&gt; [--nvtx-include &lt;expression&gt;]</samp>
                                       to the <span class="keyword">NVIDIA Nsight Compute CLI</span>.
                                       
                                    </p>
                                 </li>
                              </ul>
                              <div class="p">
                                 Ranges must fulfill several requirements:
                                 
                                 <ul class="ul">
                                    <li class="li">It must be possible to synchronize all active CUDA contexts at the start of the range.</li>
                                    <li class="li">Ranges must not include unsupported CUDA API calls. See <a class="xref" href="index.html#range-replay-supported-apis" shape="rect">Supported APIs</a> for the list of currently supported APIs.
                                    </li>
                                 </ul>
                                 
                                 
                                 
                                 In addition, there are several recommendations that ranges should comply with to guarantee a correct capture and replay:
                                 
                                 <ul class="ul">
                                    <li class="li">
                                       Set ranges as narrow as possible for capturing a specific set of CUDA kernel lanuches.
                                       The more API calls are included, the higher the potentially created overhead from capturing and replaying these API calls.
                                       
                                    </li>
                                    <li class="li">
                                       Avoid freeing host allocations written by device memory during the range.
                                       This includes both heap as well as stack allocations.
                                       <span class="keyword">NVIDIA Nsight Compute</span> does not intercept creation or destruction of generic host (CPU)-based allocations.
                                       However, to guarantee correct program execution after any replay of the range, the tool attempts to restore
                                       host allocations that were written from device memory during the capture.
                                       If these host addresses are invalid or re-assigned, the program behavior is undefined and potentially unstable.
                                       
                                       In cases where avoiding freeing such allocations is not possible, you should limit profiling to one range using <samp class="ph codeph">--launch-count 1</samp>,
                                       set the <dfn class="term">disable-host-restore</dfn> range replay option and optionally use <samp class="ph codeph">--kill yes</samp> to terminate the process after this range.
                                       
                                    </li>
                                    <li class="li">
                                       When defining the range markers using <samp class="ph codeph">cu(da)ProfilerStart/Stop</samp>, prefer the CUDA driver API calls <samp class="ph codeph">cuProfilerStart/Stop</samp>.
                                       Internally, <span class="keyword">NVIDIA Nsight Compute</span> only intercepts the CUDA driver API variants and the CUDA runtime API may not trigger these
                                       if no CUDA context is active on the calling thread.
                                       
                                    </li>
                                 </ul>
                              </div>
                           </div>
                        </div>
                        <div class="topic concept nested3" id="range-replay-supported-apis"><a name="range-replay-supported-apis" shape="rect">
                              <!-- --></a><h3 class="title topictitle2"><a href="#range-replay-supported-apis" name="range-replay-supported-apis" shape="rect">2.3.3.2.&nbsp;Supported APIs</a></h3>
                           <div class="body conbody">
                              <p class="p">
                                 Range replay supports a subset of the CUDA API for capture and replay. This page lists the supported functions
                                 as well as any further, API-specific limitations that may apply.
                                 If an unsupported API call is detected in the captured range, an error is reported and the range cannot be profiled.
                                 The groups listed below match the ones found in the <a class="xref" href="https://docs.nvidia.com/cuda/cuda-driver-api/index.html" target="_blank" shape="rect">CUDA Driver API documentation</a>.
                                 
                              </p>
                              <p class="p">
                                 Generally, range replay only captures and replay CUDA <dfn class="term">Driver</dfn> API calls.
                                 CUDA <dfn class="term">Runtime</dfn> APIs calls can be captured when they generate only supported CUDA Driver API calls internally.
                                 Deprecated APIs are not supported.
                                 
                              </p>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-error-handling"><a name="range-replay-supported-apis__rr-supported-apis-error-handling" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Error Handling</h5>
                                 <p class="p">
                                    All supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-initialization"><a name="range-replay-supported-apis__rr-supported-apis-initialization" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Initialization</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-version"><a name="range-replay-supported-apis__rr-supported-apis-version" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Version Management</h5>
                                 <p class="p">
                                    All supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-device"><a name="range-replay-supported-apis__rr-supported-apis-device" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Device Management</h5>
                                 <div class="p">
                                    All supported, except:
                                    
                                    <ul class="ul">
                                       <li class="li">cuDeviceSetMemPool</li>
                                    </ul>
                                 </div>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-primary-ctx"><a name="range-replay-supported-apis__rr-supported-apis-primary-ctx" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Primary Context Management</h5>
                                 <div class="p">
                                    <ul class="ul">
                                       <li class="li">cuDevicePrimaryCtxGetState</li>
                                    </ul>
                                 </div>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-ctx"><a name="range-replay-supported-apis__rr-supported-apis-ctx" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Context Management</h5>
                                 <div class="p">
                                    All supported, except:
                                    
                                    <ul class="ul">
                                       <li class="li">cuCtxSetCacheConfig</li>
                                       <li class="li">cuCtxSetSharedMemConfig</li>
                                    </ul>
                                 </div>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-module"><a name="range-replay-supported-apis__rr-supported-apis-module" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Module Management</h5>
                                 <div class="p">
                                    <ul class="ul">
                                       <li class="li">cuModuleGetFunction</li>
                                       <li class="li">cuModuleGetGlobal</li>
                                       <li class="li">cuModuleGetSurfRef</li>
                                       <li class="li">cuModuleGetTexRef</li>
                                       <li class="li">cuModuleLoad</li>
                                       <li class="li">cuModuleLoadData</li>
                                       <li class="li">cuModuleLoadDataEx</li>
                                       <li class="li">cuModuleLoadFatBinary</li>
                                       <li class="li">cuModuleUnload</li>
                                    </ul>
                                 </div>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-memory"><a name="range-replay-supported-apis__rr-supported-apis-memory" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Memory Management</h5>
                                 <div class="p">
                                    <ul class="ul">
                                       <li class="li">cuArray*</li>
                                       <li class="li">cuDeviceGetByPCIBusId</li>
                                       <li class="li">cuDeviceGetPCIBusId</li>
                                       <li class="li">cuMemAlloc</li>
                                       <li class="li">cuMemAllocHost</li>
                                       <li class="li">cuMemAllocPitch</li>
                                       <li class="li">cuMemcpy*</li>
                                       <li class="li">cuMemFree</li>
                                       <li class="li">cuMemFreeHost</li>
                                       <li class="li">cuMemGetAddressRange</li>
                                       <li class="li">cuMemGetInfo</li>
                                       <li class="li">cuMemHostAlloc</li>
                                       <li class="li">cuMemHostGetDevicePointer</li>
                                       <li class="li">cuMemHostGetFlags</li>
                                       <li class="li">cuMemHostRegister</li>
                                       <li class="li">cuMemHostUnregister</li>
                                       <li class="li">cuMemset*</li>
                                       <li class="li">cuMipmapped*</li>
                                    </ul>
                                 </div>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-virtual"><a name="range-replay-supported-apis__rr-supported-apis-virtual" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Virtual Memory Management</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-stream-ordered"><a name="range-replay-supported-apis__rr-supported-apis-stream-ordered" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Stream Ordered Memory Allocator</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-unified-addr"><a name="range-replay-supported-apis__rr-supported-apis-unified-addr" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Unified Addressing</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-stream"><a name="range-replay-supported-apis__rr-supported-apis-stream" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Stream Management</h5>
                                 <div class="p">
                                    <ul class="ul">
                                       <li class="li">cuStreamCreate*</li>
                                       <li class="li">cuStreamDestroy</li>
                                       <li class="li">cuStreamGet*</li>
                                       <li class="li">cuStreamQuery</li>
                                       <li class="li">cuStreamSetAttribute</li>
                                       <li class="li">cuStreamSynchronize</li>
                                       <li class="li">cuStreamWaitEvent</li>
                                    </ul>
                                 </div>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-event"><a name="range-replay-supported-apis__rr-supported-apis-event" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Event Management</h5>
                                 <p class="p">
                                    All supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-externa-resource"><a name="range-replay-supported-apis__rr-supported-apis-externa-resource" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">External Resource interoperability</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-stream-memory"><a name="range-replay-supported-apis__rr-supported-apis-stream-memory" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Stream Memory Operations</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-execution"><a name="range-replay-supported-apis__rr-supported-apis-execution" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Execution Control</h5>
                                 <div class="p">
                                    <ul class="ul">
                                       <li class="li">cuFuncGetAttribute</li>
                                       <li class="li">cuFuncGetModule</li>
                                       <li class="li">cuFuncSetAttribute</li>
                                       <li class="li">cuFuncSetCacheConfig</li>
                                       <li class="li">cuLaunchCooperativeKernel</li>
                                       <li class="li">cuLaunchHostFunc</li>
                                       <li class="li">cuLaunchKernel</li>
                                    </ul>
                                 </div>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-graph"><a name="range-replay-supported-apis__rr-supported-apis-graph" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Graph Management</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-occupancy"><a name="range-replay-supported-apis__rr-supported-apis-occupancy" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Occupancy</h5>
                                 <p class="p">
                                    All supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-tex-surf"><a name="range-replay-supported-apis__rr-supported-apis-tex-surf" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Texture/Surface Reference Management</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-tex"><a name="range-replay-supported-apis__rr-supported-apis-tex" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Texture Object Management</h5>
                                 <p class="p">
                                    All supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-surf"><a name="range-replay-supported-apis__rr-supported-apis-surf" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Surface Object Management</h5>
                                 <p class="p">
                                    All supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-peer"><a name="range-replay-supported-apis__rr-supported-apis-peer" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Peer Context Memory Access</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-graphics"><a name="range-replay-supported-apis__rr-supported-apis-graphics" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Graphics Interoperability</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-driver-entry"><a name="range-replay-supported-apis__rr-supported-apis-driver-entry" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Driver Entry Point Access</h5>
                                 <p class="p">
                                    All supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-surf"><a name="range-replay-supported-apis__rr-supported-apis-surf" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">Surface Object Management</h5>
                                 <p class="p">
                                    All supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-opengl"><a name="range-replay-supported-apis__rr-supported-apis-opengl" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">OpenGL Interoperability</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-vdpau"><a name="range-replay-supported-apis__rr-supported-apis-vdpau" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">VDPAU Interoperability</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                              <div class="section" id="range-replay-supported-apis__rr-supported-apis-egl"><a name="range-replay-supported-apis__rr-supported-apis-egl" shape="rect">
                                    <!-- --></a><h5 class="title sectiontitle">EGL Interoperability</h5>
                                 <p class="p">
                                    Not supported.
                                    
                                 </p>
                              </div>
                           </div>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="profile-series"><a name="profile-series" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#profile-series" name="profile-series" shape="rect">2.4.&nbsp;Profile Series</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           The performance of a kernel is highly dependent on the used launch parameters.
                           Small changes to the launch parameters can have a significant effect on the runtime behavior of the kernel.
                           However, identifying the best parameter set for a kernel by manually testing a lot of combinations can be a tedious process.
                           
                        </p>
                        <p class="p">
                           To make this workflow faster and more convenient, Profile Series provide the ability to automatically profile a single kernel
                           multiple times with changing parameters. The parameters to be modified and values to be tested can be independently enabled
                           and configured. For each combination of selected parameter values a unique profile result is collected.
                           And the modified parameter values are tracked in the description of the results of a series. By comparing the results of a
                           profile series,
                           the kernel’s behavior on the changing parameters can be seen and the most optimal parameter set can be identified quickly.
                           
                        </p>
                        <div class="fig fignone"><span class="desc figdesc">Profile Series action.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/profile-series-action.png"></img></div><br clear="none"></br></div>
                        <div class="fig fignone"><span class="desc figdesc">Profile Series dialog.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/profile-series-dialog.png"></img></div><br clear="none"></br></div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="overhead"><a name="overhead" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#overhead" name="overhead" shape="rect">2.5.&nbsp;Overhead</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           As with most measurements, collecting performance data using <span class="keyword">NVIDIA Nsight Compute CLI</span> incurs some runtime overhead on the application.
                           The overhead does depend on a number of different factors:
                           
                        </p>
                        <ul class="ul">
                           <li class="li"><strong class="ph b">Number and type of collected metrics</strong><p class="p">
                                 Depending on the selected metric, data is collected either through a hardware performance monitor on the GPU,
                                 through software patching of the kernel instructions or via a launch or device attribute.
                                 The overhead between these mechanisms varies greatly, with launch and device attributes being "statically"
                                 available and requiring no kernel runtime overhead.
                                 
                              </p>
                              <p class="p">
                                 Furthermore, only a limited number of metrics can be collected in a single <dfn class="term">pass</dfn>
                                 of the kernel execution. If more metrics are requested, the kernel launch is <dfn class="term">replayed</dfn>
                                 multiple times, with its accessible memory being saved and restored between subsequent passes to
                                 guarantee deterministic execution. Therefore, collecting more metrics can significantly increase
                                 overhead by requiring more replay passes and increasing the total amount of memory that needs to be
                                 restored during replay.
                                 
                              </p>
                           </li>
                           <li class="li"><strong class="ph b">The collected section set</strong><p class="p">
                                 Since each <a class="xref" href="index.html#sets-and-sections" shape="rect">set</a> specifies a group of section to be collected,
                                 choosing a less comprehensive set can reduce profiling overhead.
                                 See the <samp class="ph codeph">--set</samp> command in the
                                 <a class="xref" href="../NsightComputeCli/index.html#command-line-options-profile" shape="rect"><span class="keyword">NVIDIA Nsight Compute CLI</span></a> documentation.
                                 
                              </p>
                           </li>
                           <li class="li"><strong class="ph b">Number of collected sections</strong><p class="p">
                                 Since each <a class="xref" href="index.html#sets-and-sections" shape="rect">section</a> specifies a set metrics to be collected,
                                 selecting fewer sections can reduce profiling overhead.
                                 See the <samp class="ph codeph">--section</samp> command in the
                                 <a class="xref" href="../NsightComputeCli/index.html#command-line-options-profile" shape="rect"><span class="keyword">NVIDIA Nsight Compute CLI</span></a> documentation.
                                 
                              </p>
                           </li>
                           <li class="li"><strong class="ph b">Number of profiled kernels</strong><p class="p">
                                 By default, all selected metrics are collected for all launched kernels.
                                 To reduce the impact on the application, you can try to limit performance data collection
                                 to as few kernel functions and instances as makes sense for your analysis.
                                 See the filtering commands in the
                                 <a class="xref" href="../NsightComputeCli/index.html#command-line-options-profile" shape="rect"><span class="keyword">NVIDIA Nsight Compute CLI</span></a> documentation.
                                 
                              </p>
                              <p class="p">
                                 There is a relatively high one-time overhead for the first profiled kernel in each context to generate
                                 the metric configuration. This overhead does not occur for subsequent kernels in the same context,
                                 if the list of collected metrics remains unchanged.
                                 
                              </p>
                           </li>
                           <li class="li"><strong class="ph b">GPU Architecture</strong><p class="p">
                                 For some metrics, the overhead can vary depending on the exact chip they are collected on, e.g. due to varying number of units
                                 on the chip.
                                 Similarly, the overhead for resetting the L2 cache in-between kernel replay passes depends on the size of that cache.
                                 
                              </p>
                           </li>
                        </ul>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="metrics-guide"><a name="metrics-guide" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#metrics-guide" name="metrics-guide" shape="rect">3.&nbsp;Metrics Guide</a></h2>
                  <div class="body conbody">
                     <p class="p"></p>
                  </div>
                  <div class="topic concept nested1" id="metrics-hw-model"><a name="metrics-hw-model" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#metrics-hw-model" name="metrics-hw-model" shape="rect">3.1.&nbsp;Hardware Model</a></h3>
                     <div class="body conbody">
                        <div class="section" id="metrics-hw-model__metrics-hw-compute-model"><a name="metrics-hw-model__metrics-hw-compute-model" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Compute Model</h3>
                           <p class="p">
                              All NVIDIA GPUs are designed to support a general purpose heterogeneous
                              parallel programming model, commonly known as <dfn class="term">Compute</dfn>.
                              This model decouples the GPU from the traditional graphics pipeline and
                              exposes it as a general purpose parallel multi-processor.
                              A heterogeneous computing model implies the existence of a host and a device,
                              which in this case are the CPU and GPU, respectively.
                              At a high level view, the host (CPU) manages resources between itself
                              and the device and will send work off to the device to be executed in parallel.
                              
