1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
|
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::AgentHistogram implements a stateful abstraction of CUDA thread blocks for participating in device-wide histogram .
*/
#pragma once
#include <cub/config.cuh>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <cub/block/block_load.cuh>
#include <cub/grid/grid_queue.cuh>
#include <cub/iterator/cache_modified_input_iterator.cuh>
#include <cub/util_type.cuh>
#include <iterator>
CUB_NAMESPACE_BEGIN
/******************************************************************************
* Tuning policy
******************************************************************************/
/**
*
*/
enum BlockHistogramMemoryPreference
{
GMEM,
SMEM,
BLEND
};
/**
* Parameterizable tuning policy type for AgentHistogram
*
* @tparam _BLOCK_THREADS
* Threads per thread block
*
* @tparam _PIXELS_PER_THREAD
* Pixels per thread (per tile of input)
*
* @tparam _LOAD_ALGORITHM
* The BlockLoad algorithm to use
*
* @tparam _LOAD_MODIFIER
* Cache load modifier for reading input elements
*
* @tparam _RLE_COMPRESS
* Whether to perform localized RLE to compress samples before histogramming
*
* @tparam _MEM_PREFERENCE
* Whether to prefer privatized shared-memory bins (versus privatized global-memory bins)
*
* @tparam _WORK_STEALING
* Whether to dequeue tiles from a global work queue
*
* @tparam _VEC_SIZE
* Vector size for samples loading (1, 2, 4)
*/
template <int _BLOCK_THREADS,
int _PIXELS_PER_THREAD,
BlockLoadAlgorithm _LOAD_ALGORITHM,
CacheLoadModifier _LOAD_MODIFIER,
bool _RLE_COMPRESS,
BlockHistogramMemoryPreference _MEM_PREFERENCE,
bool _WORK_STEALING,
int _VEC_SIZE = 4>
struct AgentHistogramPolicy
{
enum
{
/// Threads per thread block
BLOCK_THREADS = _BLOCK_THREADS,
/// Pixels per thread (per tile of input)
PIXELS_PER_THREAD = _PIXELS_PER_THREAD,
/// Whether to perform localized RLE to compress samples before histogramming
IS_RLE_COMPRESS = _RLE_COMPRESS,
/// Whether to prefer privatized shared-memory bins (versus privatized global-memory bins)
MEM_PREFERENCE = _MEM_PREFERENCE,
/// Whether to dequeue tiles from a global work queue
IS_WORK_STEALING = _WORK_STEALING,
};
/// Vector size for samples loading (1, 2, 4)
static constexpr int VEC_SIZE = _VEC_SIZE;
///< The BlockLoad algorithm to use
static constexpr BlockLoadAlgorithm LOAD_ALGORITHM = _LOAD_ALGORITHM;
///< Cache load modifier for reading input elements
static constexpr CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER;
};
/******************************************************************************
* Thread block abstractions
******************************************************************************/
/**
* @brief AgentHistogram implements a stateful abstraction of CUDA thread blocks for participating
* in device-wide histogram .
*
* @tparam AgentHistogramPolicyT
* Parameterized AgentHistogramPolicy tuning policy type
*
* @tparam PRIVATIZED_SMEM_BINS
* Number of privatized shared-memory histogram bins of any channel. Zero indicates privatized
* counters to be maintained in device-accessible memory.
*
* @tparam NUM_CHANNELS
* Number of channels interleaved in the input data. Supports up to four channels.
