
INSTRUCTION MIX SAMPLE

v2023.1.1 | March 2024

www.nvidia.com
Instruction Mix Sample v2023.1.1 | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
Chapter 2. Application.. 2
Chapter 3. Configuration... 3
Chapter 4. Initial version of the kernel...4
Chapter 5. Updated version of the kernel..9
Chapter 6. Resources.. 11

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 1

Chapter 1.
INTRODUCTION

This sample profiles a CUDA kernel which applies a simple sobel edge detection filter
to an image in global memory using the Nsight Compute profiler. The profiler is used to
analyze and identify the performance bottleneck due to an imbalanced instruction mix.

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 2

Chapter 2.
APPLICATION

This sample CUDA application applies a simple sobel edge detection filter to an image
in global memory. The input and output images are at separate memory locations.
For simplicity it only handles image sizes which are an integral multiple of block size.
(BLOCK_SIZE - defined in the source file "instructionMix.cu")

The instructionMix sample is available with Nsight Compute under <nsight-
compute-install-directory>/extras/samples/instructionMix.

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 3

Chapter 3.
CONFIGURATION

The profiling results included in this document were collected on the following
configuration:

‣ Target system: Linux (x86_64) with a NVIDIA RTX A4500 (Ampere GA102) GPU
‣ Nsight Compute version: 2023.3.1

The Nsight Compute UI screen shots in the document are taken by opening the profiling
reports on a Windows 10 system.

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 4

Chapter 4.
INITIAL VERSION OF THE KERNEL

The Sobel operator performs a 2-D spatial gradient measurement on an image which
emphasizes regions of high spatial frequency that correspond to edges. Typically it is
used to find the approximate absolute gradient magnitude at each point in an input
grayscale image. Each thread applies the Sobel operator to one pixel of the input image
and generates one pixel of the output image. The operator uses two 3x3 kernels which
are convolved with the original image to calculate approximations of the derivaties - one

Initial version of the kernel

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 5

for horizontal changes, and one for vertical. The Sobel kernel is defined as a function
template that can be used as a generic function for different floating point precisions.

template<typename FLOAT_T>
__global__ void Sobel(
 uchar4* pOut,
 uchar4* pImg,
 const int imgWidth,
 const int imgHeight)
{
 const int tx = blockIdx.x * blockDim.x + threadIdx.x;
 const int ty = blockIdx.y * blockDim.y + threadIdx.y;
 const int outIdx = ty * imgWidth + tx;

 const int SX[] = {1, 2, 1, 0, 0, 0, -1, -2, -1};
 const int SY[] = {1, 0, -1, 2, 0, -2, 1, 0, -1};

 FLOAT_T sumX = 0.;
 FLOAT_T sumY = 0.;
 for (int j = -1; j <= 1; ++j)
 {
 for (int i = -1; i <= 1; ++i)
 {
 const auto idx = (j + 1) * 3 + (i + 1);
 const auto sx = SX[idx];
 const auto sy = SY[idx];

 const auto luminance = GetPixel(pImg, tx + i, ty + j, imgWidth,
 imgHeight);
 sumX += (FLOAT_T)luminance * (FLOAT_T)sx;
 sumY += (FLOAT_T)luminance * (FLOAT_T)sy;
 }
 }

 sumX /= (FLOAT_T)9.;
 sumY /= (FLOAT_T)9.;

 const FLOAT_T threshold = 24.;
 if (sumX > threshold || sumY > threshold)
 {
 pOut[outIdx] = make_uchar4(0, 255, 255, 0);
 }

}

The initial version of the kernel Sobel executes the math operations on the grayscale
values in double precision floating point accuracy.

 Sobel<double><<<grid, block>>>(pDstImage, pSrcImage, imgWidth,
 imgHeight);

Profile the initial version of the kernel

There are multiple ways to profile kernels with Nsight Compute. For full details see the
Nsight Compute Documentation. One example is to perform the following steps:

‣ Refer to the README distributed with the sample on how to build the application
‣ Run ncu-ui on the host system
‣ Use a local connection if the GPU is on the host system. If the GPU is on a remote

system, set up a remote connection to the target system
‣ Use the Profile activity to profile the sample application

https://docs.nvidia.com/nsight-compute/index.html
https://docs.nvidia.com/nsight-compute/index.html

Initial version of the kernel

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 6

‣ Choose the full section set
‣ Use defaults for all other options
‣ Set a report name and then click on Launch

Summary page

The Summary page lists the kernels profiled and provides some key metrics for each
profiled kernel. It also lists the performance opportunities and estimated speedup for
each.

For this kernel it shows a hint for FP64/32 Utilization and suggests using 32-
bit precision floating point operations to improve performance. Click on FP64/32
Utilization rule link to see more context on the Details page. It opens the GPU
Speed of Light Throughput section on the Details page.

Details page - GPU Speed Of Light Throughput

The Details page GPU Speed Of Light Throughput section provides a high-level
overview of the throughput for compute and memory resources of the GPU used by the
kernel.

The initial version of the kernel has a duration of 628.03 microseconds and this is used as
the baseline for further optimizations.

Initial version of the kernel

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 7

For this kernel it shows a hint for High Throughput and FP64/32 Utilization and
suggests looking at the Compute Workload Analysis section. Also we can see the GPU
Throughput Breakdown tables at the bottom for Compute Throughput and Memory
Throughput. The Compute Throughput Breakdown table shows that the SM FP64 pipe
throughput is high (85.25%). Click on Compute Workload Analysis to analyze the
usage of compute resources of the streaming multiprocessors (SM).

Details page - Compute Workload Analysis section

The Compute Workload Analysis section shows a hint for Very High
Utilization. It shows that FP64 is the highest-utilized pipeline (86.44%). The FP64
pipeline executes 64-bit floating point operations. It mentions that the pipeline is over-
utilized and likely a performance bottleneck. The guidance provided is to try and
decrease the utlization of the FP64 pipeline.

Initial version of the kernel

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 8

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 9

Chapter 5.
UPDATED VERSION OF THE KERNEL

Based on the profiler hint of high FP64 pipeline utilization, we modify the code to use
single precision floating point instead of double precision. Since our input image has a
very limited value range and the Sobel operator is not receptible to minor differences in
precision, switching the computations from double to single precision has no negative
impact on its functionality.

 Sobel<float><<<grid, block>>>(pDstImage, pSrcImage, imgWidth,
 imgHeight);

Profile the updated kernel

The kernel duration has reduced from 628.03 microseconds to 31.87 microseconds. We
can set a baseline to the initial version of the kernel and compare the profiling results.

Updated version of the kernel

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 10

We can confirm from the Compute Workload Analysis section that no pipeline has a
high utilization.

It shows a message that the pipe utilization is balanced and now the ALU is the highest-
utilized pipeline (57.65%). From the pipeline utlization chart we see that the FP64
pipeline utlization is reduced from 86.44% to 0% and the single precision FMA pipeline
utlization has increased from 0.89% to 33.25%.

www.nvidia.com
Instruction Mix Sample v2023.1.1 | 11

Chapter 6.
RESOURCES

‣ Instruction Optimization section of the CUDA C++ Best Practices Guide
‣ Nsight Compute Documentation

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#instruction-optimization
https://docs.nvidia.com/nsight-compute/index.html

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2023-2024 NVIDIA Corporation and affiliates. All rights reserved.

This product includes software developed by the Syncro Soft SRL (http://
www.sync.ro/).

www.nvidia.com

	Table of Contents
	Introduction
	Application
	Configuration
	Initial version of the kernel
	Updated version of the kernel
	Resources