                           </p>
                           <div class="p">
                              Central to the compute model is the Grid, Block, Thread hierarchy, which
                              defines how compute work is organized on the GPU. The hierarchy from top to
                              bottom is as follows:
                              
                              <ul class="ul">
                                 <li class="li">A <dfn class="term">Grid</dfn> is a 1D, 2D or 3D array of thread blocks.
                                 </li>
                                 <li class="li">A <dfn class="term">Block</dfn> is a 1D, 2D or 3D array of threads, also known as a <dfn class="term">Cooperative Thread Array (CTA)</dfn>.
                                 </li>
                                 <li class="li">A <dfn class="term">Thread</dfn> is a single thread which runs on one of the GPU's SM units.
                                 </li>
                              </ul>
                           </div>
                           <p class="p">
                              The purpose of the Grid, Block, Thread hierarchy is to expose a notion of
                              locality amongst a group of threads, i.e. a Cooperative Thread Array (CTA).
                              In CUDA, CTAs are referred to as Thread Blocks.
                              The architecture can exploit this locality by providing fast shared memory and barriers
                              between the threads within a single CTA.
                              When a Grid is launched, the architecture guarantees that all threads within a CTA will
                              run concurrently on the same SM.
                              Information on the grids and blocks can be found in the
                              <a class="xref" href="index.html#sections-and-rules" shape="rect">Launch Statistics</a> section.
                              
                           </p>
                           <p class="p">
                              The number of CTAs that fit on each SM depends on the physical resources
                              required by the CTA. These resource limiters include the number of threads and
                              registers, shared memory utilization, and hardware barriers. The number CTAs
                              per SM is referred to as the CTA <dfn class="term">occupancy</dfn>, and these physical resources limit
                              this occupancy.
                              Details on the kernel's occupancy are collected by the
                              <a class="xref" href="index.html#sections-and-rules" shape="rect">Occupancy</a> section.
                              
                           </p>
                           <p class="p">
                              Each CTA can be scheduled on any of the available SMs, where there is no
                              guarantee in the order of execution. As such, CTAs must be entirely
                              independent, which means it is not possible for one CTA to wait on the result
                              of another CTA. As CTAs are independent, the host (CPU) can launch a large
                              Grid that will not fit on the hardware all at once, however any GPU will still
                              be able to run it and produce the correct results.
                              
                           </p>
                           <p class="p">
                              CTAs are further divided into groups of 32 threads called <dfn class="term">Warps</dfn>.
                              If the number of threads in a CTA is not dividable by 32, the last warp
                              will contain the remaining number of threads.
                              
                           </p>
                           <p class="p">
                              The total number of CTAs that can run concurrently on a given GPU is referred to as <dfn class="term">Wave</dfn>.
                              Consequently, the size of a Wave scales with the number of available SMs of a GPU, but also with the occupancy of the kernel.
                              
                           </p>
                        </div>
                        <div class="section" id="metrics-hw-model__metrics-hw-sm"><a name="metrics-hw-model__metrics-hw-sm" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Streaming Multiprocessor</h3>
                           <p class="p">
                              The <dfn class="term">Streaming Multiprocessor (SM)</dfn> is the core processing unit in the GPU.
                              The SM is optimized for a wide diversity of workloads, including
                              general-purpose computations, deep learning, ray tracing, as well as lighting and shading.
                              The SM is designed to simultaneously execute multiple CTAs. CTAs can be from
                              different grid launches.
                              
                           </p>
                           <p class="p">
                              The SM implements an execution model called Single Instruction Multiple
                              Threads (SIMT), which allows individual threads to have unique control flow
                              while still executing as part of a warp. The Turing SM inherits the Volta SM's
                              independent thread scheduling model. The SM maintains execution state per
                              thread, including a program counter (PC) and call stack. The independent
                              thread scheduling allows the GPU to yield execution of any thread, either to
                              make better use of execution resources or to allow a thread to wait for data
                              produced by another thread possibly in the same warp.
                              Collecting the <a class="xref" href="index.html#sections-and-rules" shape="rect">Source Counters</a>
                              section allows you to inspect instruction execution and predication
                              details on the <dfn class="term">Source Page</dfn>, along with
                              <a class="xref" href="index.html#sampling" shape="rect">Sampling</a> information.
                              
                           </p>
                           <div class="p">
                              Each SM is partitioned into four processing blocks, called <dfn class="term">SM sub partitions</dfn>.
                              The SM sub partitions are the primary processing elements on the SM.
                              Each sub partition contains the following units:
                              
                              <ul class="ul">
                                 <li class="li">Warp Scheduler</li>
                                 <li class="li">Register File</li>
                                 <li class="li">
                                    Execution Units/Pipelines/Cores
                                    
                                    <ul class="ul">
                                       <li class="li">Integer Execution units</li>
                                       <li class="li">Floating Point Execution units</li>
                                       <li class="li">Memory Load/Store units</li>
                                       <li class="li">Special Function unit</li>
                                       <li class="li">Tensor Cores</li>
                                    </ul>
                                 </li>
                              </ul>
                              
                              
                              Shared within an SM across the four SM partitions are:
                              
                              <ul class="ul">
                                 <li class="li">Unified L1 Data Cache / Shared Memory</li>
                                 <li class="li">Texture units</li>
                                 <li class="li">RT Cores, if available</li>
                              </ul>
                           </div>
                           <p class="p">
                              A warp is allocated to a sub partition and resides on the sub partition from
                              launch to completion. A warp is referred to as <dfn class="term">active</dfn> or <dfn class="term">resident</dfn>
                              when it is mapped to a sub partition. A sub partition manages a fixed size pool of warps.
                              On Volta architectures, the size of the pool is 16 warps.
                              On Turing architectures the size of the pool is 8 warps.
                              Active warps can be in <dfn class="term">eligible</dfn> state if the warp is ready
                              to issue an instruction. This requires the warp to have a decoded instruction,
                              all input dependencies resolved, and for the function unit to be available.
                              Statistics on active, eligible and issuing warps can be collected with the
                              <a class="xref" href="index.html#sections-and-rules" shape="rect">Scheduler Statistics</a> section.
                              
                           </p>
                           <div class="p">
                              A warp is <dfn class="term">stalled</dfn> when the warp is waiting on
                              
                              <ul class="ul">
                                 <li class="li">an instruction fetch,</li>
                                 <li class="li">a memory dependency (result of memory instruction),</li>
                                 <li class="li">an execution dependency (result of previous instruction), or</li>
                                 <li class="li">a synchronization barrier.</li>
                              </ul>
                              
                              
                              See <a class="xref" href="index.html#statistical-sampler" shape="rect">Warp Scheduler States</a> for the list of stall reasons that can be profiled
                              and the <a class="xref" href="index.html#sections-and-rules" shape="rect">Warp State Statistics</a> section
                              for a summary of warp states found in the kernel execution.
                              
                           </div>
                           <p class="p">
                              The most important resource under the compiler's control is the number of
                              registers used by a kernel. Each sub partition has a set of 32-bit
                              registers, which are allocated by the HW in fixed-size chunks.
                              The <a class="xref" href="index.html#sections-and-rules" shape="rect">Launch Statistics</a> section shows
                              the kernel's register usage.
                              
                           </p>
                        </div>
                        <div class="section" id="metrics-hw-model__metrics-hw-memory"><a name="metrics-hw-model__metrics-hw-memory" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Memory</h3>
                           <p class="p">
                              Global memory is a 49-bit virtual address space that is mapped to physical
                              memory on the device, pinned system memory, or peer memory. Global
                              memory is visible to all threads in the GPU. Global memory is accessed through
                              the SM L1 and GPU L2.
                              
                           </p>
                           <p class="p">
                              Local memory is private storage for an executing thread and is not visible
                              outside of that thread. It is intended for thread-local data like thread
                              stacks and register spills. Local memory addresses are translated to global
                              virtual addresses by the the AGU unit. Local memory has the same latency as
                              global memory. One difference between global and local memory is that local
                              memory is arranged such that consecutive 32-bit words are accessed by
                              consecutive thread IDs. Accesses are therefore fully coalesced as long as all
                              threads in a warp access the same relative address (e.g., same index in an
                              array variable, same member in a structure variable, etc.).
                              
                           </p>
                           <p class="p">
                              Shared memory is located on chip, so it has much higher bandwidth and much
                              lower latency than either local or global memory. Shared memory can be shared
                              across a compute CTA. Compute CTAs attempting to share data across threads via
                              shared memory must use synchronization operations (such as __syncthreads()) between
                              stores and loads to ensure data written by any one thread is visible to other
                              threads in the CTA. Similarly, threads that need to share data via global
                              memory must use a more heavyweight global memory barrier.
                              
                           </p>
                           <p class="p">
                              Shared memory has 32 banks that are organized such that successive 32-bit
                              words map to successive banks that can be accessed simultaneously. Any 32-bit
                              memory read or write request made of 32 addresses that fall in 32 distinct
                              memory banks can therefore be serviced simultaneously, yielding an overall
                              bandwidth that is 32 times as high as the bandwidth of a single request.
                              However, if two addresses of a memory request fall in the same memory bank,
                              there is a bank conflict and the access has to be serialized.
                              
                           </p>
                           <p class="p">
                              A shared memory request for a warp does not generate a bank conflict between
                              two threads that access any address within the same 32-bit word (even though
                              the two addresses fall in the same bank). When multiple threads make the same
                              read access, one thread receives the data and then broadcasts it to the other
                              threads. When multiple threads write to the same location, only one thread
                              succeeds in the write; which thread that succeeds is undefined.
                              
                           </p>
                           <p class="p">
                              Detailed memory metrics are collected by the
                              <a class="xref" href="index.html#sections-and-rules" shape="rect">Memory Workload Analysis</a> section.
                              
                           </p>
                        </div>
                        <div class="section" id="metrics-hw-model__metrics-hw-caches"><a name="metrics-hw-model__metrics-hw-caches" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Caches</h3>
                           <p class="p">
                              All GPU units communicate to main memory through the Level 2 cache, also known as
                              the L2. The L2 cache sits between on-chip memory clients and the framebuffer.
                              L2 works in physical-address space. In addition to providing
                              caching functionality, L2 also includes hardware to perform compression and
                              global atomics.
                              
                           </p>
                           <div class="p">
                              <div class="fig fignone"><span class="desc figdesc">Model of the L2 cache.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/hw-model-lts.png"></img></div><br clear="none"></br></div>
                           </div>
                           <p class="p">
                              The Level 1 Data Cache, or L1, plays a key role in handling global, local,
                              shared, texture, and surface memory reads and writes, as well as reduction and
                              atomic operations. On Volta and Turing architectures there are ,
                              there are two L1 caches per TPC, one for each SM. For more
                              information on how L1 fits into the texturing pipeline, see the
                              <a class="xref" href="index.html#metrics-hw-model__metrics-hw-tex-surf" shape="rect">TEX unit</a> description.
                              Also note that while this section often uses the name "L1", it
                              should be understood that the L1 data cache, shared data, and the Texture data
                              cache are one and the same.
                              
                           </p>
                           <p class="p">
                              L1 receives requests from two units: the SM and TEX. L1 receives global and
                              local memory requests from the SM and receives texture and surface requests
                              from TEX. These operations access memory in the global memory space, which L1
                              sends through a secondary cache, the L2.
                              
                           </p>
                           <p class="p">
                              Cache hit and miss rates as well as data transfers are reported in the
                              <a class="xref" href="index.html#sections-and-rules" shape="rect">Memory Workload Analysis</a> section.
                              
                           </p>
                           <div class="p">
                              <div class="fig fignone"><span class="desc figdesc">Model of Load/Store and Texture pipelines for the L1TEX cache.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/hw-model-l1tex.png"></img></div><br clear="none"></br></div>
                           </div>
                        </div>
                        <div class="section" id="metrics-hw-model__metrics-hw-tex-surf"><a name="metrics-hw-model__metrics-hw-tex-surf" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Texture/Surface</h3>
                           <p class="p">
                              The TEX unit performs texture fetching and filtering. Beyond plain texture
                              memory access, TEX is responsible for the addressing, LOD, wrap, filter, and
                              format conversion operations necessary to convert a texture read request into
                              a result.
                              
                           </p>
                           <p class="p">
                              TEX receives two general categories of requests from the SM via its input
                              interface: texture requests and surface load/store operations.
                              Texture and surface memory space resides in device memory and are cached in
                              L1. Texture and surface memory are allocated as block-linear surfaces (e.g.
                              2D, 2D Array, 3D). Such surfaces provide a cache-friendly layout of data such
                              that neighboring points on a 2D surface are also located close to each other
                              in memory, which improves access locality. Surface accesses are bounds-checked
                              by the TEX unit prior to accessing memory, which can be used for implementing
                              different texture wrapping modes.
                              
                           </p>
                           <p class="p">
                              The L1 cache is optimized for 2D spatial
                              locality, so threads of the same warp that read texture or surface addresses
                              that are close together in 2D space will achieve optimal performance. The L1
                              cache is also designed for streaming fetches with constant latency; a cache
                              hit reduces DRAM bandwidth demand but not fetch latency. Reading device memory
                              through texture or surface memory presents some benefits that can make it an
                              advantageous alternative to reading memory from global or constant memory.
                              
                           </p>
                           <p class="p">
                              Information on texture and surface memory can be found in the
                              <a class="xref" href="index.html#sections-and-rules" shape="rect">Memory Workload Analysis</a> section.
                              
                           </p>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="metrics-structure"><a name="metrics-structure" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#metrics-structure" name="metrics-structure" shape="rect">3.2.&nbsp;Metrics Structure</a></h3>
                     <div class="body conbody">
                        <div class="section" id="metrics-structure__metrics-overview"><a name="metrics-structure__metrics-overview" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Metrics Overview</h3>
                           <p class="p"><span class="keyword">NVIDIA Nsight Compute</span> uses an advanced metrics calculation system,
                              designed to help you determine what happened (counters and metrics), and how close the program reached to peak GPU performance
                              (throughputs as a percentage).
                              Every counter has associated peak rates in the database, to allow computing its throughput as a percentage.
                              
                           </p>
                           <p class="p">
                              Throughput metrics return the maximum percentage value of their constituent counters.
                              These constituents have been carefully selected to represent the sections
                              of the GPU pipeline that govern peak performance. While all counters can be converted to a %-of-peak, not all counters are
                              suitable for
                              peak-performance analysis; examples of unsuitable counters include qualified subsets of activity, and workload residency counters.
                              Using throughput metrics ensures meaningful and actionable analysis.
                              
                           </p>
                           <p class="p">
                              Two types of peak rates are available for every counter: burst and sustained.
                              Burst rate is the maximum rate reportable in a single clock cycle.
                              Sustained rate is the maximum rate achievable over an infinitely long measurement period, for "typical" operations.
                              For many counters, burst equals sustained.  Since the burst rate cannot be exceeded, percentages of burst rate will always
                              be less than 100%.
                              Percentages of sustained rate can occasionally exceed 100% in edge cases.
                              
                           </p>
                        </div>
                        <div class="section" id="metrics-structure__metrics-entities"><a name="metrics-structure__metrics-entities" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Metrics Entities</h3>
                           <p class="p">
                              While in <span class="keyword">NVIDIA Nsight Compute</span>, all performance counters are named <dfn class="term">metrics</dfn>, they can be split further
                              into groups with specific properties.
                              For metrics collected via the <dfn class="term">PerfWorks</dfn> measurement library, the following entities exist:
                              
                           </p>
                           <div class="p"><strong class="ph b">Counters</strong> may be either a raw counter from the GPU, or a calculated counter value. Every counter has four sub-metrics under it,
                              which are also called <dfn class="term">roll-ups</dfn>:
                              
                              <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.sum</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">The sum of counter values across all unit instances. </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.avg</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">The average counter value across all unit instances. </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.min</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">The minimum counter value across all unit instances. </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.max</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">The maximum counter value across all unit instances. </td>
                                 </tr>
                              </table>
                           </div>
                           <div class="p">
                              Counter roll-ups have the following calculated quantities as built-in sub-metrics:
                              
                              <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_sustained                    </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak sustained rate                                             </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_sustained_active             </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak sustained rate during unit active cycles                   </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_sustained_active.per_second  </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak sustained rate during unit active cycles, per second *     </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_sustained_elapsed            </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak sustained rate during unit elapsed cycles                  </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_sustained_elapsed.per_second </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak sustained rate during unit elapsed cycles, per second *    </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_sustained_region             </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak sustained rate over a user-specified "range"               </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_sustained_region.per_second  </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak sustained rate over a user-specified "range", per second * </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_sustained_frame              </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak sustained rate over a user-specified "frame"               </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_sustained_frame.per_second   </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak sustained rate over a user-specified "frame", per second * </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.per_second                       </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the number of operations per second                              </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.per_cycle_active                 </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the number of operations per unit active cycle                   </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.per_cycle_elapsed                </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the number of operations per unit elapsed cycle                  </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.per_cycle_in_region              </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the number of operations per user-specified "range" cycle        </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.per_cycle_in_frame               </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the number of operations per user-specified "frame" cycle        </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_sustained_active     </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">% of peak sustained rate achieved during unit active cycles      </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_sustained_elapsed    </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">% of peak sustained rate achieved during unit elapsed cycles     </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_sustained_region     </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">% of peak sustained rate achieved over a user-specified "range"  </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_sustained_frame      </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">% of peak sustained rate achieved over a user-specified "frame"  </td>
                                 </tr>
                              </table>
                              
                              
                              * sub-metrics added in <span class="keyword">NVIDIA Nsight Compute</span> 2022.2.0.
                              