*
* @tparam NUM_ACTIVE_CHANNELS
* Number of channels actively being histogrammed
*
* @tparam SampleIteratorT
* Random-access input iterator type for reading samples
*
* @tparam CounterT
* Integer type for counting sample occurrences per histogram bin
*
* @tparam PrivatizedDecodeOpT
* The transform operator type for determining privatized counter indices from samples, one for
* each channel
*
* @tparam OutputDecodeOpT
* The transform operator type for determining output bin-ids from privatized counter indices, one
* for each channel
*
* @tparam OffsetT
* Signed integer type for global offsets
*
* @tparam LEGACY_PTX_ARCH
* PTX compute capability (unused)
*/
template <typename AgentHistogramPolicyT,
int PRIVATIZED_SMEM_BINS,
int NUM_CHANNELS,
int NUM_ACTIVE_CHANNELS,
typename SampleIteratorT,
typename CounterT,
typename PrivatizedDecodeOpT,
typename OutputDecodeOpT,
typename OffsetT,
int LEGACY_PTX_ARCH = 0>
struct AgentHistogram
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
/// The sample type of the input iterator
using SampleT = cub::detail::value_t<SampleIteratorT>;
/// The pixel type of SampleT
using PixelT = typename CubVector<SampleT, NUM_CHANNELS>::Type;
/// The vec type of SampleT
static constexpr int VecSize = AgentHistogramPolicyT::VEC_SIZE;
using VecT = typename CubVector<SampleT, VecSize>::Type;
/// Constants
enum
{
BLOCK_THREADS = AgentHistogramPolicyT::BLOCK_THREADS,
PIXELS_PER_THREAD = AgentHistogramPolicyT::PIXELS_PER_THREAD,
SAMPLES_PER_THREAD = PIXELS_PER_THREAD * NUM_CHANNELS,
VECS_PER_THREAD = SAMPLES_PER_THREAD / VecSize,
TILE_PIXELS = PIXELS_PER_THREAD * BLOCK_THREADS,
TILE_SAMPLES = SAMPLES_PER_THREAD * BLOCK_THREADS,
IS_RLE_COMPRESS = AgentHistogramPolicyT::IS_RLE_COMPRESS,
MEM_PREFERENCE = (PRIVATIZED_SMEM_BINS > 0) ?
AgentHistogramPolicyT::MEM_PREFERENCE :
GMEM,
IS_WORK_STEALING = AgentHistogramPolicyT::IS_WORK_STEALING,
};
/// Cache load modifier for reading input elements
static constexpr CacheLoadModifier LOAD_MODIFIER = AgentHistogramPolicyT::LOAD_MODIFIER;
/// Input iterator wrapper type (for applying cache modifier)
// Wrap the native input pointer with CacheModifiedInputIterator
// or directly use the supplied input iterator type
using WrappedSampleIteratorT = cub::detail::conditional_t<
std::is_pointer<SampleIteratorT>::value,
CacheModifiedInputIterator<LOAD_MODIFIER, SampleT, OffsetT>,
SampleIteratorT>;
/// Pixel input iterator type (for applying cache modifier)
typedef CacheModifiedInputIterator<LOAD_MODIFIER, PixelT, OffsetT>
WrappedPixelIteratorT;
/// Qaud input iterator type (for applying cache modifier)
typedef CacheModifiedInputIterator<LOAD_MODIFIER, VecT, OffsetT>
WrappedVecsIteratorT;
/// Parameterized BlockLoad type for samples
typedef BlockLoad<
SampleT,
BLOCK_THREADS,
SAMPLES_PER_THREAD,
AgentHistogramPolicyT::LOAD_ALGORITHM>
BlockLoadSampleT;
/// Parameterized BlockLoad type for pixels
typedef BlockLoad<
PixelT,
BLOCK_THREADS,
PIXELS_PER_THREAD,
AgentHistogramPolicyT::LOAD_ALGORITHM>
BlockLoadPixelT;
/// Parameterized BlockLoad type for vecs
typedef BlockLoad<
VecT,
BLOCK_THREADS,
VECS_PER_THREAD,
AgentHistogramPolicyT::LOAD_ALGORITHM>
BlockLoadVecT;
/// Shared memory type required by this thread block
struct _TempStorage
{
// Smem needed for block-privatized smem histogram (with 1 word of padding)
CounterT histograms[NUM_ACTIVE_CHANNELS][PRIVATIZED_SMEM_BINS + 1];
int tile_idx;
// Aliasable storage layout
union Aliasable
{
// Smem needed for loading a tile of samples
typename BlockLoadSampleT::TempStorage sample_load;
// Smem needed for loading a tile of pixels
typename BlockLoadPixelT::TempStorage pixel_load;
// Smem needed for loading a tile of vecs
typename BlockLoadVecT::TempStorage vec_load;
} aliasable;
};
/// Temporary storage type (unionable)
struct TempStorage : Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Per-thread fields
//---------------------------------------------------------------------
/// Reference to temp_storage
_TempStorage &temp_storage;
/// Sample input iterator (with cache modifier applied, if possible)
