IIIIIII

Chapter 1. INtrodUCHION....ciiiiiitiiiiiientttieiieneeeeeresnneseceesennsssccsssnnssssesassnnsssecsssnnnnes 1

1.1. About COmMPULE SANTHIZEI....ouiiiiiii i ettt et e eaeaaaes 1
1.2, Why COmMPULE SaNItizZer . ciiiiiettiiiiiiitttieiiieeeeraeereeeeeeessnnesessessnnnnesssssnnnnseseenns 1
1.3. How to Get Compute Sanitizer.......covnniiiiiiiiiiiii ittt e eeeaaeeees 1
1.4, COMPULE SANITIZEN TOOUS. .. uuetttteiiitttieiiiiteeteeeirneeeeeeernneeeesssnnnneesssssnnnnesssssnnnnes 1
Chapter 2. CompUte SaNitiZer.....ciiiiiieiiiiiiinneteeeerrneeeeeeesneneeeecesssnasesecssssnsssecessnnnsss 3
2.1. ComMaANd LiN@ OPTiONS. . .uettttiiiietttteeeiineeereerineeeereeannneesessnnnneessesssnnnesssssnnnneess 3
2.2, CompPilation OPTioNS. . .ueieiiiiii ittt ettt eeeeiaeeeeeeeaineeeeeeeensseeeseesnnneneens 10
2.3, ENVironment Variables.oveuiiuireiiitiiitiiitiiit ittt teeeeeereerreerirenneeeneeenaeens 10
Chapter 3. MemMChECK TOOL...ueiiiiiieeeieteiinneeeeeeeesnaeeteceesensesecsssonnsssecsssnnsssccsssnnnssecnns 12
3.1, What is MEeMChECK?. ... et ettt et e et e e e eaeeaaes 12
3.2, SUPPOrted Error DeteCtioN. . uueeeieeeitttieiiieeeteaineeeeeeearnaeeeeeessnnesessessnnnnessesnes 12
3.3, USING MEMICNECK. .. teeiiii e ettt ee e ee e eees 13
3.4. Understanding MemCheCK ErTOrS.uueiiiiiiiitttieriiieeteeenineeeeressneeessessnnneeeesanes 13
3.5. CUDA APl Error CheCKiNg.....oouiiiuiiiiiiiiiiiiiii it eii it eeit et eeteeeeeeeeaeaaens 16
3.6. Device Side Allocation CheCKing.........eiiiiiiietiiiiiiiieieeeiieeeeerenrneeeesessnneneesacnnns 16
3.7, LEaK CRECKING. c ittt ittt ettt et et et et eeeatnaeeeeeeaanaeeeesesansesesennnnns 16
R TR = T [|13 T P 17
3.9. Stream-ordered race deteCioN.coueeriretiiettiiii e eeetereatereneereaneerenneerannaaanns 17
Chapter 4. RaceCh@CK TOOL. .. uueiiineiiiiiiiieiiiieteieeeeieeeeaneeeanneeesneseannssesnnseannsennnsans 19
4.1. What iS RAaCECNECKY. ... ettt et ettt et e eree e eeeesenaesaannaranneans 19
4.2. What are Hazards?.......ooeeitiiitiiitiiit ittt ee ettt et eeneeeneeenteeneeenseanneans 19
4.3, USING RACECNECK. ..ttt ittt et e e ittt eeeeneeeeeeeennnaeeesasnnnanes 20
4.4, Racecheck REPOIt MOAES.ouuiiiitiiiiiiiiiiii et e et eeeeeeneeeeaneeeenaeeeaneeeanneens 20
4.5. Understanding Racecheck AnalysisS REPOITS....ccuuereiiiiiiieetiieiiiireeieiiiieeeeeeennneeeeens 21
4.6. Understanding Racecheck Hazard REPOItS.......ccvviuiiieiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeaee, 21
4.7. Racecheck SeVerity LeVelS. . .oouuuiiiiiiiiiiiiiiiiiieieeeiieeeeeeeennaeeeeesennneeeesennnnneeens 23
4.8. Racecheck support for cuda::barmier. . ..c.oieeiiiiieiiiii i i eeeieerereeneneeeanees 23
4.9. Racecheck support for asyNnChronOUS COPY....ciieeruurtetreerrnneeeereesnneeeereessnneeessessnnnnes 24
4.10. Racecheck cluster entry and exit race detection........ovviiiiiiiiiiiiiiiiiiiiiiieiainenes 24
Chapter 5. INItCheCK TOO0L. . ccuueiiiiiiiiiiiiieiiiieeiaeeeeeneeeeaeeeaneeeesnecesnnsasannseennnsannnnans 26
5.1. What is INIECRECK. ... ettt e et e et e reeeeeaneerenneesannaeannes 26
5.2, USING INTECRECK. ..ttt e i et et e et e it eereeeaeeeeanaeeannaens 26
5.3. Unused memory deteCtion.uuiiiiiiiitiiiiiiiiiiiiiieetteeiieeeeeeeenaeeeeessnnasessesennnes 26
Chapter 6. SyNCCheCK TOOL. . c.uuiiiieiiiiiiieiiiieieieeeeineeeeaneeesnnseennesennnsesnnnseannnsonnnnns 28
6.1. What is SYNCCNECKT. . et ittt ettt e ettt et eeernneeeesannnneseeesennnnes 28
6.2. USING SYNCCRECK. ...t et e e 28
6.3. Understanding SynCCheCk REPOItS.ueeiiiiiiiiiiiiiiiiereiiieeeeeeaieeeeesesnnneeeesanns 28
6.4. Synccheck support for cuda::barrier........cooiiiiiiiiiiiiiiiiii 29
6.5. Synccheck sUPPOrt fOr WMMA. . .iiieitttiiiiiiteeteeeiieeeeeeeennneeeeeessnnnneesessnnnnseseenns 29
www.nvidia.com

Compute Sanitizer v2024.1.1 | ii

Chapter 7. Compute Sanitizer Features.......civiiiiiiiiiiiiiiiiiiiiieieiieeteesnseessnsessnsscsnsenns 31

7.1, NONDBLOCKING MO ettt e e et e e et et eeeeeeannaeeennaeaanaaenns 31
P R - Vol S 2 - Vol T = ol S 31
7.3, Name Demangling.cceiutiiittiiittieitteeittteeieeeeaeeeenaeeeaneeeesneeessneeesneesesneeeennees 32
7.4, DynamiC Parallelism. . cceeeiiiiiiiiiiii ittt eetiiteeeeaetineeeeeraeannaneeeesnnnneeeeeennn 32
78 T = (o Yot o - 32
7.6, ESCAPE SEQUENCES. .t iiiiietttteeeiineeeeeeearnaeeeeeeennnseseesesnnsseeeessnnssssssessnnansesssnnnnes 34
7.7, SPECifYING FilEers. . .u ettt ettt e e e aaas 34
2% TR O] <o 181101 s IR0 o] o Yo o PPN 35
2 R 2 e ¥ o] o] =331 (o] o FOP N 36
2% LV O] 0] 4) QU o] s To] o N PPN 36
Chapter 8. UsSage GUIdE.....cueiiieiineeeieiierneeteeeeesnaceeeeeesssnstecessssanssccsesssnsseccsssnanseces 38
S I IR 1= 00T] VA 0 To] i [| SN PPN 38
Chapter 9. Operating System Specific Behavior.......cceiiiiiiiiiiiiiiiiiiiiiiiiieniiiieeiiiineeenennns 39
9.1. Windows SPeCific BEhavior.uiiieiiiiiiiii i e er e e e it e e e eaas 39
9.2. Using the Compute Sanitizer on Jetson and Tegra devices.......ccevviiiiiiiiiiiiiiineeennnnns 39
Chapter 10. CUDA FOrtran SUPPOIt.....ccceeeeereeteerneeeesneeeaneceasncscasnsscasasessnsssannsacnnnsanns 40
10.1. CUDA Fortran SpecCifiC BEhaVior......cciiiiiieiiiiiiiiiiiiiiiiieteeeeiieeeeeeessnneeeesennnnes 40
Chapter 11. Compute Sanitizer Tool EXamples......ccciveeiiiiinieinioinroiarecatocatosnsosassesssnnses 41
11.1. Example Use Of MEMCRECK.uuiiiiiiiiiiiiiiiii ettt eeeiieeeeeaenrneeeeeeennnneneens 41
11.1.1. memcheck_demo OULPUL......ciiuiiiiiiiii i 41
11.1.2. memcheck_demo Output with Memcheck (Release Build)........ccevvviiinniiiiiinnnnnen 41
11.1.3. memcheck_demo Output with Memcheck (Debug Build).........cceveieiiiiiininennnnn... 44
11.1.4. Leak Checking in Compute Sanitizer......c.c.civiiiiiiiiiiiiiiiieiiiiiieeeaeninneeeeranns 46
11.2. Example Use Of RAaCECECK. . .iiiiiiii it it e i e eeiaee e eaaanas 46
11.2.1. Block-level Hazards........oouiieiiieiiiiiiiii it e et e e rer e e eaneeaneenns 47
11.2.2. Warp-level Hazards.....c.ueeiiiiiiiiiiiiiiii it eeieiieeeeteeeiaaeeseeennsesessanns 47
11.3. Example Use of INTEChECK. ..coiuuiiii i et e i e e e e eeaas 48
L T PR T o T o o 48
11.4. Example Use of SYNCChECK.ciuuuiiiiiiiii i et e i eeiaeeaeeeeanaees 49
11.4.1. DIVergent ThrEads. .covuuue et iiiiiit ittt eeeeiieteeeeeetneeeeeessnnasessessnnnseeeeennns 49
11.4.2. TUEGAl SYNCWAIP. . ettt ettt et et it ee e eeteenteantenaeanaennes 50
11.5. EXample Use Of SUPPIESSIONS. .uutieitetetieeiieeeeteernnneeeeeessnnnneseessnnseesssssnnnseseenns 50
11.5.1. APl €ITOr SUPPIESSION. .. uetttttietettieeietetteeeraneeeeteaaanetesseeannnneeseessnneessenns 51
11.5.2. INTtCheCK error SUPPIESSION. . ..ueeitrerretttreerreeeeeeearneeeeeresrnneeeesessnnneeessannnnes 52
www.nvidia.com

Compute Sanitizer v2024.1.1 | iii

Table 1 Compute Sanitizer command liN€ OPLiONSuveeiiiiiiiii i reeiiieeeeeeeineeeeaanns 3
Table 2 Memcheck tool command liN@ OPLIONS «.vviuueiiiiiiiiiiiiiiiiiieeeeeeiieeeeeeeninaeeeeannns 8
Table 3 Racecheck tool command liN€ OPLiONSviiiiiiiiiiii i it eeii e e eaeaes 9
Table 4 Initcheck tool command line OPLIONSuuiiiriiiii i e e e e eeeeeeanneenan 9
Table 5 Synccheck tool command line€ OPLiONScuiieiieiiiiii e 9
Table 6 Environment Variablesco.ovuiiniiiiiiiiiiiiiiiiiiiiiiii e 10
Table 7 Memcheck reported error LY PeS «.ueeeierrtttieeeiitteeeerreeeereeennnneeseessnnneessessnnnnes 12
Table 8 Compute Sanitizer Stack Backtrace Informationccceviiiiiiiiiiiiiiiiiiiiiiieiinnnnenns 31
Table 9 Compute Sanitizer Error ACLIONSviiiiriiettiieiiiieeteeeiieeeeeeareeeeeessnnnneeeeeannnes 33
Table 10 Compute Sanitizer Filter KEYS ...uuueiiiiiiiiiiiiiiiiiieieiiiieeeeeeiineeeeeeennnaseseenanns 34
www.nvidia.com

Compute Sanitizer v2024.1.1 | iv

Chapter 1.
INTRODUCTION

1.1. About Compute Sanitizer

Compute Sanitizer is a functional correctness checking suite included in the CUDA
toolkit. This suite contains multiple tools that can perform different type of checks.