                           </div>
                           <p class="p">
                              Example: <samp class="ph codeph"><span class="keyword">ncu</span> --query-metrics-mode suffix --metrics sm__inst_executed --chip ga100</samp></p>
                           <div class="p"><strong class="ph b">Ratios</strong> have three sub-metrics:
                              
                              <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">The value expressed as a percentage. </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.ratio</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">The value expressed as a ratio.      </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.max_rate</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">The ratio's maximum value.           </td>
                                 </tr>
                              </table>
                           </div>
                           <p class="p">
                              Example: <samp class="ph codeph"><span class="keyword">ncu</span> --query-metrics-mode suffix --metrics smsp__average_warp_latency --chip ga100</samp></p>
                           <div class="p"><strong class="ph b">Throughputs</strong> indicate how close a portion of the GPU reached to peak rate.  Every throughput has the following sub-metrics:
                              
                              <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_sustained_active</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"> % of peak sustained rate achieved during unit active cycles              </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_sustained_elapsed</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"> % of peak sustained rate achieved during unit elapsed cycles             </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_sustained_region</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"> % of peak sustained rate achieved over a user-specified "range" time     </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_sustained_frame</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"> % of peak sustained rate achieved over a user-specified "frame" time     </td>
                                 </tr>
                              </table>
                           </div>
                           <p class="p">
                              Example: <samp class="ph codeph"><span class="keyword">ncu</span> --query-metrics-mode suffix --metrics sm__throughput --chip ga100</samp></p>
                           <p class="p">
                              Throughputs have a breakdown of underlying metrics from which the throughput value is computed.
                              You can collect <samp class="ph codeph">breakdown:&lt;throughput-metric&gt;</samp> to collect a throughput's breakdown metrics.
                              
                           </p>
                           <div class="p"><strong class="ph b">Deprecated counter sub-metrics:</strong>
                              The following sub-metrics were removed in <span class="keyword">NVIDIA Nsight Compute</span> 2022.2.0, due to not being useful for performance optimization:
                              
                              <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.peak_burst                       </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">the peak burst rate                                                  </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_burst_active         </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">% of peak burst rate achieved during unit active cycles              </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_burst_elapsed        </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">% of peak burst rate achieved during unit elapsed cycles             </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_burst_region         </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">% of peak burst rate achieved over a user-specified "range"          </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_burst_frame          </tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1">% of peak burst rate achieved over a user-specified "frame"          </td>
                                 </tr>
                              </table>
                           </div>
                           <div class="p"><strong class="ph b">Deprecated throughput sub-metrics:</strong>
                              The following sub-metrics were removed in <span class="keyword">NVIDIA Nsight Compute</span> 2022.2, due to not being useful for performance optimization:
                              
                              <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_burst_active</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"> % of peak burst rate achieved during unit active cycles                  </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_burst_elapsed</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"> % of peak burst rate achieved during unit elapsed cycles                 </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_burst_region</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"> % of peak burst rate achieved over a user-specified "range" time         </td>
                                 </tr>
                                 <tr class="strow">
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">.pct_of_peak_burst_frame</tt></td>
                                    <td valign="top" class="stentry" rowspan="1" colspan="1"> % of peak burst rate achieved over a user-specified "frame" time         </td>
                                 </tr>
                              </table>
                           </div>
                           <p class="p">
                              In addition to PerfWorks metrics, <span class="keyword">NVIDIA Nsight Compute</span> uses several other measurement providers that each generate their own metrics.
                              These are explained in the <a class="xref" href="index.html#metrics-reference" shape="rect">Metrics Reference</a>.
                              
                           </p>
                        </div>
                        <div class="section" id="metrics-structure__metrics-examples"><a name="metrics-structure__metrics-examples" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Metrics Examples</h3>
                           <div class="p"><pre xml:space="preserve">

## non-metric names -- *not* directly evaluable
sm__inst_executed                   # counter
smsp__average_warp_latency          # ratio
sm__throughput                      # throughput

## a counter's four first-level sub-metrics -- all evaluable
sm__inst_executed.sum
sm__inst_executed.avg
sm__inst_executed.min
sm__inst_executed.max

## all names below are metrics -- all evaluable
l1tex__data_bank_conflicts_pipe_lsu.sum
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained_active
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained_active.per_second
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained_elapsed
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained_elapsed.per_second
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained_frame
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained_frame.per_second
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained_region
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained_region.per_second
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_active
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_elapsed
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_in_frame
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_in_region
l1tex__data_bank_conflicts_pipe_lsu.sum.per_second
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_active
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_elapsed
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_frame
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_region
...

                </pre></div>
                        </div>
                        <div class="section" id="metrics-structure__metrics-naming"><a name="metrics-structure__metrics-naming" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Metrics Naming Conventions</h3>
                           <div class="p">
                              Counters and metrics _generally_ obey the naming scheme:
                              
                              <ul class="ul">
                                 <li class="li"> Unit-Level Counter : <tt class="ph tt">unit__(subunit?)_(pipestage?)_quantity_(qualifiers?)</tt></li>
                                 <li class="li"> Interface Counter  : <tt class="ph tt">unit__(subunit?)_(pipestage?)_(interface)_quantity_(qualifiers?)</tt></li>
                                 <li class="li"> Unit Metric        : <tt class="ph tt">(counter_name).(rollup_metric)</tt></li>
                                 <li class="li"> Sub-Metric         : <tt class="ph tt">(counter_name).(rollup_metric).(submetric)</tt></li>
                              </ul>
                              
                              
                              where
                              
                              <ul class="ul">
                                 <li class="li"> unit: A logical or physical unit of the GPU                                                                             
                                    
                                 </li>
                                 <li class="li"> subunit: The subunit within the unit where the counter was measured.  Sometimes this is a pipeline mode instead.        
                                    
                                 </li>
                                 <li class="li"> pipestage: The pipeline stage within the subunit where the counter was measured.                                        
                                    
                                 </li>
                                 <li class="li"> quantity: What is being measured.  Generally matches the <dfn class="term">dimensional units</dfn>.                                                                                         
                                 </li>
                                 <li class="li"> qualifiers: Any additional predicates or filters applied to the counter.  Often, an unqualified counter can be broken down
                                    into several qualified sub-components.     
                                 </li>
                                 <li class="li"> interface: Of the form <tt class="ph tt">sender2receiver</tt>, where <tt class="ph tt">sender</tt> is the source-unit and <tt class="ph tt">receiver</tt> is the destination-unit.                              
                                 </li>
                                 <li class="li"> rollup_metric: One of sum, avg, min, max.                                                                               
                                    
                                 </li>
                                 <li class="li"> submetric: refer to section <a class="xref" href="index.html#metrics-structure__metrics-entities" shape="rect">Metrics Entities</a></li>
                              </ul>
                              
                              
                              Components are not always present.  Most top-level counters have no qualifiers.  Subunit and pipestage may be absent where
                              irrelevant, or there may be many subunit specifiers for detailed counters.
                              
                           </div>
                        </div>
                        <div class="section" id="metrics-structure__metrics-cycles"><a name="metrics-structure__metrics-cycles" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Cycle Metrics</h3>
                           <div class="p">
                              Counters using the term <tt class="ph tt">cycles</tt> in the name report the number of cycles in the unit's clock domain.  Unit-level cycle metrics include:
                              
                              <ul class="ul">
                                 <li class="li"><tt class="ph tt">unit__cycles_elapsed</tt>              : The number of cycles within a range.  The cycles' DimUnits are specific to the unit's clock domain.      
                                    
                                 </li>
                                 <li class="li"><tt class="ph tt">unit__cycles_active</tt>               : The number of cycles where the unit was processing data.                                                
                                    
                                 </li>
                                 <li class="li"><tt class="ph tt">unit__cycles_stalled</tt>              : The number of cycles where the unit was unable to process new data because its output interface was blocked.
                                    
                                 </li>
                                 <li class="li"><tt class="ph tt">unit__cycles_idle</tt>                 : The number of cycles where the unit was idle.                                                         
                                    
                                 </li>
                              </ul>
                              
                              
                              Interface-level cycle counters are often (not always) available in the following variations:
                              
                              <ul class="ul">
                                 <li class="li"><tt class="ph tt">unit__(interface)_active</tt>          : Cycles where data was transferred from source-unit to destination-unit.                                      
                                    
                                 </li>
                                 <li class="li"><tt class="ph tt">unit__(interface)_stalled</tt>         : Cycles where the source-unit had data, but the destination-unit was unable to accept data.                    
                                    
                                 </li>
                              </ul>
                           </div>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="metrics-decoder"><a name="metrics-decoder" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#metrics-decoder" name="metrics-decoder" shape="rect">3.3.&nbsp;Metrics Decoder</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           The following explains terms found in <span class="keyword">NVIDIA Nsight Compute</span> metric names, as introduced in <a class="xref" href="index.html#metrics-structure" shape="rect">Metrics Structure</a>.
                           
                        </p>
                        <div class="section" id="metrics-decoder__metrics-hw-units"><a name="metrics-decoder__metrics-hw-units" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Units</h3>
                           <div class="tablenoborder">
                              <table cellpadding="4" cellspacing="0" summary="" class="table" frame="border" border="1" rules="all">
                                 <tbody class="tbody">
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">dram</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Device (main) memory, where the GPUs global and local memory resides.</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">fbpa</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">The FrameBuffer Partition is a memory controller which sits between the level 2 cache (LTC) and the DRAM.
                                          The number of FBPAs varies across GPUs.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">fe</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">The Frontend unit is responsible for the overall flow of workloads sent by the driver.
                                          FE also facilitates a number of synchronization operations.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">gpc</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">The General Processing Cluster contains SM, Texture and L1 in the form of TPC(s).
                                          It is replicated several times across a chip.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">gpu</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">The entire Graphics Processing Unit.</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">gr</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Graphics Engine is responsible for all 2D and 3D graphics, compute work, and synchronous graphics copying work.</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">idc</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">The InDexed Constant Cache is a subunit of the SM responsible for caching constants that are indexed with a register.</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">l1tex</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">The Level 1 (L1)/Texture Cache is located within the GPC.
                                          It can be used as directed-mapped shared memory and/or store global, local and texture data in its cache portion.
                                          l1tex__t refers to its Tag stage. l1tex__m refers to its Miss stage. l1tex__d refers to its Data stage.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">lts</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">A Level 2 (L2) Cache Slice is a sub-partition of the Level 2 cache.
                                          lts__t refers to its Tag stage. lts__m refers to its Miss stage. lts__d refers to its Data stage.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">sm</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">The Streaming Multiprocessor handles execution of a kernel as groups of 32 threads, called warps.
                                          Warps are further grouped into cooperative thread arrays (CTA), called blocks in CUDA.
                                          All warps of a CTA execute on the same SM.
                                          CTAs share various resources across their threads, e.g. the shared memory.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Each SM is partitioned into four processing blocks, called SM sub partitions.
                                          The SM sub partitions are the primary processing elements on the SM.
                                          A sub partition manages a fixed size pool of warps.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">sys</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Logical grouping of several units.</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">tpc</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Thread Processing Clusters are units in the GPC.
                                          They contain one or more SM, Texture and L1 units,
                                          the Instruction Cache (ICC) and the Indexed Constant Cache (IDC).
                                       </td>
                                    </tr>
                                 </tbody>
                              </table>
                           </div>
                        </div>
                        <div class="section" id="metrics-decoder__metrics-sub-units"><a name="metrics-decoder__metrics-sub-units" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Subunits</h3>
                           <div class="tablenoborder">
                              <table cellpadding="4" cellspacing="0" summary="" class="table" frame="border" border="1" rules="all">
                                 <tbody class="tbody">
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">aperture_device</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Memory interface to local device memory (dram)</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">aperture_peer</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Memory interface to remote device memory</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">aperture_sysmem</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Memory interface to system memory</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">global</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Global memory is a 49-bit virtual address space that is mapped to physical memory on the device, pinned system memory, or
                                          peer memory.
                                          Global memory is visible to all threads in the GPU.
                                          Global memory is accessed through the SM L1 and GPU L2.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">lg</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Local/Global memory</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">local</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Local memory is private storage for an executing thread and is not visible outside of that thread.
                                          It is intended for thread-local data like thread stacks and register spills.
                                          Local memory has the same latency as global memory.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">lsu</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Load/Store unit</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">lsuin</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Load/Store input</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">mio</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Memory input/output</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">mioc</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Memory input/output control</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">shared</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Shared memory is located on chip, so it has much higher bandwidth and much lower latency than either local or global memory.
                                          Shared memory can be shared across a compute CTA.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">surface</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Surface memory</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">texin</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">TEXIN</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">texture</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Texture memory</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">xbar</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">The Crossbar (XBAR) is responsible for carrying packets from a given source unit to a specific destination unit.</td>
                                    </tr>
                                 </tbody>
                              </table>
                           </div>
                        </div>
                        <div class="section" id="metrics-decoder__metrics-hw-pipelines"><a name="metrics-decoder__metrics-hw-pipelines" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Pipelines</h3>
                           <div class="tablenoborder">
                              <table cellpadding="4" cellspacing="0" summary="" class="table" frame="border" border="1" rules="all">
                                 <tbody class="tbody">
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">adu</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Address Divergence Unit.
                                          The ADU is responsible for address divergence handling for branches/jumps.
                                          It also provides support for constant loads and block-level barrier instructions.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">alu</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Arithmetic Logic Unit.
                                          The ALU is responsible for execution of most bit manipulation and logic instructions.
                                          It also executes integer instructions, excluding IMAD and IMUL.
                                          On NVIDIA Ampere architecture chips, the ALU pipeline performs fast FP32-to-FP16 conversion.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">cbu</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Convergence Barrier Unit.
                                          The CBU is responsible for warp-level convergence, barrier, and branch instructions.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">fma</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Fused Multiply Add/Accumulate.
                                          The FMA pipeline processes most FP32 arithmetic (FADD, FMUL, FMAD).
                                          It also performs integer multiplication operations (IMUL, IMAD), as well as integer dot products.
                                          On GA10x, FMA is a logical pipeline that indicates peak FP32 and FP16x2 performance.
                                          It is composed of the FMAHeavy and FMALite physical pipelines.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">fmaheavy</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Fused Multiply Add/Accumulate Heavy. FMAHeavy performs FP32 arithmetic (FADD, FMUL, FMAD), FP16 arithmetic (HADD2, HMUL2,
                                          HFMA2), and integer dot products.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">fmalite</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Fused Multiply Add/Accumulate Lite. FMALite performs FP32 arithmetic (FADD, FMUL, FMA) and FP16 arithmetic (HADD2, HMUL2,
                                          HFMA2).
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">fp16</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Half-precision floating-point.
                                          On Volta, Turing and NVIDIA GA100, the FP16 pipeline performs paired FP16 instructions (FP16x2).
                                          It also contains a fast FP32-to-FP16 and FP16-to-FP32 converter.
                                          Starting with GA10x chips, this functionality is part of the FMA pipeline.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">fp64</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Double-precision floating-point. The implementation of FP64 varies greatly per chip.</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">lsu</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Load Store Unit.
                                          The LSU pipeline issues load, store, atomic, and reduction instructions to the L1TEX unit for global, local, and shared memory.
                                          It also issues special register reads (S2R), shuffles, and CTA-level arrive/wait barrier instructions to the L1TEX unit.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">tex</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Texture Unit.
                                          The SM texture pipeline forwards texture and surface instructions to the L1TEX unit's TEXIN stage.
                                          On GPUs where FP64 or Tensor pipelines are decoupled, the texture pipeline forwards those types of instructions, too.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">tma</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Tensor Memory Access Unit.
                                          Provides efficient data transfer mechanisms between global and shared memories with the ability to understand and traverse
                                          multidimensional data layouts.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">uniform</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Uniform Data Path.
                                          This scalar unit executes instructions where all threads use the same input and generate the same output.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">xu</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Transcendental and Data Type Conversion Unit.
                                          The XU pipeline is responsible for special functions such as sin, cos, and reciprocal square root.
                                          It is also responsible for int-to-float, and float-to-int type conversions.
                                       </td>
                                    </tr>
                                 </tbody>
                              </table>
                           </div>
                        </div>
                        <div class="section" id="metrics-decoder__metrics-quantities"><a name="metrics-decoder__metrics-quantities" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Quantities</h3>
                           <div class="tablenoborder">
                              <table cellpadding="4" cellspacing="0" summary="" class="table" frame="border" border="1" rules="all">
                                 <tbody class="tbody">
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">instruction</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">An assembly (SASS) instruction.
                                          Each executed instruction may generate zero or more requests.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">request</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">A command into a HW unit to perform some action, e.g. load data from some memory location.
                                          Each request accesses one or more sectors.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">sector</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Aligned 32 byte-chunk of memory in a cache line or device memory.
                                          An L1 or L2 cache line is four sectors, i.e. 128 bytes.
                                          Sector accesses are classified as hits if the tag is present and the sector-data is present within the cache line.
                                          Tag-misses and tag-hit-data-misses are all classified as misses.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">tag</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Unique key to a cache line.
                                          A request may look up multiple tags, if the thread addresses do not all fall within a single cache line-aligned region.
                                          The L1 and L2 both have 128 byte cache lines.
                                          Tag accesses may be classified as hits or misses.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">wavefront</tt></td>
                                       <td class="entry" valign="top" rowspan="1" colspan="1">Unique "work package" generated at the end of the processing stage for requests.
                                          All work items of a wavefront are processed in parallel, while work items of different wavefronts are serialized and processed
                                          on different cycles.
                                          At least one wavefront is generated for each request.
                                       </td>
                                    </tr>
                                 </tbody>
                              </table>
                           </div>
                        </div>
                        <div class="section" id="metrics-decoder__metrics-details"><a name="metrics-decoder__metrics-details" shape="rect">
                              <!-- --></a><p class="p">
                              A simplified model for the processing in L1TEX for Volta and newer architectures can be described as follows:
                              When an SM executes a global or local memory instruction for a warp, a single <dfn class="term">request</dfn> is sent to L1TEX.
                              This request communicates the information for all participating threads of this warp (up to 32).
                              For local and global memory, based on the access pattern and the participating threads,
                              the request requires to access a number of cache lines, and <dfn class="term">sectors</dfn> within these cache lines.
                              The L1TEX unit has internally multiple processing stages operating in a pipeline.
                              