WrappedSampleIteratorT d_wrapped_samples;
/// Native pointer for input samples (possibly NULL if unavailable)
SampleT* d_native_samples;
/// The number of output bins for each channel
int (&num_output_bins)[NUM_ACTIVE_CHANNELS];
/// The number of privatized bins for each channel
int (&num_privatized_bins)[NUM_ACTIVE_CHANNELS];
/// Reference to gmem privatized histograms for each channel
CounterT* d_privatized_histograms[NUM_ACTIVE_CHANNELS];
/// Reference to final output histograms (gmem)
CounterT* (&d_output_histograms)[NUM_ACTIVE_CHANNELS];
/// The transform operator for determining output bin-ids from privatized counter indices, one for each channel
OutputDecodeOpT (&output_decode_op)[NUM_ACTIVE_CHANNELS];
/// The transform operator for determining privatized counter indices from samples, one for each channel
PrivatizedDecodeOpT (&privatized_decode_op)[NUM_ACTIVE_CHANNELS];
/// Whether to prefer privatized smem counters vs privatized global counters
bool prefer_smem;
//---------------------------------------------------------------------
// Initialize privatized bin counters
//---------------------------------------------------------------------
// Initialize privatized bin counters
__device__ __forceinline__ void InitBinCounters(CounterT* privatized_histograms[NUM_ACTIVE_CHANNELS])
{
// Initialize histogram bin counts to zeros
#pragma unroll
for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL)
{
for (int privatized_bin = threadIdx.x; privatized_bin < num_privatized_bins[CHANNEL]; privatized_bin += BLOCK_THREADS)
{
privatized_histograms[CHANNEL][privatized_bin] = 0;
}
}
// Barrier to make sure all threads are done updating counters
CTA_SYNC();
}
// Initialize privatized bin counters. Specialized for privatized shared-memory counters
__device__ __forceinline__ void InitSmemBinCounters()
{
CounterT* privatized_histograms[NUM_ACTIVE_CHANNELS];
for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL)
privatized_histograms[CHANNEL] = temp_storage.histograms[CHANNEL];
InitBinCounters(privatized_histograms);
}
// Initialize privatized bin counters. Specialized for privatized global-memory counters
__device__ __forceinline__ void InitGmemBinCounters()
{
InitBinCounters(d_privatized_histograms);
}
//---------------------------------------------------------------------
// Update final output histograms
//---------------------------------------------------------------------
// Update final output histograms from privatized histograms
__device__ __forceinline__ void StoreOutput(CounterT* privatized_histograms[NUM_ACTIVE_CHANNELS])
{
// Barrier to make sure all threads are done updating counters
CTA_SYNC();
// Apply privatized bin counts to output bin counts
#pragma unroll
for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL)
{
int channel_bins = num_privatized_bins[CHANNEL];
for (int privatized_bin = threadIdx.x;
privatized_bin < channel_bins;
privatized_bin += BLOCK_THREADS)
{
int output_bin = -1;
CounterT count = privatized_histograms[CHANNEL][privatized_bin];
bool is_valid = count > 0;
output_decode_op[CHANNEL].template BinSelect<LOAD_MODIFIER>((SampleT) privatized_bin, output_bin, is_valid);
if (output_bin >= 0)
{
atomicAdd(&d_output_histograms[CHANNEL][output_bin], count);
}
}
}
}
// Update final output histograms from privatized histograms. Specialized for privatized shared-memory counters
__device__ __forceinline__ void StoreSmemOutput()
{
CounterT* privatized_histograms[NUM_ACTIVE_CHANNELS];
for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL)
privatized_histograms[CHANNEL] = temp_storage.histograms[CHANNEL];
StoreOutput(privatized_histograms);
}
// Update final output histograms from privatized histograms. Specialized for privatized global-memory counters
__device__ __forceinline__ void StoreGmemOutput()
{
StoreOutput(d_privatized_histograms);
}
//---------------------------------------------------------------------
// Tile accumulation
//---------------------------------------------------------------------
// Accumulate pixels. Specialized for RLE compression.