The memcheck tool is capable of precisely detecting and attributing out of bounds and
misaligned memory access errors in CUDA applications. The tool can also report
hardware exceptions encountered by the GPU. The racecheck tool can report shared
memory data access hazards that can cause data races. The initcheck tool can report cases
where the GPU performs uninitialized accesses to global memory. The synccheck tool

can report cases where the application is attempting invalid usages of synchronization
primitives. This document describes the usage of these tools.

1.2. Why Compute Sanitizer

NVIDIA allows developers to easily harness the power of GPUs to solve problems in
parallel using CUDA. CUDA applications often run thousands of threads in parallel.
Every programmer invariably encounters memory access errors and thread ordering,
hazards that are hard to detect and time consuming to debug. The number of such errors
increases substantially when dealing with thousands of threads. The Compute Sanitizer
suite is designed to detect those problems in your CUDA application.

1.3. How to Get Compute Sanitizer

Compute Sanitizer is installed as part of the CUDA toolkit.

1.4. Compute Sanitizer Tools

Compute Sanitizer provides different checking mechanisms through different tools.
Currently the supported tools are:

www.nvidia.com
Compute Sanitizer v2024.1.1 | 1

Introduction

» Memcheck — The memory access error and leak detection tool. See Memcheck Tool
» Racecheck — The shared memory data access hazard detection tool. See Racecheck

Tool
> Initcheck — The uninitialized device global memory access detection tool. See
Initcheck Tool

» Synccheck — The thread synchronization hazard detection tool. See Synccheck Tool

www.nvidia.com
Compute Sanitizer v2024.1.1 | 2

Chapter 2.
COMPUTE SANITIZER

Compute Sanitizer tools can be invoked by running the compute-sanitizer
executable as follows:

compute-sanitizer [options] app name [app options]

For a full list of options that can be specified to compute-sanitizer and their default
values, see Command Line Options

2.1. Command Line Options

Command line options can be specified to compute-sanitizer. With some exceptions,
the options are usually of the form --option value. The option list can be terminated
by specifying --. All subsequent words are treated as the application being run and its
arguments.

The table below describes the supported options in detail. The first column is the option
name passed to compute-sanitizer. Some options have a one character short form,
which is given in parentheses. These options can be invoked using a single hyphen. For
example, the help option can be invoked as -h. The options that have a short form do
not take a value.

The second column contains the permissible values for the option. In case the value is
user defined, it is shown below in braces {}. An option that can accept any numerical
value is represented as {number}.

The third column contains the default value of the option. Some options have different
default values depending on the architecture they are being run on.

Table 1 Compute Sanitizer command line options

Option Values Default Description

check-device-heap | yes,no yes Enables checking of device heap
allocations. This applies to both error
checking and leak checking.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 3

Compute Sanitizer

Option

Values

Default

Description

check-exit-code

yes, no

yes

Checks the application exit code and
print an error if it is different than 0.

check-optix-leaks

N/A

disabled

Detects and reports OptiX resources
that were created and were not
destroyed at OptixDeviceContextDestroy
time. For more information, see OptiX
support.

check-warpgroup-
mma

yes,no

yes

Enables memcheck and synccheck
support for PTX wgmma instructions
(requires sm_90a). For memcheck, the
tool checks that the matrices loaded
by wgmma .mma_async are in shared
memory range. For synccheck, see
Synccheck support for wgmma.

coredump-behavior

full,exit

full

Controls the behavior of the target
application after generating a CUDA
coredump.

» full: Abort the target application
and generate a CPU coredump.

» exit: Exit the target application
without generating a CPU
coredump.

coredump-name

{filename}

N/A

Name to use for the generated
coredump file.

demangle

full, simple, no

full

Enables the demangling of device
function names. For more information,
see Name Demangling.

destroy-on-device-
error

context,kernel

context

This controls how the application
proceeds on hitting a memory access
error. For more information, see Error
Actions.

error-exitcode

{number}

The exit code Compute Sanitizer

will return if the original application
succeeded but the tool detected that
errors were present. This is meant

to allow Compute Sanitizer to be
integrated into automated test suites.

force-blocking-
launches

N/A

disabled

This forces all host kernel launches

to be sequential. When enabled, the
number and precision of reported errors
will decrease.

force-
synchronization-
limit

{number}

This forces a synchronization after a
stream reaches the given number of
launches without synchronizing. This is
meant to reduce the memory usage of
the Compute Sanitizer tools, but it can
affect performances.

generate-
coredump

www.nvidia.com
Compute Sanitizer

N/A

disabled

When this is set, a coredump will
be generated for the first error
encountered and program execution will

v2024.1.1 | 4

Compute Sanitizer

Option

Values

Default

Description

be stopped. For more information, see
Coredump support.

help (h)

N/A

N/A

Displays the help message

injection-path

N/A

N/A

Sets the path to injection libraries.

injection-path32

N/A

N/A

Sets the path to 32bit injection
libraries.

kernel-name

{key1=val1}
[{,key2=val2}]

N/A

Controls which application kernels will
be checked by the running the Compute
Sanitizer tool. For more information,
see Specifying Filters.

kernel-name-
exclude

{key1=val1}
[{,key2=val2}]

N/A

Controls which application kernels will
be checked by the running the Compute
Sanitizer tool. For more information,
see Specifying Filters.

language

c,fortran

This controls the application source
language specific behavior in Compute
Sanitizer tools. For fortran specific
behavior, see CUDA Fortran Specific
Behavior.

¢,launch-count

{number}

Limit the number of kernel launches to
check. The count is only incremented
for launches that match the kernel
filters. Use 0 for unlimited.

s,launch-skip

{number}

Set the number of kernel launches to
skip before starting to check. The count
is only incremented for launches that
match the kernel filters.

launch-timeout

{number}

10 for single
process, 60 for
multi-process

Timeout in seconds for the connection
to the target process. A value of zero
forces compute-sanitizer to wait
infinitely.

log-file

{filename}

N/A

This is the file Compute Sanitizer

will write all of its text output to. By
default, Compute Sanitizer will print all
output to stdout. For more information,
see Escape Sequences.

max-connections

{number}

10

Maximum number of ports for
connecting to the target application.

kill

N/A

disabled

Makes the compute-sanitizer kill

the target application when a
communication error is met. By default,
the compute-sanitizer will instead
await for the normal completion of the
program without reporting potential
errors.

mode

www.nvidia.com
Compute Sanitizer

launch-and-
attach,launch,attac

launch-and-attach
1

Select the mode of interaction with the
target application

v2024.1.1 | 5

Compute Sanitizer

Option Values Default Description

» launch-and-attach: Launch the
target application and immediately
attach.

» launch: Launch the target
application and suspend it, waiting
for tool to attach.

» attach: Attach to a previously
launched application to which no
other tool is attached.

num-callers-device | {number} 0 Set the number of callers to print in
device stack traces. Use 0 for unlimited.

num-callers-host {number} 0 Set the number of callers to print in
host stack traces. Use 0 for unlimited.

num-cuda-barriers | {number} 0 Set the number of cuda::barriers that
the target application will use per
block. Use 0 for automatic detection.

nvtx true,false true Enable NVTX support.

port {number} 49152 Base port for connecting to the target
application.

prefix {string} ======== The string prepended to Compute
Sanitizer output lines.

print-level info,warn,error,fatal warn The minimum print level of messages
from Compute Sanitizer.

print-limit {number} 100 When this option is set, Compute
Sanitizer will stop printing errors after
reaching the given number of errors.
Use 0 for unlimited printing.

print-session- N/A disabled Print details about the sanitizer session

details for each target application such as
process ID, command line, target system
etc.

quiet,q N/A disabled Controls whether to run silently and

only print error messages.

read {filename} N/A The input Compute Sanitizer file to
read data from. This can be used in
conjunction with the --save option to
allow processing records after a run.

require-cuda-init yes, no yes Controls whether Compute Sanitizer
should return an error if the target
application does not use CUDA.

save {filename} N/A Filename where Compute Sanitizer
will save the output from the current
run. For more information, see Escape

Sequences.
save-session- N/A disabled Save details about the sanitizer session
details for each target application in the file

specified by --save. This option has no
effect if the --save option is not used.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 6

Compute Sanitizer

Option

Values

Default

Description

show-backtrace

yes,host,device,no

yes

Displays a backtrace for most types of
errors. "no" disables all backtraces, "yes"
enables all backtraces. "host" enables
only host side backtraces. "device”
enables only device side backtraces. For
more information, see Stack Backtraces.

support-32bit

N/A

disabled

This option only exists on Linux x86_64.
Enables the support for tracking
application that includes 32-bit
processes. On Windows, the support is
always enabled if the 32bit injection
libraries are found. Note: Only the

64bit processes are supported for actual
checking, the purpose of the option is to
allow tracking of the children process of
a 32bit process.

suppressions

{filename}

N/A

Input XML file containing a list of
reports that should be filtered out
by the tool if detected. For more
information, see Error suppression.

target-processes

application-only,all

all

Select which processes are to be
tracked by compute-sanitizer: The
root application process, or the root
application and all its child processes.

target-processes-
filter

www.nvidia.com
Compute Sanitizer

{string}

N/A

Set the comma separated expressions to
filter which processes are tracked.

» <process name> Set the process
name to filter by. Only exactly
matched processes are tracked.

> regex:<expression> Set the
regex to filter matching process
name profiling. On shells that
recognize regular expression
symbols as special characters (e.g.
Linux bash), the expression needs
to be escaped with quotes, e.g.
--target-processes-filter
regex:" .*Process".

The executable name will be considered
as process name to match. If the
process name or the provided
expression match, the process will be
tracked.

Examples

--target-processes-filter
MatrixMul Filter all processes having
executable name exactly as "MatrixMul”.

--target-processes-filter
regex:MatrixFilter all processes
that include the string "Matrix" in their
executable name, e.g. "MatrixMul" and
"MatrixAdd".

v2024.1.1 | 7

Compute Sanitizer

Option Values Default Description
--target-processes-filter
MatrixMul ,MatrixaAddFilter all
processes having executable name
exactly as "MatrixMul" or "MatrixAdd".
tool memcheck, memcheck Controls which Compute Sanitizer tool is
racecheck, actively running.
initcheck,
synccheck
version (V) N/A N/A Prints the version of Compute Sanitizer.
xml N/A disabled Emit error output to file in XML format.

When used, --save must also be set to
specify the file to save to.

Table 2 Memcheck tool command line options

ordered-races arg

alloc,use-after-

free,no

Option Values Default Description

check-cache- N/A disabled Check cache control memory accesses.

control

detect-missing- N/A disabled Detect leaks caused by missing module

module-unload unload calls. This option can report
false positives if the application uses
the CUDA runtime as it depends on the
destruction order between runtime and
driver when the application exits which
is not guaranteed.

ignore- N/A disabled Ignore CUDA_ERROR_NOT_FOUND API

getprocaddress- errors for cuGetProcAddress.

notfound

leak-check full,no no Prints information about all allocations
that have not been freed via cudaFree
at the point when the context was
destroyed. For more information, see
Leak Checking.

padding {number} 0 Makes the compute-sanitizer allocate
padding buffers after every CUDA
allocation. number is the size in
bytes of a padding buffer. Fore more
information, see Padding.

report-api-errors all, explicit, no explicit Reports errors if any CUDA API call fails.
For more information, see CUDA API
Error Checking.

track-stream- all,use-before- no Track CUDA stream-ordered allocations

races. For more information, see
Stream-ordered race detection.

www.nvidia.com
Compute Sanitizer

v2024.1.1 | 8

Compute Sanitizer

Table 3 Racecheck tool command line options

Option Values Default Description

racecheck-detect- | {info,warn,error} warn Set the minimum level of race

level conditions to detect.

racecheck- N/A disabled Enables tracking of indirect

indirect-barrier- cuda::barrier dependency in racecheck.

dependency Avoids false positives when the target
application is relying on chains of
arrive-waits on multiple different
barriers to synchronize shared memory
accesses between threads that would
not have participated in the same
barrier. Using this option may have a
performance impact.

racecheck- yes,no yes Enables check for asynchronous memory

memcpy-async copy operations. For more information,
see Racecheck support for asynchronous
copy.

racecheck-num- {number} 0 Number of CPU worker threads used by

workers the tool. Use 0 for automatic.

racecheck-report hazard,analysis,all | analysis Controls how racecheck reports

information. For more information, see
Racecheck Report Modes.