                           </p>
                           <p class="p">
                              A <dfn class="term">wavefront</dfn> is the maximum unit that can pass through that pipeline stage per cycle.
                              If not all cache lines or sectors can be accessed in a single wavefront, multiple wavefronts
                              are created and sent for processing one by one, i.e. in a serialized manner.
                              Limitations of the work within a wavefront may include the need for a consistent memory space,
                              a maximum number of cache lines that can be accessed, as well as various other reasons.
                              Each wavefront then flows through the L1TEX pipeline and fetches the sectors handled in that wavefront.
                              The given relationships of the three key values in this model are <dfn class="term">requests:sectors is 1:N, wavefronts:sectors 1:N, and requests:wavefronts is 1:N</dfn>.
                              
                           </p>
                           <p class="p">
                              A wavefront is described as a (work) package that can be processed at once,
                              i.e. there is a notion of processing one wavefront per cycle in L1TEX.
                              Wavefronts therefore represent the number of cycles required to process the requests,
                              while the number of sectors per request is a property of the <dfn class="term">access pattern</dfn> of the memory instruction for all participating threads.
                              For example, it is possible to have a memory instruction that requires 4 sectors per request in 1 wavefront.
                              However, you can also have a memory instruction having 4 sectors per request, but requiring 2 or more wavefronts.
                              
                           </p>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="range-and-precision"><a name="range-and-precision" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#range-and-precision" name="range-and-precision" shape="rect">3.4.&nbsp;Range and Precision</a></h3>
                     <div class="body conbody">
                        <div class="section" id="range-and-precision__overview"><a name="range-and-precision__overview" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Overview</h3>
                           <p class="p">
                              In general, measurement values that lie outside the expected logical range of a metric can be attributed to one or more of
                              the below root-causes.
                              If values are exceeding such range, they are not clamped by the tool to their expected value on purpose to ensure that the
                              rest of the profiler report remains self-consistent.
                              
                           </p>
                        </div>
                        <div class="section" id="range-and-precision__async-activity"><a name="range-and-precision__async-activity" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Asynchronous GPU activity</h3>
                           <p class="p">
                              GPU engines other than the one measured by a metric (display, copy engine, video encoder, video decoder, etc.) potentially
                              access shared resources during profiling.
                              Such chip-global shared resources include L2, DRAM, PCIe, and NVLINK.
                              If the kernel launch is small, the other engine(s) can cause significant confusion in e.g. the DRAM results, since it is not
                              possible to isolate the DRAM traffic of the SM.
                              To reduce the impact of such asynchronous units, consider profiling on a GPU without active display and without other processes
                              that can access the GPU at the time.
                              
                           </p>
                        </div>
                        <div class="section" id="range-and-precision__multi-pass-error"><a name="range-and-precision__multi-pass-error" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Multi-pass data collection</h3>
                           <p class="p">
                              Out-of-range metrics often occur when the profiler <a class="xref" href="index.html#kernel-replay" shape="rect">replays</a> the kernel launch to collect metrics, and work distribution is significantly different across replay passes.
                              A metric such as hit rate (hits / queries) can have significant error if hits and queries are collected on different passes
                              and the kernel does not saturate the GPU to reach a steady state (generally &gt; 20 µs).
                              Similarly, it can show unexpected values when the workload is inherently variable, as e.g. in the case of spin loops.
                              
                              
                           </p>
                           <p class="p">
                              To mitigate the issue, when applicable try to increase the measured workload to allow the GPU to reach a steady state for
                              each launch.
                              Reducing the number of metrics collected at the same time can also improve precision by increasing the likelihood that counters
                              contributing to one metric are collected in a single pass.
                              
                           </p>
                        </div>
                        <div class="section" id="range-and-precision__tool-issue"><a name="range-and-precision__tool-issue" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Tool issue</h3>
                           <p class="p">
                              If you still observe metric issues after following the guidelines above, please <a class="xref" href="https://forums.developer.nvidia.com/c/development-tools/nsight-compute" target="_blank" shape="rect">reach out to us</a> and describe your issue.
                              
                           </p>
                        </div>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="metrics-reference"><a name="metrics-reference" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#metrics-reference" name="metrics-reference" shape="rect">4.&nbsp;Metrics Reference</a></h2>
                  <div class="body conbody">
                     <div class="section" id="metrics-reference__metrics-ref-overview"><a name="metrics-reference__metrics-ref-overview" shape="rect">
                           <!-- --></a><h2 class="title sectiontitle">Overview</h2>
                        <p class="p">
                           Most metrics in <span class="keyword">NVIDIA Nsight Compute</span> can be queried using the <span class="keyword">ncu</span> command
                           line interface's <a class="xref" href="../NsightComputeCli/index.html#command-line-options-profile" shape="rect">--query-metrics</a> option.
                           
                        </p>
                        <p class="p">
                           The following metrics can be collected explicitly, but are not listed by <samp class="ph codeph">--query-metrics</samp>, and do not follow the
                           naming scheme explained in <a class="xref" href="index.html#metrics-structure" shape="rect">Metrics Structure</a>. They should be used as-is instead.
                           
                        </p>
                        <p class="p"><samp class="ph codeph">launch__*</samp> metrics are collected per kernel launch, and do not require an additional replay pass.
                           They are available as part of the kernel launch parameters (such as grid size, block size, ...) or are computed using the
                           <a class="xref" href="../NsightCompute/index.html#occupancy-calculator" shape="rect">CUDA Occupancy Calculator</a>.
                           
                        </p>
                     </div>
                     <div class="section" id="metrics-reference__metrics-ref-launch"><a name="metrics-reference__metrics-ref-launch" shape="rect">
                           <!-- --></a><h2 class="title sectiontitle">Launch Metrics</h2>
                        <div class="tablenoborder">
                           <table cellpadding="4" cellspacing="0" summary="" class="table" frame="border" border="1" rules="all">
                              <tbody class="tbody">
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__block_dim_x</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of threads for the kernel launch in X dimension.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__block_dim_y</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of threads for the kernel launch in Y dimension.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__block_dim_z</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of threads for the kernel launch in Z dimension.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__blocks_size</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Total number of threads per block for the kernel launch.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__cluster_dim_x</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of clusters for the kernel launch in X dimension.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__cluster_dim_y</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of clusters for the kernel launch in Y dimension.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__cluster_dim_z</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of clusters for the kernel launch in Z dimension.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__cluster_max_active</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Maximum number of clusters that can co-exist on the target device. The runtime environment may affect how the hardware schedules
                                       the clusters, so the calculated occupancy is not guaranteed to be achievable.
                                    </td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__cluster_max_potential_size</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Largest valid cluster size for the kernel function and launch configuration.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__cluster_scheduling_policy</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Cluster scheduling policy.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__context_id</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">CUDA context id for the kernel launch.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__device_id</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">CUDA device id for the kernel launch.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__func_cache_config</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">On devices where the L1 cache and shared memory use the same hardware resources, this is the preferred cache configuration
                                       for the CUDA function. The runtime will use the requested configuration if possible, but it is free to choose a different
                                       configuration if required.
                                    </td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__function_pcs</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Kernel function entry PCs.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__grid_dim_x</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of blocks for the kernel launch in X dimension.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__grid_dim_y</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of blocks for the kernel launch in Y dimension.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__grid_dim_z</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of blocks for the kernel launch in Z dimension.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__grid_size</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Total number of blocks for the kernel launch.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__occupancy_cluster_gpu_pct</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Overall GPU occupancy due to clusters.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__occupancy_cluster_pct</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">The ratio of active blocks to the max possible active blocks due to clusters.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__occupancy_per_cluster_size</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of active clusters for given cluster size.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__registers_per_thread</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of registers allocated per thread.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__shared_mem_config_size</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Shared memory size configured for the kernel launch. The size depends on the static, dynamic, and driver shared memory requirements
                                       as well as the specified or platform-determined configuration size.
                                    </td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__shared_mem_per_block_driver</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Shared memory size per block, allocated for the CUDA driver.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__shared_mem_per_block_dynamic</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Dynamic shared memory size per block, allocated for the kernel.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__shared_mem_per_block_static</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Static shared memory size per block, allocated for the kernel.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__stream_id</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">CUDA stream id for the kernel launch.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__thread_count</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Total number of threads across all blocks for the kernel launch.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">launch__waves_per_multiprocessor</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of waves per SM. Partial waves can lead to tail effects where some SMs become idle while others still have pending
                                       work to complete.
                                    </td>
                                 </tr>
                              </tbody>
                           </table>
                        </div>
                     </div>
                     <div class="section" id="metrics-reference__metrics-ref-nvlink-topology"><a name="metrics-reference__metrics-ref-nvlink-topology" shape="rect">
                           <!-- --></a><h2 class="title sectiontitle">NVLink Topology Metrics</h2>
                        <div class="tablenoborder">
                           <table cellpadding="4" cellspacing="0" summary="" class="table" frame="border" border="1" rules="all">
                              <tbody class="tbody">
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__bandwidth</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Link bandwidth in bytes/s.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__count_logical</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Total number of logical NVLinks.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__count_physical</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Total number of physical links.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__destination_ports</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Destination port numbers (as strings).</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__dev0Id</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">ID of the first connected device.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__dev0type</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Type of the first connected device.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__dev1Id</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">ID of the second connected device.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__dev1type</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Type of the second connected device.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__dev_display_name_all</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Device display name.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__enabled_mask</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">NVLink enablement mask, per device.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__is_direct_link</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Indicates, per NVLink, if the link is direct.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__is_nvswitch_connected</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Indicates if NVSwitch is connected.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__max_count</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Maximum number of NVLinks.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__peer_access</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Indicates if peer access is supported.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__peer_atomic</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Indicates if peer atomics are supported.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__source_ports</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Source port numbers (as strings).</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__system_access</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Indicates if system access is supported.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">nvlink__system_atomic</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Indicates if system atomics are supported.</td>
                                 </tr>
                              </tbody>
                           </table>
                        </div>
                     </div>
                     <div class="section" id="metrics-reference__metrics-ref-device"><a name="metrics-reference__metrics-ref-device" shape="rect">
                           <!-- --></a><h2 class="title sectiontitle">Device Attributes</h2>
                        <p class="p"><samp class="ph codeph">device__attribute_*</samp> metrics represent
                           <a class="xref" href="https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g49e2f8c2c0bd6fe264f2fc970912e5cd" target="_blank" shape="rect">CUDA device attributes</a>.
                           Collecting them does not require an addition kernel replay pass, as their value is available from the CUDA driver for each
                           CUDA device.
                           
                        </p>
                     </div>
                     <div class="section" id="metrics-reference__metrics-ref-source"><a name="metrics-reference__metrics-ref-source" shape="rect">
                           <!-- --></a><h2 class="title sectiontitle">Source Metrics</h2>
                        <div class="tablenoborder">
                           <table cellpadding="4" cellspacing="0" summary="" class="table" frame="border" border="1" rules="all">
                              <tbody class="tbody">
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">branch_inst_executed</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of unique branch targets assigned to the instruction, including both divergent and uniform branches.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">derived__avg_thread_executed</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Average number of thread-level executed instructions per warp (regardless of their predicate). Computed as: thread_inst_executed
                                       / inst_executed
                                    </td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">derived__avg_thread_executed_true</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Average number of predicated-on thread-level executed instructions per warp. Computed as: thread_inst_executed_true / inst_executed</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">derived__memory_l1_wavefronts_shared_excessive</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Excessive number of wavefronts in L1 from shared memory instructions, because not all not predicated-off threads performed
                                       the operation.
                                    </td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">derived__memory_l2_theoretical_sectors_global_excessive</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Excessive theoretical number of sectors requested in L2 from global memory instructions, because not all not predicated-off
                                       threads performed the operation.
                                    </td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">inst_executed</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions, ignoring instruction predicates. Warp-level means the values increased by one
                                       per individual warp executing the instruction, independent of the number of participating threads within each warp.
                                    </td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">memory_access_size_type</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">The size of the memory access, in bits.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">memory_access_type</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">The type of memory access (e.g. load or store).</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">memory_l1_tag_requests_global</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of L1 tag requests generated by global memory instructions.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">memory_l1_wavefronts_shared</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of wavefronts in L1 from shared memory instructions.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">memory_l1_wavefronts_shared_ideal</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Ideal number of wavefronts in L1 from shared memory instructions, assuming each not predicated-off thread performed the operation.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">memory_l2_theoretical_sectors_global</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Theoretical number of sectors requested in L2 from global memory instructions.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">memory_l2_theoretical_sectors_global_ideal</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Ideal number of sectors requested in L2 from global memory instructions, assuming each not predicated-off thread performed
                                       the operation.
                                    </td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">memory_l2_theoretical_sectors_local</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Theoretical number of sectors requested in L2 from local memory instructions.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">memory_type</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">The accessed address space (global/local/shared).</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp__branch_targets_threads_divergent</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of divergent branch targets, including fallthrough. Incremented only when there are two or more active threads with
                                       divergent targets.
                                    </td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp__branch_targets_threads_uniform</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of uniform branch execution, including fallthrough, where all active threads selected the same branch target.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">thread_inst_executed</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of thread-level executed instructions, regardless of predicate presence or evaluation.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">thread_inst_executed_true</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of thread-level executed instructions, where the instruction predicate evaluated to true, or no predicate was given.</td>
                                 </tr>
                              </tbody>
                           </table>
                        </div>
                     </div>
                     <div class="section" id="metrics-reference__metrics-ref-memdesc"><a name="metrics-reference__metrics-ref-memdesc" shape="rect">
                           <!-- --></a><h2 class="title sectiontitle">L2 Cache Eviction Metrics</h2>
                        <div class="tablenoborder">
                           <table cellpadding="4" cellspacing="0" summary="" class="table" frame="border" border="1" rules="all">
                              <tbody class="tbody">
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp__sass_inst_executed_memdesc_explicit_evict_type</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">L2 cache eviction policy types.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp__sass_inst_executed_memdesc_explicit_hitprop_evict_first</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions with L2 cache eviction hit property 'first'.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp__sass_inst_executed_memdesc_explicit_hitprop_evict_last</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions with L2 cache eviction hit property 'last'.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp__sass_inst_executed_memdesc_explicit_hitprop_evict_normal</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions with L2 cache eviction hit property 'normal'.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp__sass_inst_executed_memdesc_explicit_hitprop_evict_normal_demote</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions with L2 cache eviction hit property 'normal demote'.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp__sass_inst_executed_memdesc_explicit_missprop_evict_first</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions with L2 cache eviction miss property 'first'.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">smsp__sass_inst_executed_memdesc_explicit_missprop_evict_normal</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions with L2 cache eviction miss property 'normal'.</td>
                                 </tr>
                              </tbody>
                           </table>
                        </div>
                     </div>
                     <div class="section" id="metrics-reference__metrics-ref-sass-per-opcode"><a name="metrics-reference__metrics-ref-sass-per-opcode" shape="rect">
                           <!-- --></a><h2 class="title sectiontitle">Instructions Per Opcode Metrics</h2>
                        <div class="tablenoborder">
                           <table cellpadding="4" cellspacing="0" summary="" class="table" frame="border" border="1" rules="all">
                              <tbody class="tbody">
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">sass__inst_executed_per_opcode</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions, instanced by basic SASS opcode.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">sass__inst_executed_per_opcode_with_modifier_all</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions, instanced by all SASS opcode modifiers.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">sass__inst_executed_per_opcode_with_modifier_selective</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of warp-level executed instructions, instanced by selective SASS opcode modifiers.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">sass__thread_inst_executed_true_per_opcode</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of thread-level executed instructions, instanced by basic SASS opcode.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">sass__thread_inst_executed_true_per_opcode_with_modifier_all</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of thread-level executed instructions, instanced by all SASS opcode modifiers.</td>
                                 </tr>
                                 <tr class="row">
                                    <td class="entry" valign="top" rowspan="1" colspan="1"><tt class="ph tt">sass__thread_inst_executed_true_per_opcode_with_modifier_selective</tt></td>
                                    <td class="entry" valign="top" rowspan="1" colspan="1">Number of thread-level executed instructions, instanced by selective SASS opcode modifiers.</td>
                                 </tr>
                              </tbody>
                           </table>
                        </div>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="sampling"><a name="sampling" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#sampling" name="sampling" shape="rect">5.&nbsp;Sampling</a></h2>
                  <div class="body conbody">
                     <p class="p"><span class="keyword">NVIDIA Nsight Compute</span> supports periodic sampling of the warp program counter and warp scheduler state on desktop devices of compute capability
                        6.1 and above.
                        