__device__ __forceinline__ void AccumulatePixels(
SampleT samples[PIXELS_PER_THREAD][NUM_CHANNELS],
bool is_valid[PIXELS_PER_THREAD],
CounterT* privatized_histograms[NUM_ACTIVE_CHANNELS],
Int2Type<true> is_rle_compress)
{
#pragma unroll
for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL)
{
// Bin pixels
int bins[PIXELS_PER_THREAD];
#pragma unroll
for (int PIXEL = 0; PIXEL < PIXELS_PER_THREAD; ++PIXEL)
{
bins[PIXEL] = -1;
privatized_decode_op[CHANNEL].template BinSelect<LOAD_MODIFIER>(samples[PIXEL][CHANNEL], bins[PIXEL], is_valid[PIXEL]);
}
CounterT accumulator = 1;
#pragma unroll
for (int PIXEL = 0; PIXEL < PIXELS_PER_THREAD - 1; ++PIXEL)
{
if (bins[PIXEL] != bins[PIXEL + 1])
{
if (bins[PIXEL] >= 0)
atomicAdd(privatized_histograms[CHANNEL] + bins[PIXEL], accumulator);
accumulator = 0;
}
accumulator++;
}
// Last pixel
if (bins[PIXELS_PER_THREAD - 1] >= 0)
atomicAdd(privatized_histograms[CHANNEL] + bins[PIXELS_PER_THREAD - 1], accumulator);
}
}
// Accumulate pixels. Specialized for individual accumulation of each pixel.
__device__ __forceinline__ void AccumulatePixels(
SampleT samples[PIXELS_PER_THREAD][NUM_CHANNELS],
bool is_valid[PIXELS_PER_THREAD],
CounterT* privatized_histograms[NUM_ACTIVE_CHANNELS],
Int2Type<false> is_rle_compress)
{
#pragma unroll
for (int PIXEL = 0; PIXEL < PIXELS_PER_THREAD; ++PIXEL)
{
#pragma unroll
for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL)
{
int bin = -1;
privatized_decode_op[CHANNEL].template BinSelect<LOAD_MODIFIER>(samples[PIXEL][CHANNEL], bin, is_valid[PIXEL]);
if (bin >= 0)
atomicAdd(privatized_histograms[CHANNEL] + bin, 1);
}
}
}
/**
* Accumulate pixel, specialized for smem privatized histogram
*/
__device__ __forceinline__ void AccumulateSmemPixels(
SampleT samples[PIXELS_PER_THREAD][NUM_CHANNELS],
bool is_valid[PIXELS_PER_THREAD])
{
CounterT* privatized_histograms[NUM_ACTIVE_CHANNELS];
for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL)
privatized_histograms[CHANNEL] = temp_storage.histograms[CHANNEL];
AccumulatePixels(samples, is_valid, privatized_histograms, Int2Type<IS_RLE_COMPRESS>());
}
/**
* Accumulate pixel, specialized for gmem privatized histogram
*/
__device__ __forceinline__ void AccumulateGmemPixels(
SampleT samples[PIXELS_PER_THREAD][NUM_CHANNELS],
bool is_valid[PIXELS_PER_THREAD])
{
AccumulatePixels(samples, is_valid, d_privatized_histograms, Int2Type<IS_RLE_COMPRESS>());
}
//---------------------------------------------------------------------
// Tile loading
//---------------------------------------------------------------------
// Load full, aligned tile using pixel iterator (multi-channel)
template <int _NUM_ACTIVE_CHANNELS>
__device__ __forceinline__ void LoadFullAlignedTile(
OffsetT block_offset,
int valid_samples,
SampleT (&samples)[PIXELS_PER_THREAD][NUM_CHANNELS],
Int2Type<_NUM_ACTIVE_CHANNELS> num_active_channels)
{
typedef PixelT AliasedPixels[PIXELS_PER_THREAD];
WrappedPixelIteratorT d_wrapped_pixels((PixelT*) (d_native_samples + block_offset));
// Load using a wrapped pixel iterator
BlockLoadPixelT(temp_storage.aliasable.pixel_load).Load(
d_wrapped_pixels,
reinterpret_cast<AliasedPixels&>(samples));
}
// Load full, aligned tile using vec iterator (single-channel)
__device__ __forceinline__ void LoadFullAlignedTile(
OffsetT block_offset,