Table 4 Initcheck tool command line options

Option Values Default Description

check-api-memory- | yes,no yes Enables checking of cudaMemcpy/

access cudaMemset

check-optix N/A disabled Check OptiX kernel launches with
initcheck. For more information, see
OptiX support.

track-unused- N/A disabled Check for unused memory allocations.

memory

unused-memory- {number} 0 Threshold in percentage under which

threshold

unused memory reports are silenced.
The value needs to be a number
between 0 and 100.

Table 5 Synccheck tool command line options

Option

Values

Default

Description

missing-barrier-
init-is-fatal

yes,no

yes

Controls whether a missing
cuda: :barrier initialization will exit
the warp.

www.nvidia.com
Compute Sanitizer

v2024.1.1 19

Compute Sanitizer

2.2. Compilation Options

The Compute Sanitizer tools do not need any special compilation flags to function.

The output displayed by the Compute Sanitizer tools is more useful with some extra
compiler flags. The -G option to nvcc forces the compiler to generate debug information
for the CUDA application. To generate line number information for applications without
affecting the optimization level of the output, the -1ineinfo nvcc option can be used.
The Compute Sanitizer tools fully support both of these options and can display source
attribution of errors for applications compiled with line information.

The stack backtrace feature of the Compute Sanitizer tools is more useful when the
application contains function symbol names. For the host backtrace, this varies based on
the host OS. On Linux, the host compiler must be given the -rdynamic option to retain
function symbols. On Windows, the application must be compiled for debugging, i.e.
the /zi option. When using nvcg, flags to the host compiler can be specified using the -
Xcompiler option. For the device backtrace, the full frame information is only available
when the application is compiled with device debug information. The compiler can skip
generation of frame information when building with optimizations.

Sample command line to build with function symbols and device side line information
on Linux:

nvcc -Xcompiler -rdynamic -lineinfo -o out in.cu

2.3. Environment Variables

The following environment variables can be set before launching the compute-sanitizer
tool.

Table 6 Environment Variables

Name Description Default/Values
NV_COMPUTE_SANITIZER_BINARY_PATSING whether compute- Default if unset: enabled.
sanitizer will instrument user

Valid values: any positive value
kernel code.

between 0 and INT_ MAX.
This option is intended for
debugging and should not be

used by normal users.

NV_COMPUTE_SANITIZER_LOCAL Q¥ HIOthOYERRIREOCal Default: unset (use default

connection mechanism between | mechanism)
frontend and target processes.
The default mechanism is
platform-dependent. This
should only be used if there are
connection problems between

Set to "uds” to use Unix Domain
Socket connections (available

on Posix platforms, only). Set to
"tcp” to use TCP (available on all
platforms). Set to "named-pipes”

www.nvidia.com
Compute Sanitizer v2024.1.1 | 10

Compute Sanitizer

Name

Description

Default/Values

frontend and target processes in
a local launch.

to use Windows Named Pipes
(available on Windows, only).

NV_COMPUTE_SANITIZER_MAX_RA(

Sl e CHSHEBARERPRDmber
of racecheck cluster access
records for early exit race
detection. This option can be
used to either increase the
number of races the tool can
detect, or to suppress early exit
races (0 will display no early exit
race).

Default if unset: 100.

Valid values: any positive value
between 0 and INT_MAX.

NV_COMPUTE_SANITIZER_MAX_RA(

LBl eHAEARBRImUmM number
of racecheck hazards tool will
process. This option can be used
to either increase the number of
races the tool can detect, or to
reduce it and save host memory.

Default if unset: 10,000,000.

Valid values: any positive value
between 0 and INT_ MAX.

NV_COMPUTE_SANITIZER_SHARED |

ABRRERMNGaPEE Rhory

addressing support.

Default if unset: auto.

Set to none to disable shared
addressing support. Set to force
to force shared addressing
support. Set to auto to enable
shared memory addressing
support if system supports HMM
or ATS.

www.nvidia.com
Compute Sanitizer

v2024.1.1 | 11

Chapter 3.
MEMCHECK TOOL

3.1. What is Memcheck?

The memcheck tool is a run time error detection tool for CUDA applications. The tool
can precisely detect and report out of bounds and misaligned memory accesses to
global, local and shared memory in CUDA applications. It can also detect and report
hardware reported error information. In addition, the memcheck tool can detect and
report memory leaks in the user application.

3.2. Supported Error Detection

The errors that can be reported by the memcheck tool are summarized in the table
below. The location column indicates whether the report originates from the host or
from the device. The precision of an error is explained in the paragraph below.

Table 7 Memcheck reported error types

Name Description Location Precision See also
Memory access | Errors due to out of bounds or Device Precise
error misaligned accesses to memory

by a global, local, shared or
global atomic access.

Hardware Errors that are reported by Device Imprecise
exception the hardware error reporting
mechanism.
Malloc/Free Errors that occur due to Device Precise Device Side
errors incorrect use of malloc()/ Allocation
free () in CUDA kernels. Checking
CUDA API Reported when a CUDA API call in | Host Precise CUDA API Error
errors the application returns a failure. Checking
cudaMalloc Allocations of device memory Host Precise Leak Checking

memory leaks | using cudaMalloc () that

www.nvidia.com
Compute Sanitizer v2024.1.1 | 12

Memcheck Tool

Name Description Location Precision See also
have not been freed by the
application.

Device Heap Allocations of device memory Device Imprecise Device Side

Memory Leaks | using malloc () in device code Allocation
that have not been freed by the Checking
application.

The memcheck tool reports two classes of errors precise and imprecise.

Precise errors in memcheck are those that the tool can uniquely identify and gather all
information for. For these errors, memcheck can report the block and thread coordinates
of the thread causing the failure, the program counter (PC) of the instruction performing
the access, as well as the address being accessed and its size and type. If the CUDA
application contains line number information (by either being compiled with device side
debugging information, or with line information), then the tool will also print the source
tile and line number of the erroneous access.

Imprecise errors are errors reported by the hardware error reporting mechanism that
could not be precisely attributed to a particular thread. The precision of the error varies
based on the type of the error and in many cases, memcheck may not be able to attribute
the cause of the error back to the source file and line.

3.3. Using Memcheck

The memcheck tool is enabled by default when running the Compute Sanitizer
application. It can also be explicitly enabled by using the --tool memcheck option.

compute-sanitizer --tool memcheck [sanitizer options] app_name [app_options]

When run in this way, the memcheck tool will look for precise, imprecise, malloc/free
and CUDA API errors. The reporting of device leaks must be explicitly enabled. Errors
identified by the memcheck tool are displayed on the screen after the application has
completed execution. See Understanding Memcheck Errors for more information about
how to interpret the messages printed by the tool.

3.4. Understanding Memcheck Errors

The memcheck tool can produce a variety of different errors. This is a short guide
showing some samples of errors and explaining how the information in each error
report can be interpreted.

1. Memory access error: Memory access errors are generated for errors that the
memcheck tool can correctly attribute and identify the erroneous instruction. Below
is an example of a precise memory access error.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 13

Memcheck Tool

========= Invalid global write of size 4 bytes

B == at unaligned kernel () :0x160 in memcheck demo.cu:6
= == by thread (0,0,0) in block (0,0,0)

I Address 0x7£6510c00001 is misaligned

Let us examine this error line by line:

Invalid global write of size 4 bytes

The first line shows the memory segment, type and size being accessed. The
memory segment is one of:

» _ global__: for device global memory
» _ shared__: for per block shared memory
» _ local__: for per thread local memory

In this case, the access was to device global memory. The next field contains
information about the type of access, whether it was a read or a write. In this case,
the access is a write. Finally, the last item is the size of the access in bytes. In this
example, the access was 4 bytes in size.

at unaligned kernel() :0x160 in memcheck demo.cu:6

The second line contains the CUDA kernel name, offset of the instruction, the source
file and line number (if available). In this example, the instruction causing the access
was at offset 0x160 inside the unaligned kernel CUDA kernel. Additionally,
since the application was compiled with line number information, this instruction
corresponds to line 6 in the memcheck_demo.cu source file.

by thread (0,0,0) in block (0,0,0)

The third line contains the thread indices and block indices of the thread on which
the error was hit. In this example, the thread doing the erroneous access belonged to
the first thread in the first block.

Address 0x7£6510c00001 is misaligned

The fourth line contains the memory address being accessed and the type of access
error. The type of access error can either be out of bounds access or misaligned
access. In this example, the access was to address 0x7£6510c00001 and the access
error was because this address was not aligned correctly.

2. Hardware exception: Imprecise errors are generated for errors that the hardware
reports to the memcheck tool. Hardware exceptions have a variety of formats and
messages. Typically, the first line will provide some information about the type of
error encountered.

3. Malloc/free error: Malloc/free errors refer to the errors in the invocation of device side
malloc () /free () in CUDA kernels. An example of a malloc/free error:

Malloc/Free error encountered : Double free
at 0x79d8
by thread (0,0,0) in block (0,0,0)
Address 0x400aff920

www.nvidia.com
Compute Sanitizer v2024.1.1 | 14

Memcheck Tool

We can examine this line by line.

Malloc/Free error encountered : Double free

The first line indicates that this is a malloc/free error, and contains the type of error.
This type can be:

» Double free — This indicates that the thread called £ree () on an allocation that
has already been freed.

» Invalid pointer to free — This indicates that £ree was called on a pointer that
was not returned by malloc ().

» Heap corruption : This indicates generalized heap corruption, or cases where
the state of the heap was modified in a way that memcheck did not expect.

In this example, the error is due to calling free () on a pointer which had already
been freed.

at 0x79d8

The second line gives the PC on GPU where the error was reported. This PC is
usually inside of system code, and is not interesting to the user. The device frame
backtrace will contain the location in user code where the malloc () /free () call
was made.

by thread (0,0,0) in block (0,0,0)

The third line contains the thread and block indices of the thread that caused this
error. In this example, the thread has threadldx = (0,0,0) and blockIdx = (0,0,0)

Address 0x400aff920

This line contains the value of the pointer passed to free () or returned by
malloc ()

4. Leak errors: Errors are reported for allocations created using cudaMalloc and for
allocations on the device heap that were not freed when the CUDA context was
destroyed. An example of a cudaMalloc allocation leak report is the following;:

========= Leaked 64 bytes at 0x400200200

The error message reports information about the size of the allocation that was
leaked as well as the address of the allocation on the device.

A device heap leak message will be explicitly identified as such:

========= Leaked 16 bytes at 0x4012ffff6 on the device heap

5. CUDA API error: CUDA API errors are reported for CUDA API calls that return an
error value. An example of a CUDA API error:

========= Program hit invalid copy direction for memcpy (error 21) on CUDA
API call to cudaMemcpy.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 15

Memcheck Tool

The message contains the returned value of the CUDA API call, as well as the name
of the API function that was called.

3.5. CUDA API Error Checking

The memcheck tool supports reporting an error if a CUDA API call made by the user
program returned an error. The tool supports this detection for both CUDA run time
and CUDA driver API calls. In all cases, if the API function call has a nonzero return
value, Compute Sanitizer will print an error message containing the name of the API call
that failed and the return value of the API call.

CUDA API error reports do not terminate the application, they merely provide extra
information. It is up to the application to check the return status of CUDA API calls and
handle error conditions appropriately.

The following API errors are not reported:

» cudaErrorNotReady for cudaEventQuery and cudaStreamQuery APIs.
» cudaErrorPeerAccessAlreadyEnabled for cudaDeviceEnablePeerAccess

API.
» cudaErrorPeerAccessNotEnabled for cudaDeviceDisablePeerAccess APl

3.6. Device Side Allocation Checking

The memcheck tool checks accesses to allocations in the device heap.

These allocations are created by calling malloc () inside a kernel. This feature is
implicitly enabled and can be disabled by specifying the --check-device-heap no
option. This feature is only activated for kernels in the application that call malloc ().

The tool will report an error if the application calls a free () twice for the same
allocation, or if it calls free () on an invalid pointer.

Make sure to look at the device side backtrace to find the location in the application
where the malloc() /free () call was made.

3.7. Leak Checking

The memcheck tool can detect leaks of allocated memory.