                     </p>
                     <p class="p">
                        At a fixed interval of cycles, the sampler in each streaming multiprocessor selects an active warp and outputs the program
                        counter and the warp scheduler state.
                        The tool selects the minimum interval for the device.
                        On small devices, this can be every 32 cycles.
                        On larger chips with more multiprocessors, this may be 2048 cycles.
                        The sampler selects a random active warp.
                        On the same cycle the scheduler may select a different warp to issue.
                        
                     </p>
                  </div>
                  <div class="topic concept nested1" id="statistical-sampler"><a name="statistical-sampler" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#statistical-sampler" name="statistical-sampler" shape="rect">5.1.&nbsp;Warp Scheduler States</a></h3>
                     <div class="body conbody">
                        <div class="p">
                           <div class="tablenoborder"><a name="statistical-sampler__warp-scheduler-states" shape="rect">
                                 <!-- --></a><table cellpadding="4" cellspacing="0" summary="" id="statistical-sampler__warp-scheduler-states" class="table" frame="border" border="1" rules="all">
                                 <caption><span class="tablecap">Table 2. Warp Scheduler States</span></caption>
                                 <thead class="thead" align="left">
                                    <tr class="row">
                                       <th class="entry" valign="top" width="20%" id="d54e3775" rowspan="1" colspan="1">State</th>
                                       <th class="entry" valign="top" width="20%" id="d54e3778" rowspan="1" colspan="1">Hardware Support</th>
                                       <th class="entry" valign="top" width="60%" id="d54e3781" rowspan="1" colspan="1">Description</th>
                                    </tr>
                                 </thead>
                                 <tbody class="tbody">
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Allocation</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2-6.1</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">Warp was stalled waiting for a branch to resolve, waiting for all memory operations to retire, or waiting to be allocated
                                          to the micro-scheduler.
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Barrier</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for sibling warps at a CTA barrier.
                                          A high number of warps waiting at a barrier is commonly caused by diverging code paths before a barrier.
                                          This causes some warps to wait a long time until other warps reach the synchronization point.
                                          Whenever possible, try to divide up the work into blocks of uniform workloads.
                                          Also, try to identify which barrier instruction causes the most stalls, and optimize the code executed before that synchronization
                                          point first.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Branch Resolving</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">7.0+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for a branch target to be computed, and the warp program counter to be updated.
                                          Excessively jumping (branching) can lead to more warps stalled for this reason.
                                          See also the related <dfn class="term">No Instructions</dfn> state.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Dispatch</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting on a dispatch stall.
                                          A warp stalled during dispatch has an instruction ready to issue, but the dispatcher holds back issuing the warp due to other
                                          conflicts or events.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Drain</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled after EXIT waiting for all memory instructions to complete so that warp resources can be freed.
                                          A high number of stalls due to draining warps typically occurs when a lot of data is written to memory towards the end of
                                          a kernel.
                                          Make sure the memory access patterns of these store operations are optimal for the target architecture and consider
                                          parallelized data reduction, if applicable.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">IMC Miss</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for an immediate constant cache (IMC) miss.
                                          A read from constant memory costs one memory read from device memory only on a cache miss; otherwise,
                                          it just costs one read from the constant cache. Accesses to different addresses by threads within a warp are serialized,
                                          thus the cost scales linearly with the number of unique addresses read by all threads within a warp.
                                          As such, the constant cache is best when threads in the same warp access only a few distinct locations.
                                          If all threads of a warp access the same location, then constant memory can be as fast as a register access.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">LG Throttle</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">7.0+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for the L1 instruction queue for local and global (LG) memory operations to be not full.
                                          Typically, this stall occurs only when executing local or global memory instructions extremely frequently.
                                          If applicable, consider combining multiple lower-width memory operations into fewer wider memory operations
                                          and try interleaving memory operations and math instructions.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Long Scoreboard</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for a scoreboard dependency on a L1TEX (local, global, surface, tex) operation.
                                          To reduce the number of cycles waiting on L1TEX data accesses verify the memory access patterns are
                                          optimal for the target architecture, attempt to increase cache hit rates by increasing data locality,
                                          or by changing the cache configuration, and consider moving frequently used data to shared memory.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Math Pipe Throttle</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for the execution pipe to be available.
                                          This stall occurs when all active warps execute their next instruction on a specific, oversubscribed math pipeline.
                                          Try to increase the number of active warps to hide the existent latency or try changing the instruction mix to utilize
                                          all available pipelines in a more balanced way.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Membar</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting on a memory barrier.
                                          Avoid executing any unnecessary memory barriers and assure that any outstanding memory operations
                                          are fully optimized for the target architecture.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">MIO Throttle</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for the MIO (memory input/output) instruction queue to be not full.
                                          This stall reason is high in cases of extreme utilization of the MIO pipelines,
                                          which include special math instructions, dynamic branches, as well as shared memory instructions.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Misc</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">Warp was stalled for a miscellaneous hardware reason.</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">No Instructions</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting to be selected to fetch an instruction or waiting on an instruction cache miss.
                                          A high number of warps not having an instruction fetched is typical for very short kernels with less than
                                          one full wave of work in the grid.
                                          Excessively jumping across large blocks of assembly code can also lead to more warps stalled for this reason,
                                          if this causes misses in the instruction cache.
                                          See also the related <dfn class="term">Branch Resolving</dfn> state.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Not Selected</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for the micro scheduler to select the warp to issue.
                                          Not selected warps are eligible warps that were not picked by the scheduler to issue that cycle as another warp was selected.
                                          A high number of not selected warps typically means you have sufficient warps to cover warp latencies and you may consider
                                          reducing the number of active warps to possibly increase cache coherence and data locality.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Selected</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">Warp was selected by the micro scheduler and issued an instruction.</td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Short Scoreboard</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for a scoreboard dependency on a MIO (memory input/output) operation (not to L1TEX).
                                          The primary reason for a high number of stalls due to short scoreboards is typically memory operations to shared memory.
                                          Other reasons include frequent execution of special math instructions (e.g. MUFU) or dynamic branching (e.g. BRX, JMX).
                                          Verify if there are shared memory operations and reduce bank conflicts, if applicable.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Sleeping</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">7.0+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled due to all threads in the warp being in the blocked, yielded, or sleep state.
                                          Reduce the number of executed NANOSLEEP instructions, lower the specified time delay,
                                          and attempt to group threads in a way that multiple threads in a warp sleep at the same time.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Tex Throttle</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">
                                          Warp was stalled waiting for the L1 instruction queue for texture operations to be not full.
                                          This stall reason is high in cases of extreme utilization of the L1TEX pipeline.
                                          If applicable, consider combining multiple lower-width memory operations into fewer wider memory operations
                                          and try interleaving memory operations and math instructions.
                                          
                                       </td>
                                    </tr>
                                    <tr class="row">
                                       <td class="entry" valign="top" width="20%" headers="d54e3775" rowspan="1" colspan="1">Wait</td>
                                       <td class="entry" valign="top" width="20%" headers="d54e3778" rowspan="1" colspan="1">5.2+</td>
                                       <td class="entry" valign="top" width="60%" headers="d54e3781" rowspan="1" colspan="1">Warp was stalled waiting on a fixed latency execution dependency.
                                          Typically, this stall reason should be very low and only shows up as a top contributor in already highly optimized kernels.
                                          If possible, try to further increase the number of active warps to hide the corresponding instruction latencies.
                                       </td>
                                    </tr>
                                 </tbody>
                              </table>
                           </div>
                        </div>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="reproducibility"><a name="reproducibility" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#reproducibility" name="reproducibility" shape="rect">6.&nbsp;Reproducibility</a></h2>
                  <div class="body conbody">
                     <p class="p">
                        In order to provide actionable and deterministic results across application runs,
                        <span class="keyword">NVIDIA Nsight Compute</span> applies various methods to adjust how metrics are collected.
                        This includes <a class="xref" href="index.html#serialization" shape="rect">serializing</a> kernel launches,
                        <a class="xref" href="index.html#cache-control" shape="rect">purging GPU caches</a> before each kernel replay
                        or <a class="xref" href="index.html#clock-control" shape="rect">adjusting GPU clocks</a>.
                        
                     </p>
                  </div>
                  <div class="topic concept nested1" id="serialization"><a name="serialization" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#serialization" name="serialization" shape="rect">6.1.&nbsp;Serialization</a></h3>
                     <div class="body conbody">
                        <p class="p"><span class="keyword">NVIDIA Nsight Compute</span> serializes kernel launches within the profiled application,
                           potentially across multiple processes profiled by one or more instances of the tool at the same time.
                           
                        </p>
                        <p class="p">
                           Serialization across processes is necessary since for the collection of HW performance metrics,
                           some GPU and driver objects can only be acquired by a single process at a time.
                           To achieve this, the lock file <samp class="ph codeph">TMPDIR/nsight-compute-lock</samp> is used.
                           On Windows, <dfn class="term">TMPDIR</dfn> is the path returned by the Windows <samp class="ph codeph">GetTempPath</samp> API function.
                           On other platforms, it is the path supplied by the first environment variable in the list
                           <samp class="ph codeph">TMPDIR, TMP, TEMP, TEMPDIR</samp>. If none of these is found, it's <samp class="ph codeph">/var/nvidia</samp> on QNX and <samp class="ph codeph">/tmp</samp> otherwise.
                           
                        </p>
                        <p class="p">
                           Serialization within the process is required for most metrics to be mapped to the proper kernel.
                           In addition, without serialization, performance metric values might vary widely if kernel execute concurrently
                           on the same device.
                           
                        </p>
                        <p class="p">
                           It is currently not possible to disable this tool behavior.
                           Refer to the <a class="xref" href="index.html#faq" shape="rect">FAQ</a> entry on possible workarounds.
                           
                        </p>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="clock-control"><a name="clock-control" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#clock-control" name="clock-control" shape="rect">6.2.&nbsp;Clock Control</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           For many metrics, their value is directly influenced by the current GPU SM and memory clock frequencies.
                           For example, if a kernel instance is profiled that has prior kernel executions in the application,
                           the GPU might already be in a higher clocked state and the measured kernel duration, along with other metrics, will be affected.
                           Likewise, if a kernel instance is the first kernel to be launched in the application, GPU clocks will regularly be lower.
                           In addition, due to kernel replay, the metric value might depend on which replay pass it is collected in, as later passes
                           would result in higher clock states.
                           
                        </p>
                        <p class="p">
                           To mitigate this non-determinism, <span class="keyword">NVIDIA Nsight Compute</span> attempts to limit GPU clock frequencies to their <dfn class="term">base</dfn> value.
                           As a result, metric values are less impacted by the location of the kernel in the application, or by the number of the specific
                           replay pass.
                           
                        </p>
                        <p class="p">
                           However, this behavior might be undesirable for analysis of the kernel, e.g. in cases where an external tool is used to fix
                           clock frequencies,
                           or where the behavior of the kernel within the application is analyzed.
                           To solve this, users can adjust the <samp class="ph codeph">--clock-control</samp> option to specify if any clock frequencies should be fixed by the tool.
                           
                        </p>
                        <div class="p">
                           Factors affecting Clock Control:
                           
                           <ul class="ul">
                              <li class="li">Note that thermal throttling directed by the driver cannot be controlled by the tool and always overrides any selected options.</li>
                              <li class="li">On mobile targets, e.g. L4T or QNX, there may be variations in profiling results due the inability for the tool to lock clocks.
                                 
                                 Using Nsight Compute’s  <samp class="ph codeph">--clock-control</samp> to set the GPU clocks will fail or will be silently ignored when profiling on a GPU partition.
                                 
                                 <ul class="ul">
                                    <li class="li">On L4T, you can use the jetson_clocks script to lock the clocks at their maximums during profiling. </li>
                                 </ul>
                              </li>
                              <li class="li">See the <a class="xref" href="index.html#special-configurations" shape="rect">Special Configurations</a> section for MIG and vGPU clock control.
                              </li>
                           </ul>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="cache-control"><a name="cache-control" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#cache-control" name="cache-control" shape="rect">6.3.&nbsp;Cache Control</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           As explained in <a class="xref" href="index.html#kernel-replay" shape="rect">Kernel Replay</a>, the kernel might need to be replayed multiple times to collect all requested metrics.
                           While <span class="keyword">NVIDIA Nsight Compute</span> can save and restore the contents of GPU device memory accessed by the kernel for each pass,
                           it cannot do the same for the contents of HW caches, such as e.g. the L1 and L2 cache.
                           
                        </p>
                        <p class="p">
                           This can have the effect that later replay passes might have better or worse performance than e.g. the first pass,
                           as the caches could already be primed with the data last accessed by the kernel.
                           Similarly, the values of HW performance counters collected by the first pass might depend on which kernels, if any,
                           were executed prior to the measured kernel launch.
                           
                        </p>
                        <p class="p">
                           In order to make HW performance counter value more deterministic, <span class="keyword">NVIDIA Nsight Compute</span> by default flushes all
                           GPU caches before each replay pass. As a result, in each pass, the kernel will access a clean cache and the behavior will
                           be as if the kernel was executed in complete isolation.
                           
                        </p>
                        <p class="p">
                           This behavior might be undesirable for performance analysis, especially if the measurement focuses on a kernel
                           within a larger application execution, and if the collected data targets cache-centric metrics.
                           In this case, you can use <samp class="ph codeph">--cache-control none</samp> to disable flushing of any HW cache by the tool.
                           
                        </p>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="persistence-mode"><a name="persistence-mode" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#persistence-mode" name="persistence-mode" shape="rect">6.4.&nbsp;Persistence Mode</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           The NVIDIA kernel mode driver must be running and connected to a target GPU device before any user interactions with that
                           device can take place.
                           The driver behavior differs depending on the OS.
                           Generally, on Linux, if the kernel mode driver is not already running or connected to a target GPU, the invocation of any
                           program that attempts to interact
                           with that GPU will transparently cause the driver to load and/or initialize the GPU.
                           When all GPU clients terminate the driver will then deinitialize the GPU.
                           