int valid_samples,
SampleT (&samples)[PIXELS_PER_THREAD][NUM_CHANNELS],
Int2Type<1> num_active_channels)
{
typedef VecT AliasedVecs[VECS_PER_THREAD];
WrappedVecsIteratorT d_wrapped_vecs((VecT*) (d_native_samples + block_offset));
// Load using a wrapped vec iterator
BlockLoadVecT(temp_storage.aliasable.vec_load).Load(
d_wrapped_vecs,
reinterpret_cast<AliasedVecs&>(samples));
}
// Load full, aligned tile
__device__ __forceinline__ void LoadTile(
OffsetT block_offset,
int valid_samples,
SampleT (&samples)[PIXELS_PER_THREAD][NUM_CHANNELS],
Int2Type<true> is_full_tile,
Int2Type<true> is_aligned)
{
LoadFullAlignedTile(block_offset, valid_samples, samples, Int2Type<NUM_ACTIVE_CHANNELS>());
}
// Load full, mis-aligned tile using sample iterator
__device__ __forceinline__ void LoadTile(
OffsetT block_offset,
int valid_samples,
SampleT (&samples)[PIXELS_PER_THREAD][NUM_CHANNELS],
Int2Type<true> is_full_tile,
Int2Type<false> is_aligned)
{
typedef SampleT AliasedSamples[SAMPLES_PER_THREAD];
// Load using sample iterator
BlockLoadSampleT(temp_storage.aliasable.sample_load).Load(
d_wrapped_samples + block_offset,
reinterpret_cast<AliasedSamples&>(samples));
}
// Load partially-full, aligned tile using the pixel iterator
__device__ __forceinline__ void LoadTile(
OffsetT block_offset,
int valid_samples,
SampleT (&samples)[PIXELS_PER_THREAD][NUM_CHANNELS],
Int2Type<false> is_full_tile,
Int2Type<true> is_aligned)
{
typedef PixelT AliasedPixels[PIXELS_PER_THREAD];
WrappedPixelIteratorT d_wrapped_pixels((PixelT*) (d_native_samples + block_offset));
int valid_pixels = valid_samples / NUM_CHANNELS;
// Load using a wrapped pixel iterator
BlockLoadPixelT(temp_storage.aliasable.pixel_load).Load(
d_wrapped_pixels,
reinterpret_cast<AliasedPixels&>(samples),
valid_pixels);
}
// Load partially-full, mis-aligned tile using sample iterator
__device__ __forceinline__ void LoadTile(
OffsetT block_offset,
int valid_samples,
SampleT (&samples)[PIXELS_PER_THREAD][NUM_CHANNELS],
Int2Type<false> is_full_tile,
Int2Type<false> is_aligned)
{
typedef SampleT AliasedSamples[SAMPLES_PER_THREAD];
BlockLoadSampleT(temp_storage.aliasable.sample_load).Load(
d_wrapped_samples + block_offset,
reinterpret_cast<AliasedSamples&>(samples),
valid_samples);
}
template <bool IS_FULL_TILE>
__device__ __forceinline__ void MarkValid(bool (&is_valid)[PIXELS_PER_THREAD],
int valid_samples,
Int2Type<false> /* is_striped = false */)
{
#pragma unroll
for (int PIXEL = 0; PIXEL < PIXELS_PER_THREAD; ++PIXEL)
{
is_valid[PIXEL] = IS_FULL_TILE || (((threadIdx.x * PIXELS_PER_THREAD + PIXEL) *
NUM_CHANNELS) < valid_samples);
}
}
template <bool IS_FULL_TILE>
__device__ __forceinline__ void MarkValid(bool (&is_valid)[PIXELS_PER_THREAD],
int valid_samples,
Int2Type<true> /* is_striped = true */)
{
#pragma unroll
for (int PIXEL = 0; PIXEL < PIXELS_PER_THREAD; ++PIXEL)
{
is_valid[PIXEL] = IS_FULL_TILE || (((threadIdx.x + BLOCK_THREADS * PIXEL) *
NUM_CHANNELS) < valid_samples);
}
}
//---------------------------------------------------------------------
// Tile processing
//---------------------------------------------------------------------
/**
* @brief Consume a tile of data samples
*
* @tparam IS_ALIGNED