Memory leaks are device side allocations that have not been freed by the time the
context is destroyed. The memcheck tool tracks device memory allocations created using
the CUDA driver or runtime APIs.

The --1leak-check full option must be specified to enable leak checking.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 16

Memcheck Tool

3.8. Padding

The memcheck tool can automatically add padding to memory allocations in order to
improve out of bounds error detection for global memory.

By default, global memory buffers can be allocated back-to-back in the virtual address
space. When that happens, an overflow access into the first buffer will simply happen in
the second buffer and not be detected as out-of-bounds.

0x2000 - 0x3000 03000 - 0x4000 04000 - 0x5000 0x5000 - 0x6000 0x6000 - 0x7000

Using the --padding option will automatically extend the allocation size, effectively
creating a padding buffer after each allocation. This improves the out of bounds error
detection as accesses to the padding area will always be considered invalid. The example
below displays possible buffer addresses when using --padding 32. Every allocation is
followed by a 32 bytes padding buffer. Writing or reading this buffer will cause an out-
of-bounds access to be reported.

0x2000 - 0x3000 0x3020 - 0x4020 0x4040 - 0x5060 0x5060 - 0x6080 0x6080 - 0x70a0

This option supports allocations created via the cudaMalloc APIs, cudaHostAlloc and
cudaMallocHost.

This option does not support allocations created via cudaHostRegister or the CUDA
virtual memory management APIs.

Be aware that using this option will result in an increased device memory pressure,
potentially causing additional CUDA out of memory errors.

3.9. Stream-ordered race detection

The memcheck tool can detect stream-ordered allocations races using the --track-
stream-ordered-races all option. It will report accesses to stream-ordered
allocations used outside of their lifespan.

The tool is capable of detecting 2 types of races:
» Use-before-alloc races (--track-stream-ordered-races use-before-alloc)

This race occurs when an allocation is used before it is available: an allocation
created using cudaMallocAsync on a stream cannot be used on another stream
without a prior synchronization event after the allocation.

It also includes cases where an allocation is freed before it is available using
cudaFreeAsync.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 17

ptr validity
on stream 1

stream 1

cudaMallocAsync (&ptr, 42,
streaml)

v
v

stream 2

~
kernel<<<..., str>>>(ptr)

Invalid: stream not synchronized
with allocation event

v

Memcheck Tool

- cudaDeviceSynchronize()

v

kernel<<<...>>>(ptr)

ptr validity
on stream 2

» Use-after-free races (--track-stream-ordered-races use-after-free)

This race occurs when an allocation is used after it is freed: an allocation freed using
cudaFreeAsync on a stream cannot be used on another stream without a following

synchroniz

ptr validity
on stream 1

ation event before the free.

www.nvidia.com
Compute Sanitizer

stream 1 } stream 2
\
kernel<<<...>>>(ptr)
ptr validity
‘ J on stream 2
k- cudaDeviceSynchronize()
kernel<<<...>>>(ptr)
¢ Invalid: stream not synchronized
with deallocation event
cudaFreeAsync(ptr, ~
streaml) =
v2024.1.1 | 18

Chapter 4.
RACECHECK TOOL

4.1. What is Racecheck?

The racecheck tool is a run time shared memory data access hazard detector. The primary
use of this tool is to help identify memory access race conditions in CUDA applications
that use shared memory.

In CUDA applications, storage declared with the __shared _ qualifier is placed on chip
shared memory. All threads in a thread block can access this per block shared memory.
Shared memory goes out of scope when the thread block completes execution. As
shared memory is on chip, it is frequently used for inter-thread communication and

as a temporary buffer to hold data being processed. As this data is being accessed by
multiple threads in parallel, incorrect program assumptions may result in data races.
Racecheck is a tool built to identify these hazards and help users write programs free of
shared memory races.

Currently, this tool only supports detecting accesses to on-chip shared memory.

4.2. What are Hazards?

A data access hazard is a case where two threads attempt to access the same location
in memory resulting in non-deterministic behavior, based on the relative order of the
two accesses. These hazards cause data races where the behavior or the output of the
application depends on the order in which all parallel threads are executed by the
hardware. Race conditions manifest as intermittent application failures or as failures
when attempting to run a working application on a different GPU.

The racecheck tool identifies three types of canonical hazards in a program. These are :
» Write-After-Write (WAW) hazards

This hazard occurs when two threads attempt to write data to the same memory
location. The resulting value in that location depends on the relative order of the two
accesses.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 19

Racecheck Tool

» Write-After-Read (WAR) hazards

This hazard occurs when two threads access the same memory location, with one
thread performing a read and another a write. In this case, the writing thread is
ordered before the reading thread and the value returned to the reading thread is
not the original value at the memory location.

» Read-After-Write (RAW) hazards

This hazard occurs when two threads access the same memory location, with one
thread performing a read and the other a write. In this case, the reading thread reads
the value before the writing thread commits it.

4.3. Using Racecheck

The racecheck tool is enabled by running the Compute Sanitizer application with the --
tool racecheck option.

compute-sanitizer --tool racecheck [sanitizer options] app name [app options]

Once racecheck has identified a hazard, the user can make program modifications to
ensure this hazard is no longer present. In the case of Write-After-Write hazards, the
program should be modified so that multiple writes are not happening to the same
location. In the case of Read-After-Write and Write-After-Read hazards, the reading and
writing locations should be deterministically ordered. In CUDA kernels, this can be
achieved by inserting a __syncthreads () call between the two accesses. To avoid races
between threads within a single warp, __syncwarp () can be used.

The racecheck tool does not perform any memory access error checking. It is
recommended that users first run the memcheck tool to ensure the application is free
of errors.

4.4, Racecheck Report Modes

The racecheck tool can produce two types of output:
» Hazard reports

These reports contain detailed information about one particular hazard. Each
hazard report is byte accurate and represents information about conflicting accesses
between two threads that affect this byte of shared memory.

> Analysis reports

These reports contain a post analysis set of reports. These reports are produced by
the racecheck tool by analysing multiple hazard reports and examining active device
state. For example usage of analysis reports, see Understanding Racecheck Analysis
Reports.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 20

Racecheck Tool

4.5. Understanding Racecheck Analysis Reports

In analysis reports, the racecheck tool produces a series of high-level messages that
identify the source locations of a particular race, based on observed hazards and other
machine state.

A sample racecheck analysis report is below:

========= WARNING: Race reported between Write access at RAW()+0xf0 in
raceGroupBasic.cu:40
========= and Read access at RAW()+0x280 in raceGroupBasic:46 [4 hazards]

The analysis record contains high-level information about the hazard that is conveyed to
the end user. Each line contains information about a unique location in the application
which is participating in the race.

The first word on the first line indicates the severity of this report. In this case, the
message is at the WARNING level of severity. For more information on the different
severity levels, see Racecheck Severity Levels. Analysis reports are composed of one or
more racecheck hazards, and the severity level of the report is that of the hazard with the
highest severity.

The first line additionally contains the type of access. The access can be either:

» Read
» Write

The next item on the line is the name of the kernel issuing the access and the offset of
the location where the access happened from. In this case, the offset is 0xf0 in the RAW()
kernel. If the application was compiled with line number information, this line also
contains the file name and line number of the access.

The next lines contain the location of the other offsets participating in the race condition.
In this case, there is only one other location which is the RAW() kernel at offset 0x280.
Similarly to the first line, file name and line number are printed if the application was
compiled with line number information. Finally, the line also contains the number of
hazards detected for this specific race condition.

A given analysis report will always contain at least one line which is performing a
write access. A common strategy to eliminate races which contain only write accesses
is to ensure that the write access is performed by only one thread. In the case of races
with multiple readers and one writer, introducing explicit program ordering via a
__syncthreads () call can avoid the race condition. For races between threads within
the same warp, the __syncwarp () intrinsic can be used to avoid the hazard.

4.6. Understanding Racecheck Hazard Reports

In hazard reporting mode, the racecheck tool produces a series of messages detailing
information about hazards in the application. The tool is byte accurate and produces a

www.nvidia.com
Compute Sanitizer v2024.1.1 | 21

Racecheck Tool

message for each byte on which a hazard was detected. Additionally, when enabled, the
host backtrace for the launch of the kernel will also be displayed.

A sample racecheck hazard is below:

========= ERROR: Potential WAW hazard detected at _ shared 0x0 in block

Write Thread (0,0,0) at WAW()+0x2f0 in raceWAW.cu:20
Write Thread (1,0,0) at WAW()+0x2f0 in raceWAW.cu:20
Current Value : 1, Incoming Value : 2

The hazard records are dense and capture a lot of interesting information. In general
terms, the first line contains information about the hazard severity, type and address, as
well as information about the thread block where it occurred. The next 2 lines contain
detailed information about the two threads that were in contention. These two lines are
ordered chronologically, so the first entry is for the access that occurred earlier and the
second for the access that occurred later. The final line is printed for some hazard types
and captures the actual data that was being written.

Examining this line by line, we have :

ERROR: Potential WAW hazard detected at shared 0x0 in block (0, 0, 0)

The first word on this line indicates the severity of this hazard. In this case, the message
is at the ERROR level of severity. For more information on the different severity levels,
see Racecheck Severity Levels.

The next piece of information here is the type of hazard. The racecheck tool detects three
types of hazards:

» WAW or Write-After-Write hazards
» WAR or Write-After-Read hazards
» RAW or Read-After-Write hazards

The type of hazard indicates the accesses types of the two threads that were in
contention. In this example, the hazard is of Write-After-Write type.

The next piece of information is the address in shared memory that was being accessed.
This is the offset in per block shared memory that was being accessed by both threads.
Since the racecheck tool is byte accurate, the message is only for the byte of memory at
given address. In this example, the byte being accessed is byte 0x0 in shared memory.

Finally, the first line contains the block index of the thread block to which the two racing
threads belong.

The second line contains information about the first thread to write to this location.

Write Thread (0, 0, 0) at WAW()+0x2f0 in raceWAW.cu:20 (void)

The first item on this line indicates the type of access being performed by this thread

to the shared memory address. In this example, the thread was writing to the location.
The next component is the index of the thread block. In this case, the thread is at index
(0,0,0). Following this, we have the name of the kernel and byte offset of the instruction
which did the access in the kernel. In this example, the offset is 0x2{0. This is followed by
the source file and line number (if line number information is available).

www.nvidia.com
Compute Sanitizer v2024.1.1 | 22

Racecheck Tool

The third line contains similar information about the second thread that was causing this
hazard. This line has an identical format to the previous line.

The fourth line contains information about the data in the two accesses.

Current Value : 1, Incoming Value : 2

If the second thread in the hazard was performing a write access, i.e., the hazard is a
Write-After-Write (WAW) or a Write-After-Read (WAR), this line contains the value after
the access by the first thread as the Current Value and the value that will be written by the
second access as the Incoming Value. In this case, the first thread wrote the value 1 to the
shared memory location. The second thread is attempting to write the value 2.

4.7. Racecheck Severity Levels

Problems reported by racecheck can be of different severity levels. Depending on the
level, different actions are required from developers. By default, only issues of severity
level WARNING and ERROR are shown. The command line option --print-level can
be used to set the lowest severity level that should be reported.

Racecheck reports have one of the following severity levels:

» INFO: The lowest level of severity. This is for hazards that have no impact on
program execution and hence are not contributing to data access hazards. It is still a
good idea to find and eliminate such hazards.

» WARNING: Hazards at this level of severity are determined to be programming
model hazards, however may be intentionally created by the programmer.

An example of this are hazards due to warp level programming that make the
assumption that threads are proceeding in groups. Such hazards are typically only
encountered by advanced programmers. In cases where a beginner programmer
encounters such errors, he should treat them as sources of hazards.

Starting with the Volta architecture, programmers cannot rely anymore on the
assumption that threads within a warp execute in lock-step unconditionally.
As a result, warnings due to warp-synchronous programming without explicit
synchronization must be fixed when developing or porting applications from earlier
architectures to Volta and above. Developers can use the __syncwarp () intrinsic or
the Cooperative Groups API.

» ERROR: The highest level of severity. This corresponds to hazards that are very
likely candidates for causing data access races. Programmers would be well advised
to examine errors at this level of severity.