                        </p>
                        <p class="p">
                           If <a class="xref" href="https://docs.nvidia.com/deploy/driver-persistence/index.html" target="_blank" shape="rect">persistence mode</a> is not enabled (as part of the OS, or by the user), applications triggering GPU initialization may incur a short startup
                           cost.
                           In addition, on some configurations, there may also be a shutdown cost when the GPU is de-initialized at the end of the application.
                           
                        </p>
                        <p class="p">
                           It is recommended to enable persistence mode on applicable operating systems before profiling with <span class="keyword">NVIDIA Nsight Compute</span> for more consistent application behavior.
                           
                        </p>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="special-configurations"><a name="special-configurations" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#special-configurations" name="special-configurations" shape="rect">7.&nbsp;Special Configurations</a></h2>
                  <div class="body conbody">
                     <p class="p"></p>
                  </div>
                  <div class="topic concept nested1" id="special-configurations-mig"><a name="special-configurations-mig" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#special-configurations-mig" name="special-configurations-mig" shape="rect">7.1.&nbsp;Multi Instance GPU</a></h3>
                     <div class="body conbody">
                        <p class="p"><span class="keyword">Multi-Instance GPU (MIG)</span> is a feature that allows a GPU to be partitioned into multiple CUDA devices.
                           The partitioning is carried out on two levels:
                           
                           First, a GPU can be split into one or multiple <span class="keyword">GPU Instance</span>s. Each <span class="keyword">GPU Instance</span> claims ownership of one or more streaming multiprocessors (SM), a subset of the overall GPU memory, and possibly other GPU
                           resources, such as the video encoders/decoders.
                           
                           Second, each <span class="keyword">GPU Instance</span> can be further partitioned into one or more <span class="keyword">Compute Instance</span>s. Each <span class="keyword">Compute Instance</span> has exclusive ownership of its assigned SMs of the <span class="keyword">GPU Instance</span>. However, all <span class="keyword">Compute Instance</span>s within a <span class="keyword">GPU Instance</span> share the <span class="keyword">GPU Instance</span>'s memory and memory bandwidth. Every <span class="keyword">Compute Instance</span> acts and operates as a CUDA device with a unique device ID.
                           
                           See the driver release notes as well as the documentation for the <samp class="ph codeph">nvidia-smi</samp> CLI tool for more information on how to configure MIG instances.
                           
                        </p>
                        <p class="p">
                           For profiling, a <span class="keyword">Compute Instance</span> can be of one of two types: <dfn class="term">isolated</dfn> or <dfn class="term">shared</dfn>.
                           
                        </p>
                        <p class="p">
                           An <dfn class="term">isolated</dfn>&nbsp;<span class="keyword">Compute Instance</span> owns all of its assigned resources and does not share any GPU unit with another <span class="keyword">Compute Instance</span>. In other words, the <span class="keyword">Compute Instance</span> is the same size as its parent <span class="keyword">GPU Instance</span> and consequently does not have any other sibling <span class="keyword">Compute Instance</span>s. Profiling works as usual for isolated <span class="keyword">Compute Instance</span>s.
                           
                        </p>
                        <p class="p">
                           A <dfn class="term">shared</dfn>&nbsp;<span class="keyword">Compute Instance</span> uses GPU resources that can potentially also be accessed by other <span class="keyword">Compute Instance</span>s in the same <span class="keyword">GPU Instance</span>. Due to this resource sharing, collecting profiling data from those shared units is not permitted. Attempts to collect metrics
                           from a shared unit fail with an error message of <samp class="ph codeph">==ERROR== Failed to access the following metrics. When profiling on a MIG instance, it is not possible to collect metrics
                              from GPU units that are shared with other MIG instances</samp> followed by the list of failing metrics. Collecting only metrics from GPU units that are exclusively owned by a shared <span class="keyword">Compute Instance</span> is still possible.
                           
                        </p>
                        <div class="section" id="special-configurations-mig__clocks"><a name="special-configurations-mig__clocks" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Locking Clocks</h3>
                           <p class="p"><span class="keyword">NVIDIA Nsight Compute</span> is not able to set the clock frequency on any <span class="keyword">Compute Instance</span> for profiling.
                              You can continue analyzing kernels without fixed clock frequencies (using <samp class="ph codeph">--clock-control none</samp>; see <a class="xref" href="index.html#clock-control" shape="rect">here</a> for more details).
                              If you have sufficient permissions, <samp class="ph codeph">nvidia-smi</samp> can be used to configure a fixed frequency for the whole GPU by calling <samp class="ph codeph">nvidia-smi --lock-gpu-clocks=tdp,tdp</samp>.
                              This sets the GPU clocks to the base TDP frequency until you reset the clocks by calling <samp class="ph codeph">nvidia-smi --reset-gpu-clocks</samp>.
                              
                           </p>
                        </div>
                        <div class="section" id="special-configurations-mig__baremetal"><a name="special-configurations-mig__baremetal" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">MIG on Baremetal (non-vGPU)</h3>
                           <p class="p">
                              All <span class="keyword">Compute Instance</span>s on a GPU share the same clock frequencies.
                              
                           </p>
                        </div>
                        <div class="section" id="special-configurations-mig__vgpu"><a name="special-configurations-mig__vgpu" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">MIG on NVIDIA vGPU</h3>
                           <p class="p">
                              Enabling profiling for a VM gives the VM access to the GPU's global performance counters, which may include activity from
                              other VMs executing on the same GPU.
                              Enabling profiling for a VM also allows the VM to lock clocks on the GPU, which impacts all other VMs executing on the same
                              GPU, including MIG <span class="keyword">Compute Instance</span>s.
                              
                           </p>
                        </div>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="roofline"><a name="roofline" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#roofline" name="roofline" shape="rect">8.&nbsp;Roofline Charts</a></h2>
                  <div class="body conbody">
                     <p class="p">
                        Roofline charts provide a very helpful way to visualize achieved performance on complex processing units, like GPUs.
                        This section introduces the Roofline charts that are presented within a profile report.
                        
                     </p>
                  </div>
                  <div class="topic concept nested1" id="roofline-overview"><a name="roofline-overview" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#roofline-overview" name="roofline-overview" shape="rect">8.1.&nbsp;Overview</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           Kernel performance is not only dependent on the operational speed of the GPU.  Since a kernel requires data
                           to work on, performance is also dependent on the rate at which the GPU can feed data to the kernel. A typical
                           roofline chart combines the peak performance and memory bandwidth of the GPU, with a metric called
                           <dfn class="term">Arithmetic Intensity</dfn> (a ratio between <dfn class="term">Work</dfn> and <dfn class="term">Memory Traffic</dfn>), into a
                           single chart, to more realistically represent the achieved performance of the profiled kernel. A simple roofline
                           chart might look like the following:
                           
                        </p>
                        <div class="fig fignone"><span class="desc figdesc">Roofline overview.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/roofline-overview.png"></img></div><br clear="none"></br></div>
                        <div class="p">
                           This chart actually shows two different rooflines.  However, the following components can
                           be identified for each:
                           
                           <ul class="ul">
                              <li class="li"><strong class="ph b"><dfn class="term">Vertical Axis</dfn></strong> - The vertical axis represents <dfn class="term">Floating Point Operations per Second</dfn> (FLOPS).
                                 For GPUs this number can get quite large and so the numbers on this axis can be scaled for easier reading (as shown here).
                                 In order to better accommodate the range, this axis is rendered using a logarithmic scale.
                                 
                              </li>
                              <li class="li"><strong class="ph b"><dfn class="term">Horizontal Axis</dfn></strong> - The horizontal axis represents <dfn class="term">Arithmetic Intensity</dfn>, which is the ratio
                                 between <dfn class="term">Work</dfn> (expressed in floating point operations per second), and <dfn class="term">Memory Traffic</dfn> (expressed
                                 in bytes per second).  The resulting unit is in floating point operations per byte. This axis is also shown using a logarithmic
                                 scale.
                                 
                              </li>
                              <li class="li"><strong class="ph b"><dfn class="term">Memory Bandwidth Boundary</dfn></strong> - The memory bandwidth boundary is the <em class="ph i">sloped</em> part of the roofline.
                                 By default, this slope is determined entirely by the memory transfer rate of the GPU but can be customized
                                 inside the <dfn class="term">SpeedOfLight_RooflineChart.section</dfn> file if desired.
                                 
                              </li>
                              <li class="li"><strong class="ph b"><dfn class="term">Peak Performance Boundary</dfn></strong> - The peak performance boundary is the <em class="ph i">flat</em> part of the roofline
                                 By default, this value is determined entirely by the peak performance of the GPU but can be customized
                                 inside the <dfn class="term">SpeedOfLight_RooflineChart.section</dfn> file if desired.
                                 
                              </li>
                              <li class="li"><strong class="ph b"><dfn class="term">Ridge Point</dfn></strong> - The ridge point is the point at which the memory bandwidth boundary meets the peak
                                 performance boundary. This point is a useful reference when analyzing kernel performance.
                                 
                              </li>
                              <li class="li"><strong class="ph b"><dfn class="term">Achieved Value</dfn></strong> - The achieved value represents the performance of the profiled kernel. If baselines
                                 are being used, the roofline chart will also contain an achieved value for each baseline. The outline color of the plotted
                                 
                                 achieved value point can be used to determine from which baseline the point came.
                                 
                              </li>
                           </ul>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="roofline-analysis"><a name="roofline-analysis" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#roofline-analysis" name="roofline-analysis" shape="rect">8.2.&nbsp;Analysis</a></h3>
                     <div class="body conbody">
                        <p class="p">
                           The roofline chart can be very helpful in guiding performance optimization efforts for a particular kernel.
                           
                        </p>
                        <div class="fig fignone"><span class="desc figdesc">Roofline anaysis.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/roofline-analysis.png"></img></div><br clear="none"></br></div>
                        <p class="p">
                           As shown here, the <dfn class="term">ridge point</dfn> partitions the roofline chart into two regions.  The area shaded
                           in blue under the sloped <dfn class="term">Memory Bandwidth Boundary</dfn> is the <dfn class="term">Memory Bound</dfn> region, while the
                           area shaded in green under the <dfn class="term">Peak Performance Boundary</dfn> is the <dfn class="term">Compute Bound</dfn> region.
                           The region in which the <dfn class="term">achieved value</dfn> falls, determines the current limiting factor of kernel performance.
                           
                        </p>
                        <p class="p">
                           The distance from the <dfn class="term">achieved value</dfn> to the respective roofline boundary (shown in this figure as a dotted
                           white line), represents the opportunity for performance improvement.  The closer the <dfn class="term">achieved value</dfn> is to 
                           the roofline boundary, the more optimal is its performance.  An <dfn class="term">achieved value</dfn> that lies on the 
                           <dfn class="term">Memory Bandwidth Boundary</dfn> but is not yet at the height of the <dfn class="term">ridge point</dfn> would indicate that 
                           any further improvements in overall FLOP/s are only possible if the <dfn class="term">Arithmetic Intensity</dfn> is increased at 
                           the same time.
                           
                        </p>
                        <p class="p">
                           Using the baseline feature in combination with roofline charts, is a good way to track optimization progress over
                           a number of kernel executions.
                           
                        </p>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="memory-chart"><a name="memory-chart" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#memory-chart" name="memory-chart" shape="rect">9.&nbsp;Memory Chart</a></h2>
                  <div class="body conbody">
                     <p class="p">
                        The <dfn class="term">Memory Chart</dfn> shows a graphical, logical representation of performance data for memory subunits on and off the GPU.
                        Performance data includes transfer sizes, hit rates, number of instructions or requests, etc.
                        
                     </p>
                  </div>
                  <div class="topic concept nested1" id="memory-chart-overview"><a name="memory-chart-overview" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#memory-chart-overview" name="memory-chart-overview" shape="rect">9.1.&nbsp;Overview</a></h3>
                     <div class="body conbody">
                        <div class="fig fignone"><span class="desc figdesc">Memory chart for an NVIDIA A100 GPU</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/memory-chart-a100.png"></img></div><br clear="none"></br></div>
                        <div class="section" id="memory-chart-overview__memory-chart-logical-units"><a name="memory-chart-overview__memory-chart-logical-units" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Logical Units (green)</h3>
                           
                           Logical units are shown in green color.
                           
                           <ul class="ul">
                              <li class="li">Kernel: The CUDA kernel executing on the GPU's Streaming Multiprocessors</li>
                              <li class="li">Global: CUDA <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">global memory</a></li>
                              <li class="li">Local: CUDA <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">local memory</a></li>
                              <li class="li">Texture: CUDA <a class="xref" href="index.html#metrics-hw-model__metrics-hw-tex-surf" shape="rect">texture memory</a></li>
                              <li class="li">Surface: CUDA <a class="xref" href="index.html#metrics-hw-model__metrics-hw-tex-surf" shape="rect">surface memory</a></li>
                              <li class="li">Shared: CUDA <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">shared memory</a></li>
                              <li class="li">Load Global Store Shared: Instructions loading directly from global into shared memory without intermediate register file
                                 access
                              </li>
                           </ul>
                        </div>
                        <div class="section" id="memory-chart-overview__memory-chart-physical-units"><a name="memory-chart-overview__memory-chart-physical-units" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Physical Units (blue)</h3>
                           
                           Physical units are shown in blue color.
                           
                           <ul class="ul">
                              <li class="li">
                                 L1/TEX Cache: The <a class="xref" href="index.html#metrics-hw-model__metrics-hw-caches" shape="rect">L1/Texture cache</a>.
                                 The underlying physical memory is split between this cache and the user-managed <dfn class="term">Shared Memory</dfn>.
                                 
                              </li>
                              <li class="li">
                                 Shared Memory: CUDA's user-managed <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">shared memory</a>.
                                 The underlying physical memory is split between this and the <dfn class="term">L1/TEX Cache</dfn>.
                                 
                              </li>
                              <li class="li">L2 Cache: The <a class="xref" href="index.html#metrics-hw-model__metrics-hw-caches" shape="rect">L2 cache</a></li>
                              <li class="li">L2 Compression: The memory compression unit of the <dfn class="term">L2 Cache</dfn></li>
                              <li class="li">System Memory: Off-chip <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">system (CPU) memory</a></li>
                              <li class="li">Device Memory: On-chip <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">device (GPU) memory</a> of the CUDA device that executes the kernel
                              </li>
                              <li class="li">Peer Memory: On-chip <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">device (GPU) memory</a> of other CUDA devices
                              </li>
                           </ul>
                           <p class="p">
                              Depending on the exact GPU architecture, the exact set of shown units can vary, as not all GPUs have all units.
                              
                           </p>
                        </div>
                        <div class="section" id="memory-chart-overview__memory-chart-links"><a name="memory-chart-overview__memory-chart-links" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Links</h3>
                           <p class="p">
                              Links between <dfn class="term">Kernel</dfn> and other logical units represent the number of executed instructions (<dfn class="term">Inst</dfn>) targeting the respective unit.
                              For example, the link between <dfn class="term">Kernel</dfn> and <dfn class="term">Global</dfn> represents the instructions loading from or storing to the global memory space.
                              Instructions using the NVIDIA A100's <dfn class="term">Load Global Store Shared</dfn> paradigm are shown separately, as their register or cache access behavior
                              can be different from regular global loads or shared stores.
                              
                           </p>
                           <p class="p">
                              Links between logical units and blue, physical units represent the number of requests (<dfn class="term">Req</dfn>) issued as a result of their respective instructions.
                              For example, the link going from <dfn class="term">L1/TEX Cache</dfn> to <dfn class="term">Global</dfn> shows the number of requests generated due to global load instructions.
                              
                           </p>
                           <p class="p">
                              The color of each link represents the percentage of peak utilization of the corresponding communication path.
                              The color legend to the right of the chart shows the applied color gradient from unused (0%) to operating at peak performance
                              (100%).
                              Triangle markers to the left of the legend correspond to the links in the chart.
                              The markers offer a more accurate value estimate for the achieved peak performances than the color gradient alone.
                              
                           </p>
                           <p class="p">
                              A unit often shares a common data port for incoming and outgoing traffic. While the links sharing a port might operate well
                              below their individual peak performances, the unit's data
                              port may have already reached its peak. Port utilization is shown in the chart by colored rectangles inside the units located
                              at the
                              incoming and outgoing links. Ports use the same color gradient as the data links and have also a corresponding marker to the
                              left of the legend.
                              
                           </p>
                           <p class="p">
                              An example of the correlation between the peak values reported in the memory tables and the ports in the memory chart is shown
                              below.
                              
                           </p>
                           <div class="fig fignone"><span class="desc figdesc">Mapping of peak values between memory tables and memory chart</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/memory-peak-mapping.png"></img></div><br clear="none"></br></div>
                        </div>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="memory-tables"><a name="memory-tables" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#memory-tables" name="memory-tables" shape="rect">10.&nbsp;Memory Tables</a></h2>
                  <div class="body conbody">
                     <p class="p">
                        The <dfn class="term">Memory Tables</dfn> show detailed metrics for the various memory HW units, such as shared memory, the caches, and device memory.
                        For most table entries, you can hover over it to see the underlying metric name and description.
                        Some entries are generated as derivatives from other cells, and do not show a metric name on their own, but the respective
                        calculation.
                        If a certain metric does not contribute to the generic derivative calculation, it is shown as <dfn class="term">UNUSED</dfn> in the tooltip.
                        You can hover over row or column headers to see a description of this part of the table.
                        
                     </p>
                  </div>
                  <div class="topic concept nested1" id="memory-tables-smem"><a name="memory-tables-smem" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#memory-tables-smem" name="memory-tables-smem" shape="rect">10.1.&nbsp;Shared Memory</a></h3>
                     <div class="body conbody">
                        <div class="fig fignone"><span class="desc figdesc">Example Shared Memory table, collected on an RTX 2080 Ti</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/memory-tables-smem.png"></img></div><br clear="none"></br></div>
                        <div class="section" id="memory-tables-smem__memory-tables-smem-columns"><a name="memory-tables-smem__memory-tables-smem-columns" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Columns</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Instructions</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    <p class="p">
                                       For each access type, the total number of all actually executed assembly (SASS) <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">instructions</a> per warp.
                                       Predicated-off instructions are not included.
                                       
                                    </p>
                                    <p class="p">
                                       E.g., the instruction <dfn class="term">STS</dfn> would be counted towards <dfn class="term">Shared Store</dfn>.
                                       
                                    </p>
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Requests</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    <p class="p">
                                       The total number of all <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">requests</a> to shared memory.
                                       On SM 7.0 (Volta) and newer architectures, each shared memory instruction generates exactly one request.
                                       
                                    </p>
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Wavefronts</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Number of <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">wavefronts</a> required to service the requested shared memory data.
                                    Wavefronts are serialized and processed on different cycles.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">% Peak</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Percentage of peak utilization.
                                    Higher values imply a higher utilization of the unit and can show potential bottlenecks, as it does not necessarily indicate
                                    efficient usage.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Bank Conflicts</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    If multiple threads' requested addresses map to different offsets in the same memory bank, the accesses are serialized.
                                    The hardware splits a conflicting memory request into as many separate conflict-free requests as necessary,
                                    decreasing the effective bandwidth by a factor equal to the number of colliding memory requests.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                        <div class="section" id="memory-tables-smem__memory-tables-smem-rows"><a name="memory-tables-smem__memory-tables-smem-rows" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Rows</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">(Access Types)</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Shared memory access operations.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The aggregate for all access types in the same column.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="memory-tables-l1"><a name="memory-tables-l1" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#memory-tables-l1" name="memory-tables-l1" shape="rect">10.2.&nbsp;L1/TEX Cache</a></h3>
                     <div class="body conbody">
                        <div class="fig fignone"><span class="desc figdesc">Example L1/TEX Cache memory table, collected on an RTX 2080 Ti</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/memory-tables-l1.png"></img></div><br clear="none"></br></div>
                        <div class="fig fignone"><span class="desc figdesc">Model of the Global Load Pipeline for the L1TEX cache on GA100, mapped to the memory table.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/hw-model-l1tex-ga100-global.png"></img></div><br clear="none"></br></div>
                        <div class="section" id="memory-tables-l1__memory-tables-l1-columns"><a name="memory-tables-l1__memory-tables-l1-columns" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Columns</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Instructions</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    <p class="p">
                                       For each access type, the total number of all actually executed assembly (SASS) <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">instructions</a> per warp.
                                       Predicated-off instructions are not included.
                                       
                                    </p>
                                    <p class="p">
                                       E.g., the instruction <dfn class="term">LDG</dfn> would be counted towards <dfn class="term">Global Loads</dfn>.
                                       
                                    </p>
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Requests</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    <p class="p">
                                       The total number of all <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">requests</a> to L1, generated for each instruction type.
                                       On SM 7.0 (Volta) and newer architectures, each instruction generates exactly one request for LSU traffic (global, local,
                                       ...).
                                       For texture (TEX) traffic, more than one request may be generated.
                                       
                                    </p>
                                    <p class="p">
                                       In the example, each of the 65536 global load instructions generates exactly one request.
                                       
                                    </p>
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Wavefronts</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Number of <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">wavefronts</a> required to service the requested memory operation.
                                    Wavefronts are serialized and processed on different cycles.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Wavefront % Peak</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Percentage of peak utilization for the units processing <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">wavefronts</a>.
                                    High numbers can imply that the processing pipelines are saturated and can become a bottleneck.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Sectors</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The total number of all L1 <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">sectors</a> accesses sent to L1.
                                    Each load or store request accesses one or more sectors in the L1 cache.
                                    Atomics and reductions are passed through to the L2 cache.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Sectors/Req</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    <p class="p">
                                       The average ratio of sectors to requests for the L1 cache.
                                       For the same number of active threads in a warp, smaller numbers imply a more efficient memory access pattern.
                                       For warps with 32 active threads, the optimal ratios per access size are: 32-bit: 4, 64-bit: 8, 128-bit: 16.
                                       Smaller ratios indicate some degree of uniformity or overlapped loads within a cache line.
                                       Higher numbers can imply <a class="xref" href="https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses" target="_blank" shape="rect">uncoalesced memory accesses</a>
                                       and will result in increased memory traffic.
                                       
                                    </p>
                                    <p class="p">
                                       In the example, the average ratio for global loads is 32 sectors per request, which implies that each thread needs to access
                                       a different sector.
                                       Ideally, for warps with 32 active threads, with each thread accessing a single, aligned 32-bit value, the ratio would be 4,
                                       as every 8 consecutive threads access the same sector.
                                       
                                    </p>
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Hit Rate</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">Sector</a> hit rate (percentage of requested sectors that do not miss) in the L1 cache.
                                    Sectors that miss need to be requested from L2, thereby contributing to <dfn class="term">Sector Misses to L2</dfn>.
                                    Higher hit rates imply better performance due to lower access latencies, as the request can be served by L1 instead of a later
                                    stage.
                                    Not to be confused with <dfn class="term">Tag Hit Rate</dfn> (not shown).
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Bytes</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total number of bytes requested from L1.
                                    This is identical to the number of sectors multiplied by 32 byte, since the minimum access size in L1 is one sector.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Sector Misses to L2</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    <p class="p">
                                       Total number of sectors that miss in L1 and generate subsequent requests in the <a class="xref" href="index.html#memory-tables-l2" shape="rect">L2 Cache</a>.
                                       
                                    </p>
                                    <p class="p">
                                       In this example, the 262144 sector misses for global and local loads can be computed as the miss-rate of 12.5%, multiplied
                                       by the number of 2097152 sectors.
                                       
                                    </p>
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">% Peak to L2</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Percentage of peak utilization of the L1-to-XBAR interface, used to send L2 cache requests.
                                    If this number is high, the workload is likely dominated by scattered {writes, atomics, reductions}, which can increase the
                                    latency and cause
                                    <a class="xref" href="index.html#statistical-sampler__warp-scheduler-states" shape="rect">warp stalls</a>.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Returns to SM</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Number of return packets sent from the L1 cache back to the SM.
                                    Larger request access sizes result in higher number of returned packets.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">% Peak to SM</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Percentage of peak utilization of the XBAR-to-L1 return path (compare Returns to SM).
                                    If this number is high, the workload is likely dominated by scattered reads, thereby causing
                                    <a class="xref" href="index.html#statistical-sampler__warp-scheduler-states" shape="rect">warp stalls</a>.
                                    Improving read-coalescing or the <dfn class="term">L1 hit rate</dfn> could reduce this utilization.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                        <div class="section" id="memory-tables-l1__memory-tables-l1-rows"><a name="memory-tables-l1__memory-tables-l1-rows" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Rows</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">(Access Types)</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The various access types, e.g. loads from global memory or reduction operations on surface memory.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Loads</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The aggregate of all load access types in the same column.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Stores</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The aggregate of all store access types in the same column.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The aggregate of all load and store access types in the same column.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="memory-tables-l2"><a name="memory-tables-l2" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#memory-tables-l2" name="memory-tables-l2" shape="rect">10.3.&nbsp;L2 Cache</a></h3>
                     <div class="body conbody">
                        <div class="fig fignone"><span class="desc figdesc">Example L2 Cache memory table, collected on an RTX 2080 Ti</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/memory-tables-l2.png"></img></div><br clear="none"></br></div>
                        <div class="fig fignone"><span class="desc figdesc">Model of the L2 cache on GA100, mapped to the memory table.</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/hw-model-lts-ga100.png"></img></div><br clear="none"></br></div>
                        <div class="section" id="memory-tables-l2__memory-tables-l2-columns"><a name="memory-tables-l2__memory-tables-l2-columns" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Columns</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Requests</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    For each access type, the total number of <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">requests</a> made to the L2 cache.
                                    This correlates with the <a class="xref" href="index.html#memory-tables-l1__memory-tables-l1-columns" shape="rect">Sector Misses to L2</a> for the L1 cache.
                                    Each request targets one 128 byte cache line.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Sectors</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    For each access type, the total number of <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">sectors</a> requested from the L2 cache.
                                    Each request accesses one or more sectors.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Sectors/Req</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The average ratio of sectors to requests for the L2 cache.
                                    For the same number of active threads in a warp, smaller numbers imply a more efficient memory access pattern.
                                    For warps with 32 active threads, the optimal ratios per access size are: 32-bit: 4, 64-bit: 8, 128-bit: 16.
                                    Smaller ratios indicate some degree of uniformity or overlapped loads within a cache line.
                                    Higher numbers can imply <a class="xref" href="https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory-accesses" target="_blank" shape="rect">uncoalesced memory accesses</a>
                                    and will result in increased memory traffic.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">% Peak</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Percentage of peak sustained number of sectors.
                                    The "work package" in the L2 cache is a sector.
                                    Higher values imply a higher utilization of the unit and can show potential bottlenecks, as it does not necessarily indicate
                                    efficient usage.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Hit Rate</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Hit rate (percentage of requested sectors that do not miss) in the L2 cache.
                                    Sectors that miss need to be requested from a later stage, thereby contributing to one of <dfn class="term">Sector Misses to Device</dfn>, <dfn class="term">Sector Misses to System</dfn>, or <dfn class="term">Sector Misses to Peer</dfn>.
                                    Higher hit rates imply better performance due to lower access latencies, as the request can be served by L2 instead of a later
                                    stage.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Bytes</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total number of bytes requested from L2.
                                    This is identical to the number of sectors multiplied by 32 byte, since the minimum access size in L2 is one sector.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Throughput</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Achieved L2 cache throughput in bytes per second.
                                    High values indicate high utilization of the unit.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Sector Misses to Device</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total number of sectors that miss in L2 and generate <a class="xref" href="index.html#memory-tables-dram" shape="rect">subsequent requests</a>
                                    in <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">device memory</a>.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Sector Misses to System</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total number of sectors that miss in L2 and generate subsequent requests
                                    in <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">system memory</a>.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Sector Misses to Peer</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total number of sectors that miss in L2 and generate subsequent requests
                                    in <a class="xref" href="index.html#metrics-hw-model__metrics-hw-memory" shape="rect">peer memory</a>.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                        <div class="section" id="memory-tables-l2__memory-tables-l2-rows"><a name="memory-tables-l2__memory-tables-l2-rows" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Rows</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">(Access Types)</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The various access types, e.g. loads or reductions originating from L1 cache.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">L1/TEX Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total for all operations originating from the L1 cache.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">ECC Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total for all operations caused by ECC (Error Correction Code).
                                    If ECC is enabled, L2 write requests that partially modify a sector cause a corresponding sector load from DRAM.
                                    These additional load operations increase the sector misses of L2.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">L2 Fabric Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total for all operations across the L2 fabric connecting the two L2 partitions.
                                    This row is only shown for kernel launches on CUDA devices with L2 fabric.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">GPU Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total for all operations across all clients of the L2 cache.
                                    Independent of having them split out separately in this table.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="memory-tables-l2-evict-policy"><a name="memory-tables-l2-evict-policy" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#memory-tables-l2-evict-policy" name="memory-tables-l2-evict-policy" shape="rect">10.4.&nbsp;L2 Cache Eviction Policies</a></h3>
                     <div class="body conbody">
                        <div class="fig fignone"><span class="desc figdesc">Example L2 Cache Eviction Policies memory table, collected on an A100 GPU</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/memory-tables-l2-evict-policy.png"></img></div><br clear="none"></br></div>
                        <div class="section" id="memory-tables-l2-evict-policy__memory-tables-l2-evict-policy-columns"><a name="memory-tables-l2-evict-policy__memory-tables-l2-evict-policy-columns" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Columns</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">First</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Number of sectors accessed in the L2 cache using the <samp class="ph codeph">evict_first</samp> policy.
                                    Data cached with this policy will be first in the eviction priority order and will likely be evicted when cache eviction is
                                    required.
                                    This policy is suitable for streaming data.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Hit Rate</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Cache hit rate for sector accesses in the L2 cache using the <samp class="ph codeph">evict_first</samp> policy.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Last</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Number of sectors accessed in the L2 cache using the <samp class="ph codeph">evict_last</samp> policy.
                                    Data cached with this policy will be last in the eviction priority order and will likely be evicted only after other data
                                    with <samp class="ph codeph">evict_normal</samp> or <samp class="ph codeph">evict_first</samp> eviction policy is already evicted.
                                    This policy is suitable for data that should remain persistent in cache.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Hit Rate</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Cache hit rate for sector accesses in the L2 cache using the <samp class="ph codeph">evict_last</samp> policy.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Normal</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Number of sectors accessed in the L2 cache using the <samp class="ph codeph">evict_normal</samp> policy.
                                    This is the default policy.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Hit Rate</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Cache hit rate for sector accesses in the L2 cache using the <samp class="ph codeph">evict_normal</samp> policy.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Normal Demote</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Number of sectors accessed in the L2 cache using the <samp class="ph codeph">evict_normal_demote</samp> policy.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Hit Rate</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Cache hit rate for sector accesses in the L2 cache using the <samp class="ph codeph">evict_normal_demote</samp> policy.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                        <div class="section" id="memory-tables-l2-evict-policy__memory-tables-l2-evict-policy-rows"><a name="memory-tables-l2-evict-policy__memory-tables-l2-evict-policy-rows" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Rows</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">(Access Types)</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The various access types, e.g. loads or reductions, originating from L1 cache.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">L1/TEX Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total for all operations originating from the L1 cache.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">L2 Fabric Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total for all operations across the L2 fabric connecting the two L2 partitions.
                                    This row is only shown for kernel launches on CUDA devices with L2 fabric.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">GPU Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total for all operations across all clients of the L2 cache.
                                    Independent of having them split out separately in this table.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                     </div>
                  </div>
                  <div class="topic concept nested1" id="memory-tables-dram"><a name="memory-tables-dram" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#memory-tables-dram" name="memory-tables-dram" shape="rect">10.5.&nbsp;Device Memory</a></h3>
                     <div class="body conbody">
                        <div class="fig fignone"><span class="desc figdesc">Example Device Memory table, collected on an RTX 2080 Ti</span><br clear="none"></br><div class="imagecenter"><img class="image imagecenter" src="graphics/memory-tables-dram.png"></img></div><br clear="none"></br></div>
                        <div class="section" id="memory-tables-dram__memory-tables-dram-columns"><a name="memory-tables-dram__memory-tables-dram-columns" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Columns</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Sectors</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    For each access type, the total number of <a class="xref" href="index.html#metrics-decoder__metrics-quantities" shape="rect">sectors</a> requested from device memory.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">% Peak</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Percentage of peak device memory utilization.
                                    Higher values imply a higher utilization of the unit and can show potential bottlenecks, as it does not necessarily indicate
                                    efficient usage.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Bytes</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Total number of bytes transferred between <a class="xref" href="index.html#memory-tables-l2" shape="rect">L2 Cache</a> and device memory.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Throughput</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Achieved device memory throughput in bytes per second.
                                    High values indicate high utilization of the unit.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                        <div class="section" id="memory-tables-dram__memory-tables-dram-rows"><a name="memory-tables-dram__memory-tables-dram-rows" shape="rect">
                              <!-- --></a><h3 class="title sectiontitle">Rows</h3>
                           <table cellpadding="4" cellspacing="0" summary="" border="1" class="simpletable">
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">(Access Types)</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    Device memory loads and stores.
                                    