4.8. Racecheck support for cuda: :barrier

Racecheck supports synchronization through cuda: :barrier on Ampere GPUs and
newer.

The number of barriers tracked by the tool is based on the number of barriers present in
the source code as reported by compiler information. In some cases, the compiler may

www.nvidia.com
Compute Sanitizer v2024.1.1 | 23

Racecheck Tool

undercount this number. Racecheck will report the following warning if more barriers
are used than expected:

========= Warning: Detected overflow of tracked cuda::barrier structures.
Results might be incorrect. Try using --num-cuda-barriers to fix the issue

The --num-cuda-barriers option can be used to indicate the number of expected
barriers in the source code and workaround this issue.

4.9. Racecheck support for asynchronous copy

Racecheck supports race detection on shared memory for asynchronous memory

copy operations from global to shared memory introduced in compute capability 8.0.
These can take the form of CUDA C++ cuda: :memcpy_async or the PTX cp.asynec.
Specifically, racecheck is able to detect when the target of a asynchronous copy tracked
by a pipeline (CUDA C++) or async-group (PTX) was accessed before the required
commit/wait to guarantee its completion. In these cases, individual hazards when using
--racecheck-report hazard will bear the mention (invalid memcpy async
synchronization). These checks can be disabled by using --racecheck-memcpy-
async no.

4.10. Racecheck cluster entry and exit race
detection

Racecheck supports race detection on remote shared memory accesses without
appropriate cluster-wide synchronization. When a kernel makes a remote shared
memory access from one block to another (in the same cluster), it needs to guarantee that
the target block exists, otherwise error cudaErrorLaunchFailure is raised. One way

to achieve this is using cluster.sync() from the Cluster Group API. Refer to the CUDA
documentation about distributed shared memory for more information.

When running a program under Racecheck, instead of failing, the tool will report these
two types of illegal accesses:

1. Late entry race detection: a block is trying to access shared memory from
another block in the cluster without an appropriate cluster-wide synchronization
beforehand.

2. Early exit race detection: a block is trying to access shared memory from another
block in the cluster without an appropriate cluster-wide synchronization before the
target block exits.

A sample report for both races is below:

www.nvidia.com
Compute Sanitizer v2024.1.1 | 24

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cluster-group
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#distributed-shared-memory
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#distributed-shared-memory

Racecheck Tool

Potential invalid _ shared read of size 4 bytes

at RemoteAccess (int *, int)+0x170 in RaceCluster.cu:10

by thread (0,0,0) in block (0,0,0)

Address 0x1000400 is located in a block that might not have

== Potential invalid _ shared read of size 4 bytes

at RemoteAccess (int *, int)+0x170 in RaceCluster.cu:10

by thread (0,0,0) in block (0,0,0)

Address 0x1000400 is located in a block that might have already

www.nvidia.com
Compute Sanitizer v2024.1.1 | 25

Chapter 5.
INITCHECK TOOL

5.1. What is Initcheck?

The initcheck tool is a run time uninitialized device global memory access detector. This
tool can identify when device global memory is accessed without it being initialized via
device side writes, or via CUDA memcpy and memset API calls.

Currently, this tool only supports detecting accesses to device global memory.

5.2. Using Initcheck

The initcheck tool is enabled by running the Compute Sanitizer application with the --
tool initcheck option.

compute-sanitizer --tool initcheck [sanitizer options] app name [app_options]

The initcheck tool does not perform any memory access error checking. It is
recommended that users first run the memcheck tool to ensure the application is free
of errors.

5.3. Unused memory detection

The initcheck tool can also be used to detect unused memory by using the --track-
unused-memory option.

compute-sanitizer --tool initcheck --track-unused-memory yes app_name
[app_options]

A sample unused memory report is below:

www.nvidia.com
Compute Sanitizer v2024.1.1 | 26

Initcheck Tool

Unused memory in allocation 0x7£fed9f400000 of size 100 bytes
Not written 80 bytes at offset 0x14 (0x7£fed9f400014)
80% of allocation were unused.

This report contains the address and size of the allocation, the number of bytes not used
and their location. The location can be a range if all unused bytes are not contiguous.

The behavior for this feature can be adjusted with the --unused-memory-threshold
option which takes the minimum percentage at which reports should be printed. For
instance, using a value of 81 or above would silence the sample report above.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 27

Chapter 6.
SYNCCHECK TOOL

6.1. What is Synccheck?

The synccheck tool is a runtime tool that can identify whether a CUDA application
is correctly using synchronization primitives, specifically __syncthreads () and
__syncwarp () intrinsics and their Cooperative Groups API counterparts.

6.2. Using Synccheck

The synccheck tool is enabled by running the Compute Sanitizer application with the --
tool synccheck option.

compute-sanitizer --tool synccheck [sanitizer options] app name [app options]

The synccheck tool does not perform any memory access error checking. It is
recommended that users first run the memcheck tool to ensure the application is free
of errors.

6.3. Understanding Synccheck Reports

For each violation, the synccheck tool produces a report message that identifies the
source location of the violation and its classification.

A sample synccheck report is below:
========= Barrier error detected. Divergent thread(s) in warp

========= at ThreadDivergence (int *, int)+0xf0 in divergence.cu:79
========= by thread (37,0,0) in block (0,0,0)

www.nvidia.com
Compute Sanitizer v2024.1.1 | 28

Synccheck Tool

Each report starts with "Barrier error detected.” In most cases, this is followed by a
classification of the detected barrier error. In this message, a CUDA block with divergent
threads was found. The following error classes can be reported:

> Divergent thread(s) in block: Divergence between threads within a block was detected
for a barrier that does not support this on the current architecture. For example, this
occurs when __syncthreads () is used within conditional code but the conditional
does not evaluate equally across all threads in the block.

» Divergent thread(s) in warp: Divergence between threads within a single warp was
detected for a barrier that does not support this on the current architecture.

> Invalid arquments: A barrier instruction or primitive was used with invalid
arguments. This can occur for example if not all threads reaching a __syncwarp ()
declare themselves in the mask parameter. However, synccheck will not detect cases
where not all the threads declared in the mask parameter reach the __syncwarp ().

The next line states the offset within the function of the location where the access
happened. In this case, the offset is 0xf0. If the application was compiled with line
number information, this line would also contain the file name and line number of the
access, followed by the name of the kernel issuing the access.

The third line contains information on the thread and block for which this violation was
detected. In this case, it is thread 37 in block 0.

6.4. Synccheck support for cuda: :barrier

Synccheck supports synchronization through cuda: :barrier on Ampere GPUs and
newer.

The number of barriers tracked by the tool is based on the number of barriers present in
the source code as reported by compiler information. In some cases, the compiler may
undercount this number. Synccheck will report the following warning if more barriers
are used than expected:

========= Warning: Detected overflow of tracked cuda::barrier structures.
Results might be incorrect. Try using --num-cuda-barriers to fix the issue

The --num-cuda-barriers option can be used to indicate the number of expected
barriers in the source code and workaround this issue.

6.5. Synccheck support for wgmma

Synccheck supports additional checks related to PTX wgmma instructions for Hopper
sm_90a architecture.

wgmma instructions are executed across a warpgroup. Each warp in the warpgroup

are expected to execute the same wgmma instructions in the same order with the same
predicates, with all threads active or none. Synccheck can detect and report cases where
these rules are not respected, and will exit the entire warpgroup when detected. In such
cases, the report will start with "Warpgroup MMA sequence error detected" instead of

www.nvidia.com
Compute Sanitizer v2024.1.1 | 29

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-instructions-warpgroup

Synccheck Tool

"Barrier error detected", followed by a description of the specific error encountered. The
error is reported once per warp encountering the error.

The --check-warpgroup-mma option can be used to enable or disable these checks.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 30

Chapter 7.
COMPUTE SANITIZER FEATURES

7.1. Nonblocking Mode

By default, the standalone Compute Sanitizer tool will launch kernels in nonblocking
mode. This allows the tool to support error reporting in applications running concurrent
kernels

To force kernels to execute serially, a user can use the --force-blocking-launches
yes option. One side effect is that when in blocking mode, only the first thread

to hit an error in a kernel will be reported. Also, using this option or --force-
synchronization-1imit will disable CUDA reduced API serialization.

7.2. Stack Backtraces

Compute Sanitizer can generate backtraces when given --show-backtrace option.
Backtraces usually consist of two sections — a saved host backtrace that leads up to the
CUDA driver call site, and a device backtrace at the time of the error. Each backtrace
contains a list of frames showing the state of the stack at the time the backtrace was
created.

To get function names in the host backtraces, the user application must be built with
support for symbol information in the host application. For more information, see
Compilation Options

Backtraces are printed for most Compute Sanitizer tool outputs, and the information
generated varies depending on the type of output. The table below explains the kind of
host and device backtrace seen under different conditions.

Table 8 Compute Sanitizer Stack Backtrace Information

Output Type Host Backtrace Device Backtrace

Memory access error Kernel launch on host Precise backtrace on device

www.nvidia.com
Compute Sanitizer v2024.1.1 | 31

Compute Sanitizer Features

Output Type Host Backtrace Device Backtrace
Hardware exception Kernel launch on host Imprecise backtrace on device !
Malloc/Free error Kernel launch on host Precise backtrace on device
cudaMalloc allocation Callsite of cudaMalloc N/A

leak

CUDA API error Callsite of CUDA API call N/A

Compute Sanitizer Callsite leading to internal error N/A

internal error

Device heap allocation N/A N/A

leak

Shared memory hazard | Kernel launch on host N/A

Note that for OptiX applications, the name of OptiX internal device functions will be
displayed as "NVIDIA Internal".

7.3. Name Demangling

The Compute Sanitizer suite supports displaying mangled and demangled names

for CUDA kernels and CUDA device functions. By default, tools display the fully
demangled name, which contains the name of the kernel as well as its prototype
information. In the simple demangle mode, the tools will only display the first part of
the name. If demangling is disabled, tools will display the complete mangled name of
the kernel.

7.4. Dynamic Parallelism

The Compute Sanitizer tool suite supports dynamic parallelism. The memcheck

tool supports precise error reporting of out of bounds and misaligned accesses on
global, local and shared memory accesses, as well as on global atomic instructions for
applications using dynamic parallelism. In addition, the imprecise hardware exception
reporting mechanism is also fully supported. Error detection on applications using
dynamic parallelism requires significantly more memory on the device; as a result, in
memory constrained environments, memcheck may fail to initialize with an internal out
of memory error.

For limitations, see the known limitations in the Release Notes section.

7.5. Error Actions

When encountering an error, Compute Sanitizer behavior depends on the type of error.
The default behavior of Compute Sanitizer is to continue execution on purely host side
errors. Hardware exceptions detected by the memcheck tool cause the CUDA context to

' In some cases, there may be no device backtrace

www.nvidia.com
Compute Sanitizer v2024.1.1 | 32

Compute Sanitizer Features

be destroyed. Precise errors (such as memory access and malloc/free errors) detected by
the memcheck tool cause the kernel to be terminated. This terminates the kernel without
running any subsequent instructions and the application continues launching other
kernels in the CUDA context. The handling of memory access and malloc/free errors
detected by the memcheck tool can be changed using the --destroy-on-device-
error option.

The --destroy-on-device-error kernel option is not supported on Maxwell
GPUs.

For racecheck detected hazards, the hazard is reported, but execution is not affected.

For a full summary of error action, based on the type of the error see the table below. The
error action terminate kernel refers to the cases where the kernel is terminated early, and
no subsequent instructions are run. In such cases, the CUDA context is not destroyed
and other kernels continue execution and CUDA API calls can still be made.

When kernel execution is terminated early, the application may not have completed
its computations on data. Any subsequent kernels that depend on this data will have
undefined behavior.

The action terminate CUDA context refers to the cases where the CUDA context is
forcibly terminated. In such cases, all outstanding work for the context is terminated
and subsequent CUDA API calls will fail. The action continue application refers to cases
where the application execution is not impacted, and the kernel continues executing
instructions.