                                 </td>
                              </tr>
                              <tr class="strow">
                                 <td valign="top" class="stentry" rowspan="1" colspan="1"><tt class="ph tt">Total</tt></td>
                                 <td valign="top" class="stentry" rowspan="1" colspan="1">
                                    The aggregate for all access types in the same column.
                                    
                                 </td>
                              </tr>
                           </table>
                        </div>
                     </div>
                  </div>
               </div>
               <div class="topic concept nested0" id="faq"><a name="faq" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#faq" name="faq" shape="rect">11.&nbsp;FAQ</a></h2>
                  <div class="body conbody">
                     <ul class="ul">
                        <li class="li"><strong class="ph b">n/a metric values</strong><p class="p">
                              n/a means that the metric value is "not available". The most common reason is that the requested metric does not exist.
                              This can either be the result of a typo, or a missing <a class="xref" href="index.html#metrics-structure__metrics-examples" shape="rect">suffix</a>.
                              Verify the metric name against the output of of the <samp class="ph codeph">--query-metrics</samp><span class="keyword">NVIDIA Nsight Compute CLI</span> option.
                              
                           </p>
                           <p class="p">
                              If the metric name was copied (e.g. from an old version of this documentation), make sure that it does not contain zero-width
                              unicode characters.
                              
                           </p>
                           <p class="p">
                              Finally, the metric might simply not exist for the targeted GPU architecture. For example, the IMMA pipeline metric
                              <samp class="ph codeph">sm__inst_executed_pipe_tensor_op_imma.avg.pct_of_peak_sustained_active</samp> is not available on GV100 chips.
                              
                           </p>
                        </li>
                        <li class="li"><strong class="ph b">Metric values outside the expected logical range</strong><p class="p">
                              This includes e.g. percentages exceeding 100% or metrics reporting negative values.
                              For further details, see <a class="xref" href="index.html#range-and-precision" shape="rect">Range and Precision</a>.
                              
                           </p>
                        </li>
                        <li class="li"><strong class="ph b">ERR_NVGPUCTRPERM - The user does not have permission to access NVIDIA GPU Performance Counters on the target device.</strong><p class="p">
                              By default, NVIDIA drivers require elevated permissions to access GPU performance counters.
                              On mobile platforms, profile as root/using sudo.
                              On other platforms, you can either start profiling as root/using sudo, or by enabling non-admin profiling.
                              For further details, see <a class="xref" href="https://developer.nvidia.com/ERR_NVGPUCTRPERM" target="_blank" shape="rect">https://developer.nvidia.com/ERR_NVGPUCTRPERM</a>.
                              
                           </p>
                        </li>
                        <li class="li"><strong class="ph b">Unsupported GPU</strong><p class="p">
                              This indicates that the GPU, on which the current kernel is launched, is not supported.
                              See the <a class="xref" href="../ReleaseNotes/index.html#gpu-support" shape="rect">Release Notes</a>
                              for a list of devices supported by your version of <span class="keyword">NVIDIA Nsight Compute</span>.
                              It can also indicate that the current <dfn class="term">GPU configuration</dfn> is not supported.
                              For example, <span class="keyword">NVIDIA Nsight Compute</span> might not be able to profile GPUs in SLI configuration.
                              
                           </p>
                        </li>
                        <li class="li"><strong class="ph b">Connection error detected communicating with target application.</strong><p class="p">
                              The inter-process connection to the profiled application unexpectedly dropped.
                              This happens if the application is killed or signals an exception (e.g. segmentation fault).
                              
                           </p>
                        </li>
                        <li class="li"><strong class="ph b">Failed to connect. The target process may have exited.</strong><div class="p">
                              This occurs if
                              
                              <ul class="ul">
                                 <li class="li">the application does not call any CUDA API calls before it exits.</li>
                                 <li class="li">
                                    the application terminates early because it was started from the wrong working directory, or with the wrong arguments.
                                    In this case, check the details in the <dfn class="term">Connection Dialog</dfn>.
                                    
                                 </li>
                                 <li class="li">the application crashes before calling any CUDA API calls.</li>
                                 <li class="li">the application launches child processes which use the CUDA. In this case, launch with the <samp class="ph codeph">--target-processes all</samp> option.
                                 </li>
                              </ul>
                           </div>
                        </li>
                        <li class="li"><strong class="ph b">The profiler returned an error code: (number)</strong><p class="p">
                              For the non-interactive <dfn class="term">Profile</dfn> activity, the <span class="keyword">NVIDIA Nsight Compute CLI</span> is started to generate the report.
                              If either the application exited with a non-zero return code, or the <span class="keyword">NVIDIA Nsight Compute CLI</span> encountered an error itself,
                              the resulting return code will be shown in this message.
                              
                           </p>
                           <p class="p">
                              For example, if the application hit a segmentation fault (SIGSEGV) on Linux, it will likely return error code 11.
                              All non-zero return codes are considered errors, so the message is also shown if the application exits with return code 1
                              during regular execution.
                              
                           </p>
                           <p class="p">
                              To debug this issue, it can help to run the data collection directly from the command line using <samp class="ph codeph"><span class="keyword">ncu</span></samp>
                              in order to observe the application's and the profiler's command line output, e.g. <samp class="ph codeph">==ERROR== The application returned an error code (11)</samp></p>
                        </li>
                        <li class="li"><strong class="ph b">Failed to open/create lock file (path). Please check that this process has write permissions on this file.</strong><p class="p"><span class="keyword">NVIDIA Nsight Compute</span> failed to create or open the file <samp class="ph codeph">(path)</samp> with write permissions.
                              This file is used for inter-process <a class="xref" href="index.html#serialization" shape="rect">serialization</a>.
                              <span class="keyword">NVIDIA Nsight Compute</span> does not remove this file after profiling by design.
                              The error occurs if the file was created by a profiling process with permissions that prevent the current process from writing
                              to this file,
                              or if the current user can't acquire this file for other reasons (e.g. certain Linux kernel security settings).
                              
                           </p>
                           <p class="p">
                              The file is in the current temporary directory, i.e. <samp class="ph codeph">TMPDIR/nsight-compute-lock</samp>.
                              On Windows, <dfn class="term">TMPDIR</dfn> is the path returned by the Windows <samp class="ph codeph">GetTempPath</samp> API function.
                              On other platforms, it is the path supplied by the first environment variable in the list
                              <samp class="ph codeph">TMPDIR, TMP, TEMP, TEMPDIR</samp>. If none of these is found, it's <samp class="ph codeph">/var/nvidia</samp> on QNX and <samp class="ph codeph">/tmp</samp> otherwise.
                              
                           </p>
                           <p class="p">
                              Older versions of <span class="keyword">NVIDIA Nsight Compute</span> did not set write permissions for all users on this file by default.
                              As a result, running the tool on the same system with a different user might cause this error.
                              This has been resolved since version 2020.2.1.
                              
                           </p>
                           <div class="p">
                              The following workarounds can be used to solve this problem:
                              
                              <ul class="ul">
                                 <li class="li">
                                    If it is otherwise ensured that no concurrent <span class="keyword">NVIDIA Nsight Compute</span> instances are active on the same system,
                                    set <samp class="ph codeph">TMPDIR</samp> to a different directory for which the current user has write permissions.
                                    
                                 </li>
                                 <li class="li">
                                    Ask the user owning the file, or a system administrator, to remove it or add write permissions for all potential users.
                                    
                                 </li>
                                 <li class="li">
                                    On Linux systems setting <samp class="ph codeph">fs.protected_regular=1</samp>,
                                    root or other users may not be able to access this file, even though the owner can, if the sticky bit is set on the temporary
                                    directory.
                                    Either disable this setting using <samp class="ph codeph">sudo sysctl fs.protected_regular=0</samp>, use a different temporary directory (see above),
                                    or enable access to hardware performance counters for non-root users and profile as the same user who owns the file
                                    (see <a class="xref" href="https://developer.nvidia.com/ERR_NVGPUCTRPERM" target="_blank" shape="rect">https://developer.nvidia.com/ERR_NVGPUCTRPERM</a> on how to change this setting).
                                    
                                 </li>
                              </ul>
                           </div>
                        </li>
                        <li class="li"><strong class="ph b">Profiling failed because a driver resource was unavailable.</strong><p class="p">
                              The error indicates that a required CUDA driver resource was unavailable during profiling.
                              Most commonly, this means that <span class="keyword">NVIDIA Nsight Compute</span> could not reserve the
                              driver's performance monitor, which is necessary for collecting most metrics.
                              
                           </p>
                           <p class="p">
                              This can happen if another application has a concurrent reservation on this resource.
                              Such applications can be e.g. <a class="xref" href="https://developer.nvidia.com/dcgm" target="_blank" shape="rect">DCGM</a>,
                              a client of <a class="xref" href="https://developer.nvidia.com/cupti" target="_blank" shape="rect">CUPTI's Profiling API</a>,
                              <a class="xref" href="https://developer.nvidia.com/nsight-graphics" target="_blank" shape="rect">Nsight Graphics</a>,
                              or another instance of <span class="keyword">NVIDIA Nsight Compute</span> without access to the same file system
                              (see <a class="xref" href="index.html#serialization" shape="rect">serialization</a> for how this is prevented within the same file system).
                              
                           </p>
                           <p class="p">
                              If you expect the problem to be caused by DCGM, consider using <samp class="ph codeph">dcgmi profile --pause</samp> to stop its monitoring
                              while profiling with <span class="keyword">NVIDIA Nsight Compute</span>.
                              
                           </p>
                        </li>
                        <li class="li">
                           <p class="p"><strong class="ph b">Could not deploy stock * files to *</strong></p>
                           <p class="p"><strong class="ph b">Could not determine user home directory for section deployment.</strong></p>
                           <p class="p">
                              An error occurred while trying to deploy stock section or rule files.
                              By default, <span class="keyword">NVIDIA Nsight Compute</span> tries to deploy these to a versioned directory in
                              the user's home directory (as identified by the <samp class="ph codeph">HOME</samp> environment variable on Linux),
                              e.g. <samp class="ph codeph">/home/user/Documents/NVIDIA Nsight Compute/&lt;version&gt;/Sections</samp>.
                              
                           </p>
                           <p class="p">
                              If the directory cannot be determined (e.g. because this environment variable is not pointing to a valid directory),
                              or if there is an error while deploying the files (e.g. because the current process does not have
                              write permissions on it), warning messages are shown and <span class="keyword">NVIDIA Nsight Compute</span> falls back
                              to using stock sections and rules from the installation directory.
                              
                           </p>
                           <p class="p">
                              If you are in an environment where you consistently don't have write access to the user's home directory,
                              consider populating this directory upfront using <samp class="ph codeph"><span class="keyword">ncu</span> --section-folder-restore</samp>,
                              or by making <samp class="ph codeph">/home/user/Documents/NVIDIA Nsight Compute/&lt;version&gt;</samp>
                              a symlink to a writable directory.
                              
                           </p>
                        </li>
                        <li class="li">
                           <p class="p"><strong class="ph b"><samp class="ph codeph">ProxyJump</samp> SSH option is not working</strong></p>
                           <p class="p"><span class="keyword">NVIDIA Nsight Compute</span> does not manage authentication or interactive prompts with the OpenSSH client launched when using the
                              <samp class="ph codeph">ProxyJump</samp> option.  Therefore, to connect through an intermediate host for the first time, you will not be able to
                              accept the intermediate host's key.  A simple way to pinpoint the cause of failures in this case is to open a terminal and
                              use the OpenSSH
                              client to connect to the remote target. Once that connection succeeds, <span class="keyword">NVIDIA Nsight Compute</span> should be able to connect to the
                              target, too.
                              
                           </p>
                        </li>
                        <li class="li">
                           <p class="p"><strong class="ph b">SSH connection fails without trying to connect</strong></p>
                           <p class="p">
                              If the connection fails without trying to connect, there may be a problem with the settings you entered into the connection
                              dialog.
                              Please make sure that the <samp class="ph codeph">IP/Host Name</samp>, <samp class="ph codeph">User Name</samp> and <samp class="ph codeph">Port</samp> fields are correctly set.
                              
                           </p>
                        </li>
                        <li class="li">
                           <p class="p"><strong class="ph b">SSH connections are still not working</strong></p>
                           <p class="p">
                              The problem might come from <span class="keyword">NVIDIA Nsight Compute</span>'s  SSH client not finding a suitable host key algorithm to use which
                              is supported by the remote server. You can force <span class="keyword">NVIDIA Nsight Compute</span> to use a specific set of host key algorithms by
                              setting the <samp class="ph codeph">HostKeyAlgorithms</samp> option for the problematic host in your SSH configuration file.
                              To list the supported host key algorithms for a remote target, you can use the <samp class="ph codeph">ssh-keyscan</samp> utility which comes with
                              the OpenSSH client.
                              
                           </p>
                        </li>
                        <li class="li">
                           <p class="p"><strong class="ph b">Removing host keys from known hosts files</strong></p>
                           <p class="p">
                              When connecting to a target machine, <span class="keyword">NVIDIA Nsight Compute</span> tries to verify the target's host key against the same local
                              database as the OpenSSH client.
                              If <span class="keyword">NVIDIA Nsight Compute</span> find the host key is incorrect, it will inform you through a failure dialog. If you trust the
                              key hash shown in the dialog, you can remove the previously saved key for that host by manually editing your known hosts database
                              or
                              using the <samp class="ph codeph">ssh-keygen -R &lt;host&gt;</samp> command.
                              
                           </p>
                        </li>
                     </ul>
                  </div>
               </div>
               <div class="topic concept nested0" id="notices-header"><a name="notices-header" shape="rect">
                     <!-- --></a><h2 class="title topictitle1"><a href="#notices-header" name="notices-header" shape="rect">Notices</a></h2>
                  <div class="topic reference nested1" id="notice"><a name="notice" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#notice" name="notice" shape="rect"></a></h3>
                     <div class="body refbody">
                        <div class="section">
                           <h3 class="title sectiontitle">Notice</h3>
                           <p class="p">ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND
                              SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE
                              WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS
                              FOR A PARTICULAR PURPOSE. 
                           </p>
                           <p class="p">Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
                              consequences of use of such information or for any infringement of patents or other rights of third parties that may result
                              from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications
                              mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information
                              previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems
                              without express written approval of NVIDIA Corporation.
                           </p>
                        </div>
                     </div>
                  </div>
                  <div class="topic reference nested1" id="trademarks"><a name="trademarks" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#trademarks" name="trademarks" shape="rect"></a></h3>
                     <div class="body refbody">
                        <div class="section">
                           <h3 class="title sectiontitle">Trademarks</h3>
                           <p class="p">NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation
                              in the U.S. and other countries.  Other company and product names may be trademarks of
                              the respective companies with which they are associated.
                           </p>
                        </div>
                     </div>
                  </div>
                  <div class="topic reference nested1" id="copyright-past-to-present"><a name="copyright-past-to-present" shape="rect">
                        <!-- --></a><h3 class="title topictitle2"><a href="#copyright-past-to-present" name="copyright-past-to-present" shape="rect"></a></h3>
                     <div class="body refbody">
                        <div class="section">
                           <h3 class="title sectiontitle">Copyright</h3>
                           <p class="p">© <span class="ph">2018</span>-<span class="ph">2022</span> NVIDIA
                              Corporation and affiliates. All rights reserved.
                           </p>
                           <p class="p">This product includes software developed by the Syncro Soft SRL (http://www.sync.ro/).</p>
                        </div>
                     </div>
                  </div>
               </div>
               
               <hr id="contents-end"></hr>
               
            </article>
         </div>
      </div>
      <script language="JavaScript" type="text/javascript" charset="utf-8" src="../common/formatting/common.min.js"></script>
      <script language="JavaScript" type="text/javascript" charset="utf-8" src="../common/scripts/google-analytics/google-analytics-write.js"></script>
      <script language="JavaScript" type="text/javascript" charset="utf-8" src="../common/scripts/google-analytics/google-analytics-tracker.js"></script>
      <script type="text/javascript">_satellite.pageBottom();</script>
      <script type="text/javascript">var switchTo5x=true;</script><script type="text/javascript" src="http://w.sharethis.com/button/buttons.js"></script><script type="text/javascript">stLight.options({publisher: "998dc202-a267-4d8e-bce9-14debadb8d92", doNotHash: false, doNotCopy: false, hashAddressBar: false});</script></body>
</html>