Table 9 Compute Sanitizer Error Actions

Error Type Location Action Comments
Memory access error Device Terminate CUDA User can choose to instead
context terminate the kernel
Hardware exception Device Terminate CUDA Subsequent calls on the CUDA
context context will fail
Malloc/Free error Device Terminate CUDA User can choose to instead
context terminate the kernel
cudaMalloc allocation leak Host Continue application | Error reported. No other
action taken.
CUDA API error Host Continue application | Error reported. No other
action taken.
Device heap allocation leak Device Continue application Error reported. No other
action taken.
Shared memory hazard Device Continue application Error reported. No other
action taken.
Synchronization error Device Terminate CUDA User can choose to instead
context terminate the kernel
Compute Sanitizer internal Host Undefined The application may behave in
error an undefined fashion

www.nvidia.com
Compute Sanitizer v2024.1.1 | 33

Compute Sanitizer Features

7.6. Escape Sequences

The --save and --1log-file options to Compute Sanitizer accept the following escape
sequences in the file name.

» %% : Replaced with a literal %.

» %p: Replaced with the PID of the Compute Sanitizer frontend application.

» %q{ENVVAR} : Replaced with the contents of the environment variable ENVVAR. If the
variable does not exist, this is replaced with an empty string.

» Any other character following the % causes an error.

7.7. Specifying Filters

Compute Sanitizer tools support filtering the choice of kernels which should be checked.
When a filter is specified, only kernels matching the filter will be checked. Filters are
specified using the --kernel-name and --kernel-name-exclude options. By default,
the Compute Sanitizer tools will check all kernels in the application.

The --kernel-name and --kernel-name-exclude options can be specified multiple
times. If a kernel satisfies any filter, it will be checked by the running the Compute
Sanitizer tool.

The --kernel-name and --kernel-name-exclude options take a filter specification
consisting of a list of comma separated key value pairs, specified as key=value. When
using the regex filter key, multiple key value pairs need to be specified through multiple
use of the option instead. In order for a filter to be matched, all components of the filter
specification must be satisfied. If a filter is incorrectly specified in any component, the
entire filter is ignored. For a full summary of valid key values, see the table below. If a
key has multiple strings, any of the strings can be used to specify that filter component.

Table 10 Compute Sanitizer Filter Keys

Name Key String Value Comments

Kernel Name kernel_name, kne Complete mangled kernel User specifies the complete
name mangled kernel name.

Kernel Substring kernel_substring, Any substring in mangled User specifies a substring in

kns kernel name the mangled kernel name.

Regex regex Any regex that can be User specifies a regular
matched in a substring of expression searched in the
the mangled kernel name mangled kernel name.

When using the kernel-name filters, the Compute Sanitizer tools will check all device
function calls made by the kernel. When using CUDA Dynamic Parallelism (CDP), the
Compute Sanitizer tools will not check child kernels launched from a checked kernel
unless the child kernel matches a filter. If a GPU launched kernel that does not match a
filter calls a device function that is reachable from a kernel that does match a filter, the

www.nvidia.com
Compute Sanitizer v2024.1.1 | 34

Compute Sanitizer Features

device function behaves as though it was checked. In the case of some tools, this can
result in undefined behavior.

Filter usage example

We consider an application that launches three different kernels declared below.

~_global void gamma (int *bufer) ;
__global void delta(int *bufer);
__global void epsilon(int *bufer);

Their respective mangled names are _Z5gammaPi, Z5deltaPi and _Z7epsilonPi.
We only want to check the launches of the kernel epsilon. Here are different means to
achieve it:

> compute-sanitizer --kernel-name kne= Z7epsilonPi Only epsilon is
matching the specified filter, so only kernel launches of epsilon will be checked.

> compute-sanitizer --kernel-name kns=epsilon Since "epsilon"is a substring
of "_Z7epsilonPi", and also happens to be the only kernel having this substring in its
mangled name, only epsilon will be matched and checked.

» compute-sanitizer --kernel-name-exclude kns=delta,kne=_Z5gammaPi
This time, we are using the exclude options. Only epsilon is not matched by the
exclude option in this scenario, which means it will be the only one checked. We
specified multiple filter separating them with a comma: this can be used with both
kernel-name and kernel-name-exclude.

» compute-sanitizer --kernel-name-exclude kns=delta --kernel-name-
exclude kne=_ Z5gammaPi Same as above, except we used the exclude option
twice to specify multiple filters instead of specifying them all at once. If needed,
kernel-name and kernel-name-exclude can be used at the same time.

» compute-sanitizer --kernel-name regex='[a-z]{7}' For this example we
are using the regex filter. It matches any kernel for which the regular expression can
be matched anywhere inside the mangle named. The specified regex matches any 7
consecutive lowercase letter. Only _Z7epsilonPi has 7 consecutive lowercase letter,
and therefore is the only kernel matched by --kernel-name.

7.8. Coredump support

Starting from CUDA 11.6, the compute-sanitizer tool can generate a CUDA coredump
once an error is detected by using the --generate-coredump yes option. Once the
coredump is generated, the target application will abort.

The coredump file can be loaded in cuda-gdb using the following option:

(cuda-gdb) target cudacore core.name.nvcudmp

See the cuda-gdb documentation for more information.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 35

https://docs.nvidia.com/cuda/cuda-gdb/index.html#gpu-core-dump-support

Compute Sanitizer Features

The --coredump-name option can be used to specify the file name of the coredump. See
the "Naming of GPU core dump files" section of the cuda-gdb documentation for more
information on template specifiers and default name.

The coredump feature has the following restrictions:

Only threads that encountered an error can be inspected in the generated coredump
Maxwell GPUs are not supported

The racecheck tool is not supported.

Coredumps are not supported on WSL2.

vV v v VY

7.9. Error suppression

The compute-sanitizer tools can sometimes generate false positive reports. In these cases,
a suppression file can be provided as input to the tool to suppress the reporting of these
false positives.

A suppression file can be generated by using the --xm1 option of the compute-sanitizer
tool on the target application. Once generated, the XML file can be edited manually to be
more generic.

On subsequent use of the tools, the suppression file can be provided as input using the
--suppressions option.

The following rules are applied when checking if a detected report should be
suppressed:

The types of the report must match.
If provided in the suppression file, integer fields must match exactly.
If provided in the suppression file, a string field can be a regex.

When comparing stack traces, the suppression trace needs to have the same number
of frames or less than the report one.

vV v v VY

» Stack frame comparisons include the following fields (if provided in the
suppression): function name, file name and module name.

The following types of error can be suppressed:

» CUDA API errors
» Initcheck uninitialized memory accesses
» Racecheck analysis reports

7.10. OptiX support

Starting from CUDA 11.6, the compute-sanitizer tool support OptiX 7 applications
with memcheck and initcheck. The option --check-optix yes needs

to be set for optix launches to be tracked with initcheck. To get full device
backtrace information, please make sure your OptiX modules are compiled

with OPTIX COMPILE DEBUG_LEVEL FULL set in the debugLevel field in the
OptixModuleCompileOptions structure.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 36

https://docs.nvidia.com/cuda/cuda-gdb/index.html#gpu-core-dump-support

Compute Sanitizer Features

When using compute-sanitizer on OptiX applciations, it is possible that some or all
device frames are located in OptiX internal code. Such frames have their name displayed
as NVIDIA Internal. See the example below of an error reported in user code called
from an internal OptiX function:

========= Invalid global write of size 1 bytes

========= at _ raygen placeholder 0x67b9a77bb7822a34+0x19b0 in /home/cuda/

optixApp.cu:70

========= by thread (0,0,0) in block (0,0,0)

Address 0x7£91edf00403 is out of bounds

and is 262,132 bytes after the nearest allocation at
0x7f91edec0400 of size 16 bytes

========= Device Frame:NVIDIA Internal [0x520]

========= Saved host backtrace up to driver entry point at kernel launch

Starting from CUDA 11.7, it is possible to detect leaks of OptixModule,
optixPipeline, optixProgramGroup and optixDenoiser with compute-sanitizer.
This requires using the --check-optix-leaks yes option. Leaks will only reported if
the OptixDeviceContext is destroyed with a call to OptixDeviceContextDestroy.
OptixDeviceContext that are leaking will have their associated CUDA buffers
reported with a regular use of --leak-check full. See the example below of an
optixProgramGroup that was not destroyed being reported:

Leaked an OptixProgramGroup with handle 0x55dbffbd9840
Saved host backtrace up to driver entry point at allocation time

The following feature set is supported per OptiX API version:

OptiX API Version Kernel checks Resource leak check
7.0-8.0 Yes Yes

www.nvidia.com
Compute Sanitizer v2024.1.1 | 37

Chapter 8.
USAGE GUIDE

8.1. Memory Footprint

Compute Sanitizer tools can have a large memory footprint due to their tracking data.
This can cause out of memory errors on applications performing a large number of
concurrent kernel launches.

========= Internal Sanitizer Error: The Sanitizer encountered an error while
launching kernel name and didn't track the launch. Errors might go undetected.
(Unable to allocate enough memory to perform the requested operation)

The tools might also cause a failure to allocate host memory causing the application to
crash.

========= Error: process didn't terminate successfully
========= Target application returned an error

This issue can be resolved using one of the following command line options:

» --force-synchronization-limit {number} forces a stream synchronization
after a stream reaches the given number of launches without synchronizing.
» --force-blocking-launches yes forces the serialization of of every kernel

launch. This option is equivalent to --force-synchronization-limit 1.

Using CUDA lazy module loading will also help lower the memory footprint of the
tools, both for host and device memory.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 38

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading

Chapter 9.
OPERATING SYSTEM SPECIFIC BEHAVIOR

This section describes operating system specific behavior.

9.1. Windows Specific Behavior

» Timeout Detection and Recovery (TDR)

On Windows, GPUs have a timeout associated with them. GPU applications that
take longer than the threshold (default of 2 seconds) will be killed by the operating
system. Since the Compute Sanitizer tools increase the runtime of kernels, it is
possible for a CUDA kernel to exceed the timeout and therefore be terminated due
to the TDR mechanism.

For the purposes of debugging, the number of seconds before which the timeout is
hit can be modified by setting the timeout value in seconds in the DWORD registry
key TdrDelay at:

HKEY LOCAL MACHINE\System\CurrentControlSet\Control\GraphicsDrivers

More information about the registry keys to control the Timeout Detection and
Recovery mechanism is available from MSDN at http://msdn.microsoft.com/en-us/
library/windows/hardware/{f569918%28v=vs.85%29.aspx.

9.2. Using the Compute Sanitizer on Jetson and
Tegra devices

By default, on Jetson and Drive Tegra devices, GPU debugging is supported only if
compute-sanitizer is launched by a user who is a member of the debug group.

To add the current user to the debug group run this command:

sudo usermod -a -G debug $USER

www.nvidia.com
Compute Sanitizer v2024.1.1 | 39

http://msdn.microsoft.com/en-us/library/windows/hardware/ff569918%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff569918%28v=vs.85%29.aspx

Chapter 10.
CUDA FORTRAN SUPPORT

This section describes support for CUDA Fortran.

10.1. CUDA Fortran Specific Behavior

» By default, error reports printed by Compute Sanitizer contain 0-based C style
values for thread index (threadldx) and block index (blockldx). For Compute
Sanitizer tools to use Fortran style 1-based offsets, use the --language fortran
option.

» The CUDA Fortran compiler may insert extra padding in shared memory. Accesses
hitting this extra padding may not be reported as an error.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 40

Chapter 11.
COMPUTE SANITIZER TOOL EXAMPLES

11.1. Example Use of Memcheck

This section presents a walk-through of running the memcheck tool from Compute
Sanitizer on a simple application called memcheck_demo.

n Depending on the SM type of your GPU, your system output may vary.

The application can be found on the compute-sanitizer github repository

This application can be compiled using the provided Makefile:

make

11.1.1. memcheck_demo Output

When a CUDA application causes access violations, the kernel launch may report
an illegal memory access or misaligned address. Sticky errors will be reported for all
subsequent kernel launches.

This sample application is causing two failures but there is no way to detect where
the misaligned address access is caused. The second kernel is also not able to run, as
illustrated in the following output:

$./memcheck demo

Mallocing memory

Running unaligned kernel: misaligned address
Running out of bounds kernel: misaligned address

11.1.2. memcheck_demo Output with Memcheck
(Release Build)

In this case, since the application is built in release mode, the Compute Sanitizer
output contains only the kernel names from the application causing the access

www.nvidia.com
Compute Sanitizer v2024.1.1 | 41

https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Memcheck

Compute Sanitizer Tool Examples

violation. Though the kernel name and error type are detected, there is no line number
information on the failing kernel. Also included in the output are the host and device
backtraces for the call sites where the functions were launched

Now run this application with Compute Sanitizer and check the output. By default, the
application will run so that the kernel is terminated on memory access errors, but other
work in the CUDA context can still proceed.

In the output below, the first kernel no longer reports an unspecified launch failure as
its execution has been terminated early after Compute Sanitizer detected the error. The
application continued to run the second kernel. The error detected in the second kernel
causes it to terminate early.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 42

Compute Sanitizer Tool Examples

$ make run_memcheck
/usr/local/cuda/compute-sanitizer/compute-sanitizer --destroy-on-device-error
kernel memcheck demo
========= COMPUTE-SANITIZER
Mallocing memory
Invalid global write of size 4 bytes
at unaligned kernel ()+0x70
by thread (0,0,0) in block (0,0,0)
Address 0x7£671ac00001 is misaligned
and is inside the nearest allocation at 0x7fb654c00000 of size 4

Saved host backtrace up to driver entry point at kernel launch

Host Frame: [0x2774ec]
in /1ib/x86 64-linux-gnu/libcuda.so.1l
Host Frame: cudart803 [Oxfccb]

in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:cudalaunchKernel [0x6a578]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
========= Host Frame:cudaError cudalaunchKernel<char> (char const*, dim3,

dim3, void**, unsigned long, CUstream st*) [0xb535]
========= in /home/cuda/github/compute-sanitizer-samples/
Memcheck/memcheck demo
S=======x= Host Frame: device stub Zlé6unaligned kernelv () [0xb22e]
========= in /home/cuda/github/compute-sanitizer-samples/
Memcheck/memcheck demo
Host Frame:unaligned kernel () [0xb28c]

in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:run unaligned() [0xaf55]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:main [0xb0Oe2]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo

========= Host Frame:../sysdeps/nptl/

libc start call main.h:58: 1libc start call main [0x2dfd0]
in /1ib/x86 64-linux-gnu/libc.so.6

Host Frame:../csu/libc-start.c:379: 1libc start main [0x2e07d]
in /1ib/x86 64-linux-gnu/libc.so.6

Host Frame: start [Oxada5]

in /home/cuda/github/compute-sanitizer-samples/

Running unaligned kernel: no error
Invalid global write of size 4 bytes

at out of bounds kernel () +0x90

by thread (0,0,0) in block (0,0,0)

and is 140,418,624,437,472 bytes before the nearest allocation at
0x7fb649a00000 of size 1,024 bytes

========= Saved host backtrace up to driver entry point at kernel launch

Host Frame: [0x2774ec]
in /1ib/x86 64-linux-gnu/libcuda.so.1l
Host Frame: cudart803 [Oxfccb]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:cudalaunchKernel [0x6a578]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
========= Host Frame:cudaError cudalLaunchKernel<char>(char const*, dim3,
dim3, void**, unsigned long, CUstream st*) [0xDb535]
========= in /home/cuda/github/compute-sanitizer-samples/
Memcheck/memcheck demo
Host Frame: device stub Z20out of bounds kernelv () [Oxb34e]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:out of bounds kernel () [Oxb3ac]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:run out of bounds () [0xb037]
in /home/cuda/github/compute-sanitizer-samples/

LV R P D SR T D, R

Compute Sanitizer Tool Examples

11.1.3. memcheck_demo Output with Memcheck (Debug
Build)

The application can be built with device side debug information and function symbols

as:

make dbg=1

The source location of the error is now reported in the compute-sanitizer output:

www.nvidia.com

Compute Sanitizer v2024.1.1 | 44

Compute Sanitizer Tool Examples

$ make run_memcheck

========= COMPUTE-SANITIZER

= == Invalid global write of size 4 bytes

at unaligned kernel()+0x160 in /home/cuda/github/compute-
sanitizer-samples/Memcheck/memcheck demo.cu:34

by thread (0,0,0) in block (0,0,0)

Address 0x7£3d7ce00001 is misaligned

and is inside the nearest allocation at 0x7£9544c00000 of size 4

Saved host backtrace up to driver entry point at kernel launch

Host Frame: [0x2774ec]
in /1ib/x86 64-linux-gnu/libcuda.so.l
Host Frame: cudart803 [Oxfccb]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:cudalLaunchKernel [0x6a578]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
========= Host Frame:cudaError cudalLaunchKernel<char>(char const*, dim3,
dim3, wvoid**, unsigned long, CUstream st*) [0xb535]
s in /home/cuda/github/compute-sanitizer-samples/
eck demo
Host Frame: device stub Zl6unaligned kernelv () [0Oxb22e]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:unaligned kernel () [0xb28c]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:run unaligned() [0xaf55]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:main [0OxbOe2]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo

========= Host Frame:../sysdeps/nptl/

libc_start call main.h:58: 1libc start call main [0x2dfd0]
in /1ib/x86 64-linux-gnu/libc.so.6

Host Frame:../csu/libc-start.c:379: libc start main [0x2e07d]
in /1ib/x86 64-linux-gnu/libc.so.6

Host Frame: start [Oxadab5]

in /home/cuda/github/compute-sanitizer-samples/

Running unaligned kernel: no error
Invalid global write of size 4 bytes
at out of bounds function()+0xb0 in /home/cuda/github/compute-
sanitizer-samples/Memcheck/memcheck demo.cu:39
by thread (0,0,0) in block (0,0,0)
Address 0x87654320 is out of bounds
and is 140,276,689,190,112 bytes before the nearest allocation at
0x7£953da00000 of size 1,024 bytes
E======== Device Frame:out of bounds kernel ()+0x30 in /home/cuda/github/
compute-sanitizer-samples/Memcheck/memcheck demo.cu:44
========= Saved host backtrace up to driver entry point at kernel launch

Host Frame: [0x2774ec]
in /1ib/x86 64-linux-gnu/libcuda.so.1l
Host Frame: cudart803 [Oxfccb]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
Host Frame:cudaLaunchKernel [0x6a578]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
========= Host Frame:cudaError cudaLaunchKernel<char>(char const*, dim3,
dim3, void**, unsigned long, CUstream st*) [0xb535]

========= in /home/cuda/github/compute-sanitizer-samples/
Memcheck/memcheck demo
s======== Host Frame: device stub Z20out of bounds kernelv () [Oxb34e]
s in /home/cuda/github/compute-sanitizer-samples/
Memcheck/memcheck demo
Host Frame:out of bounds kernel () [Oxb3ac]

in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo

_________ T o o T ot o e e Ve e AN r.1-N"D"71

Compute Sanitizer Tool Examples

11.1.4. Leak Checking in Compute Sanitizer

To print information about the allocations that have not been freed at the time the CUDA
context is destroyed, we can specify the --1leak-check full option to Compute
Sanitizer.

When running the program with the leak check option, the user is presented with a
list of allocations that were not destroyed, along with the size of the allocation and the
address on the device of the allocation. For allocations made on the host, each leak
report will also print a backtrace corresponding to the saved host stack at the time the
allocation was first made. Also presented is a summary of the total number of bytes
leaked and the corresponding number of allocations.

In this example, the program created an allocation using cudaMalloc () and has not
called cudaFree () to release it, leaking memory. Notice that Compute Sanitizer still
prints errors it encountered while running the application. They are omitted in the
output below for the sake of clarity.

$ make run_leakcheck
========= COMPUTE-SANITIZER

Leaked 1,024 bytes at 0x7fab4£fa00000
Saved host backtrace up to driver entry point at cudaMalloc time
Host Frame: [0x9b5clo]
in /1ib/x86 64-linux-gnu/libcuda.so.l
Host Frame: cudart6l2 [0x41f5e]
in /home/cuda/github/compute-sanitizer-samples/

Memcheck/memcheck demo
s======== Host Frame: cudart618 [0x1080b]
========= in /home/cuda/github/compute-sanitizer-samples/
Memcheck/memcheck demo
========= Host Frame:cudaMalloc [0x4f3ef]
========= in /home/cuda/github/compute-sanitizer-samples/
Memcheck/memcheck demo
========= Host Frame:main [0xb0dd]
========= in /home/cuda/github/compute-sanitizer-samples/
Memcheck/memcheck demo
========= Host Frame:../sysdeps/nptl/
libc start call main.h:58: 1libc start call main [0x2dfd0]
========= in /1ib/x86 64-linux-gnu/libc.so.6
========= Host Frame:../csu/libc-start.c:379: 1libc start main [0x2e07d]
in /1ib/x86 64-linux-gnu/libc.so.6
Host Frame: start [Oxada5]
in /home/cuda/github/compute-sanitizer-samples/

== = LEAK SUMMARY: 1024 bytes leaked in 1 allocations
========= ERROR SUMMARY: 3 errors

11.2. Example Use of Racecheck

This section presents two example usages of the racecheck tool from Compute Sanitizer.
The first example uses an application called block_error, which has shared memory

www.nvidia.com
Compute Sanitizer v2024.1.1 | 46

Compute Sanitizer Tool Examples

hazards on the block level. The second example uses an application called warp_error,
which has shared memory hazards on the warp level.

Depending on the SM type of your GPU, your system output may vary.

11.2.1. Block-level Hazards

The application can be found on the compute-sanitizer github repository

This application can be compiled using the provided Makefile:

make dbg=1

Each kernel thread write some element in shared memory. Afterward, thread 0
computes the sum of all elements in shared memory and stores the result in global
memory variable sum_out.

Running this application under the racecheck tool with the --racecheck-report
analysis option, the following error is reported:

$ make run block error

========= COMPUTE-SANITIZER

========= Error: Race reported between Write access at sumKernel (int *,

int *)+0x90 in /home/cuda/github/compute-sanitizer-samples/Racecheck/

block error.cu:41

========= and Read access at sumKernel (int *, int *)+4+0x100 in /home/cuda/
github/compute-sanitizer-samples/Racecheck/block error.cu:51 [508 hazards]

========= RACECHECK SUMMARY: 1 hazard displayed (1 error, 0 warnings)

Racecheck reports races between thread 0 reading all shared memory elements in line
51 and each individual thread writing its shared memory entry in line 41. Accesses

to shared memory between multiple threads, where at least one access is a write, can
potentially race with each other. Since the races are between threads of different warps,
the block-level synchronization barrier __syncthreads () is required in line 42.

Note that a total of 508 hazards are reported: the kernel uses a single block of 128
threads. The data size written or read, respectively, by each thread is four bytes (one
int) and hazards are reported at the byte level. The writes by all threads race with the
reads by thread 0, except for the four writes by thread 0 itself.

11.2.2. Warp-level Hazards

The application can be found on the compute-sanitizer github repository

This application can be compiled using the provided Makefile:

make dbg=1

www.nvidia.com
Compute Sanitizer v2024.1.1 | 47

https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Racecheck
https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Racecheck

Compute Sanitizer Tool Examples

The kernel computes the some of all individual elements in shared memory two stages.
First, each thread computes its local shared memory value in smem first. Second, a
single thread of each warp is chosen with if (tx % WARP_SIZE == 0) tosum all
elements written by its warp, indexed wx, and store the result in smem second. Finally,
thread 0 of the kernel computes the sum of elements in smem_second and writes the
value into global memory.

Running this application under the racecheck tool with the --racecheck-report
hazard option, multiple hazards with WARNING severity are reported:

========= Warning: (Warp Level Programming) Potential RAW hazard detected at
__shared 0x8c in block (0,0,0)

========= Write Thread (35,0,0) at sumKernel (int *, int *)+0x90 in /home/

cuda/github/compute-sanitizer-samples/Racecheck/warp error.cu:44

========= Read Thread (32,0,0) at sumKernel (int *, int *)+0x120 in /home/

cuda/github/compute-sanitizer-samples/Racecheck/warp error.cu:56

========= Current Value : 35

To avoid the errors demonstrated in the Block-level Hazards example, the kernel uses

the block-level barrier __syncthreads () in line 60. However, racecheck still reports

read-after-write (RAW) hazards between threads within the same warp, with severity

WARNING. On architectures prior to SM 7.0 (Volta), programmers commonly relied

on the assumption that threads within a warp execute code in lock-step (warp-level

programming). Starting with CUDA 9.0, programmers can use the new __syncwarp ()

warp-wide barrier (instead of only __syncthreads () beforehand) to avoid such

hazards. This barrier should be inserted at line 45.

11.3. Example Use of Initcheck

This section presents the usage of the initcheck tool from Compute Sanitizer. The
example uses an application called memset_error.

11.3.1. Memset Error

The application can be found on the compute-sanitizer github repository

This application can be compiled using the provided Makefile:

make dbg=1

The example implements a very simple vector addition, where the thread index

is added to each vector element. The vector contains NumBlocks * NumThreads
elements of type int. The vector is allocated on the device and then initialized to 0 using
cudaMemset before the kernel is launched.

Running this application under the initcheck tool reports multiple errors like the
following:

www.nvidia.com
Compute Sanitizer v2024.1.1 | 48

https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Initcheck

Compute Sanitizer Tool Examples

$ make run_ initcheck
========= Uninitialized _ global memory read of size 4 bytes

========= at vectorAdd(int *)+0x70 in /home/cuda/github/compute-sanitizer-
samples/Initcheck/memset error.cu:41

========= by thread (31,0,0) in block (1,0,0)

SeeEee Address 0x7£3c7ec000fc

The problem is that the call to cudaMemset expects the size of the to-be set memory in
bytes. However, the size is given in elements, as a factor of sizeof (int) is missing
while computing the parameter. As a result, 3/4 of the memory will have undefined
values during the vector addition.

11.4. Example Use of Synccheck

This section presents two example usages of the synccheck tool from Compute Sanitizer.
The first example uses an application called divergent_threads. The second example
uses an application called i1legal syncwarp.

Depending on the SM type of your GPU, your system output may vary.

11.4.1. Divergent Threads

The divergent_threads application can be found on the compute-sanitizer github
repository

This application can be compiled using the provided Makefile:

make dbg=1

In this example, we launch a kernel with a single block of 64 threads. The kernels loops
over DataBlocks blocks of input data data_in. In each iteration, NumThreads elements
are added concurrently in shared memory. Finally, a single thread 0 computes the sum of
all values in shared memory and writes it to sum_out.

Running this application under the synccheck tool, 16 errors like the following are
reported:

$ make run divergent threads
Barrier error detected. Divergent thread(s) in warp

at myKernel (int*, int*, int)+0x578 in divergent thread.cu:54
========= by thread (32,0,0) in block (0,0,0)

The issue is with the __syncthreads () in line 20 when reading the last data block
into shared memory. Note that the last data block only has 48 elements (compared to 64

www.nvidia.com
Compute Sanitizer v2024.1.1 | 49

https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Synccheck
https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Synccheck

Compute Sanitizer Tool Examples

elements for all other blocks). As a result, not all threads of the second warp execute this
statement in convergence as required.

Calling __syncthreads () without convergence is allowed on SM 7.0 and above.
Synccheck will not report any error for this example on these architectures.

11.4.2. Illegal Syncwarp

The illegal_syncwarp application can be found on the compute-sanitizer github
repository

This application can be compiled using the provided Makefile:

make dbg=1

This example only applies to devices of compute capability 7.0 (Volta) and above. The
kernel is launched with a single warp (32 threads), but only thread 0-15 are part of the
computation. Each of these threads initializes one shared memory element with its
thread index. After the assignment, __syncwarp () is used to ensure that the warp is
converged and all writes are visible to other threads. The mask passed to __syncwarp ()
is computed using __ballot_sync (), which enables the bits for the first 16 threads

in mask. Finally, the first thread (index 0) computes the sum over all initialized shared
memory elements and writes it to global memory.

Building the application with -G to enable debug information and running it under the
synccheck tool on SM 7.0 and above, multiple errors like the following are reported:

$ make run illegal syncwarp

========= Barrier error detected. Invalid arguments

========= at cuda sm70 warpsync+0x30

========= by thread (0,0,0) in block (0,0,0)

========= Device Frame: syncwarp (unsigned int)+0xf0 in /usr/local/cuda/
include/sm 30 intrinsics.hpp:110

========= Device Frame:myKernel (int *)+0x3c0 in /home/cuda/github/compute-—
sanitizer-samples/Synccheck/illegal syncwarp.cu:48

The issue is with the __syncwarp (mask) at line 48. All threads for which tx <
(NumThreads / 2) holds true are enabled in the mask, which are threads 0-15.
However, the if condition evaluates true for threads 0-16. As a result, thread 16 executes

the __syncwarp (mask) but does not declare itself in the mask parameter as required.

11.5. Example Use of suppressions

This section presents two example usages of the suppressions feature of Compute
Sanitizer. The first example displays an API suppression (in the memcheck tool). The
second example displays an initcheck report suppression.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 50

https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Synccheck
https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Synccheck

Compute Sanitizer Tool Examples

11.5.1. API error suppression

The API error application can be found on the compute-sanitizer github repository

This application can be compiled using the provided Makefile:
make

In this example, we have a simple loop where the application attempts to allocate a large
decreasing size. We can expect the cudaMalloc API to fail several times before the size is
small enough to fit on the GPU.

$ make run memcheck

/usr/local/cuda/compute-sanitizer/compute-sanitizer suppressions_demo

== COMPUTE-SANITIZER

========= Program hit cudaErrorMemoryAllocation (error 2) due to "out of
memory" on CUDA API call to cudaMalloc.

In order to generate a suppressions file, we need to use the --xml option combined with
the --save option for the output file name. Running that command still prints out error
as before, but it also creates an XML file and populates it with a record of the output.

$ make gen supp
/usr/local/cuda/compute-sanitizer/compute-sanitizer --save supp.xml —--xml
suppressions_ demo
========= COMPUTE-SANITIZER
========= Program hit cudaErrorMemoryAllocation (error 2) due to "out of
memory" on CUDA API call to cudaMalloc.
[...]
$ cat supp.xml

<?xml version="1.0" encoding="utf-8"?>
<ComputeSanitizerOutput>
<record>
<kind>Api</kind>
<what>
<text>Program hit cudaErrorMemoryAllocation (error 2) due to out of
memory on CUDA API call to cudaMalloc.</text>
<api>cudaMalloc</api>
<error>cudaErrorMemoryAllocation</error>
<message>out of memory</message>
<result>2</result>
</what>
<hostStack>
loool
</hostStack>

Now, we can use that file as input to run the tool, along with the --suppressions
option to ignore that error.

$ make run memcheck with supp
/usr/local/cuda/compute-sanitizer/compute-sanitizer --suppressions supp.xml
suppressions demo

COMPUTE-SANITIZER

ERROR SUMMARY: 0 errors

www.nvidia.com
Compute Sanitizer v2024.1.1 | 51

https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Suppressions

Compute Sanitizer Tool Examples

The XML file can be edited to change which errors are ignored. For instance, a regular
expression can be used in the api tag to suppress a range of API calls. For instance
cuda. * will ignore any errors related to an API starting with cuda.

Other tags that can be edited are the result and hoststack ones. Note that the host stack
appears in reverse order and the suppressions feature will compare every stack frame
that was recorded.

11.5.2. Initcheck error suppression

The API error application can be found on the compute-sanitizer github repository
This application can be compiled using the provided Makefile:
make

In this example, we have a simple multiplication kernel. A call to cudaMemset is used
to initialize the device memory to 0. However, it does not initialize the last byte of the
array. The initcheck tool detects the unitialized access:

$ make run initcheck
/usr/local/cuda/compute-sanitizer/compute-sanitizer --tool initcheck
suppressions initcheck demo

========= COMPUTE-SANITIZER

= Uninitialized global memory read of size 4 bytes

= = at mult (int *, int *, int)+0x60

B = by thread (122,0,0) in block (0,0,0)

========= Address 0x7£936fa001le8

========= ERROR SUMMARY: 1 error

In a similar fashion to the previous example, we can use the --xml option to generate a
suppression file.

$ make initcheck gen supp
/usr/local/cuda/compute-sanitizer/compute-sanitizer --tool initcheck --save
supp.xml --xml suppressions_ initcheck demo

== COMPUTE-SANITIZER

========= Uninitialized _ global memory read of size 4 bytes

Now, the error can be ignored using the XML file as input to the suppressions feature.

$ make run initcheck with supp
/usr/local/cuda/compute-sanitizer/compute-sanitizer --tool initcheck --
suppressions supp.xml suppressions initcheck demo

========= COMPUTE-SANITIZER

========= ERROR SUMMARY: 0 errors

As with the API suppressions, the XML file can be edited to make the suppressions
detection more generic, by editing or removing the threadld, blockld, size and device
stack tags.

www.nvidia.com
Compute Sanitizer v2024.1.1 | 52

https://github.com/NVIDIA/compute-sanitizer-samples/tree/master/Suppressions

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2019-2024 NVIDIA Corporation and affiliates. All rights reserved.

This product includes software developed by the Syncro Soft SRL (http://
WWWw.sync.ro/).

www.nvidia.com ﬁVIbiA®

	Table of Contents
	List of Tables
	Introduction
	1.1. About Compute Sanitizer
	1.2. Why Compute Sanitizer
	1.3. How to Get Compute Sanitizer
	1.4. Compute Sanitizer Tools

	Compute Sanitizer
	2.1. Command Line Options
	2.2. Compilation Options
	2.3. Environment Variables

	Memcheck Tool
	3.1. What is Memcheck?
	3.2. Supported Error Detection
	3.3. Using Memcheck
	3.4. Understanding Memcheck Errors
	3.5. CUDA API Error Checking
	3.6. Device Side Allocation Checking
	3.7. Leak Checking
	3.8. Padding
	3.9. Stream-ordered race detection

	Racecheck Tool
	4.1. What is Racecheck?
	4.2. What are Hazards?
	4.3. Using Racecheck
	4.4. Racecheck Report Modes
	4.5. Understanding Racecheck Analysis Reports
	4.6. Understanding Racecheck Hazard Reports
	4.7. Racecheck Severity Levels
	4.8. Racecheck support for cuda::barrier
	4.9. Racecheck support for asynchronous copy
	4.10. Racecheck cluster entry and exit race detection

	Initcheck Tool
	5.1. What is Initcheck?
	5.2. Using Initcheck
	5.3. Unused memory detection

	Synccheck Tool
	6.1. What is Synccheck?
	6.2. Using Synccheck
	6.3. Understanding Synccheck Reports
	6.4. Synccheck support for cuda::barrier
	6.5. Synccheck support for wgmma

	Compute Sanitizer Features
	7.1. Nonblocking Mode
	7.2. Stack Backtraces
	7.3. Name Demangling
	7.4. Dynamic Parallelism
	7.5. Error Actions
	7.6. Escape Sequences
	7.7. Specifying Filters
	7.8. Coredump support
	7.9. Error suppression
	7.10. OptiX support

	Usage Guide
	8.1. Memory Footprint

	Operating System Specific Behavior
	9.1. Windows Specific Behavior
	9.2. Using the Compute Sanitizer on Jetson and Tegra devices

	CUDA Fortran Support
	10.1. CUDA Fortran Specific Behavior

	Compute Sanitizer Tool Examples
	11.1. Example Use of Memcheck
	11.1.1. memcheck_demo Output
	11.1.2. memcheck_demo Output with Memcheck (Release Build)
	11.1.3. memcheck_demo Output with Memcheck (Debug Build)
	11.1.4. Leak Checking in Compute Sanitizer

	11.2. Example Use of Racecheck
	11.2.1. Block-level Hazards
	11.2.2. Warp-level Hazards

	11.3. Example Use of Initcheck
	11.3.1. Memset Error

	11.4. Example Use of Synccheck
	11.4.1. Divergent Threads
	11.4.2. Illegal Syncwarp

	11.5. Example Use of suppressions
	11.5.1. API error suppression
	11.5.2. Initcheck error suppression