* Whether the tile offset is aligned (vec-aligned for single-channel, pixel-aligned for multi-channel)
*
* @tparam IS_FULL_TILE
Whether the tile is full
*/
template <bool IS_ALIGNED, bool IS_FULL_TILE>
__device__ __forceinline__ void ConsumeTile(OffsetT block_offset, int valid_samples)
{
SampleT samples[PIXELS_PER_THREAD][NUM_CHANNELS];
bool is_valid[PIXELS_PER_THREAD];
// Load tile
LoadTile(
block_offset,
valid_samples,
samples,
Int2Type<IS_FULL_TILE>(),
Int2Type<IS_ALIGNED>());
// Set valid flags
MarkValid<IS_FULL_TILE>(
is_valid,
valid_samples,
Int2Type<AgentHistogramPolicyT::LOAD_ALGORITHM == BLOCK_LOAD_STRIPED>{});
// Accumulate samples
if (prefer_smem)
{
AccumulateSmemPixels(samples, is_valid);
}
else
{
AccumulateGmemPixels(samples, is_valid);
}
}
/**
* @brief Consume row tiles. Specialized for work-stealing from queue
*
* @param num_row_pixels
* The number of multi-channel pixels per row in the region of interest
*
* @param num_rows
* The number of rows in the region of interest
*
* @param row_stride_samples
* The number of samples between starts of consecutive rows in the region of interest
*
* @param tiles_per_row
* Number of image tiles per row
*/
template <bool IS_ALIGNED>
__device__ __forceinline__ void ConsumeTiles(OffsetT num_row_pixels,
OffsetT num_rows,
OffsetT row_stride_samples,
int tiles_per_row,
GridQueue<int> tile_queue,
Int2Type<true> is_work_stealing)
{
int num_tiles = num_rows * tiles_per_row;
int tile_idx = (blockIdx.y * gridDim.x) + blockIdx.x;
OffsetT num_even_share_tiles = gridDim.x * gridDim.y;
while (tile_idx < num_tiles)
{
int row = tile_idx / tiles_per_row;
int col = tile_idx - (row * tiles_per_row);
OffsetT row_offset = row * row_stride_samples;
OffsetT col_offset = (col * TILE_SAMPLES);
OffsetT tile_offset = row_offset + col_offset;
if (col == tiles_per_row - 1)
{
// Consume a partially-full tile at the end of the row
OffsetT num_remaining = (num_row_pixels * NUM_CHANNELS) - col_offset;
ConsumeTile<IS_ALIGNED, false>(tile_offset, num_remaining);
}
else
{
// Consume full tile
ConsumeTile<IS_ALIGNED, true>(tile_offset, TILE_SAMPLES);
}
CTA_SYNC();
// Get next tile
if (threadIdx.x == 0)
temp_storage.tile_idx = tile_queue.Drain(1) + num_even_share_tiles;
CTA_SYNC();
tile_idx = temp_storage.tile_idx;
}
}
/**
* @brief Consume row tiles. Specialized for even-share (striped across thread blocks)
*
* @param num_row_pixels
* The number of multi-channel pixels per row in the region of interest
*
* @param num_rows
* The number of rows in the region of interest
*
* @param row_stride_samples
* The number of samples between starts of consecutive rows in the region of interest
*
* @param tiles_per_row
* Number of image tiles per row
*/
template <bool IS_ALIGNED>
__device__ __forceinline__ void ConsumeTiles(OffsetT num_row_pixels,
OffsetT num_rows,
OffsetT row_stride_samples,
int tiles_per_row,
GridQueue<int> tile_queue,
Int2Type<false> is_work_stealing)
{
for (int row = blockIdx.y; row < num_rows; row += gridDim.y)
{
OffsetT row_begin = row * row_stride_samples;
OffsetT row_end = row_begin + (num_row_pixels * NUM_CHANNELS);
OffsetT tile_offset = row_begin + (blockIdx.x * TILE_SAMPLES);
while (tile_offset < row_end)
{
OffsetT num_remaining = row_end - tile_offset;
if (num_remaining < TILE_SAMPLES)
{
// Consume partial tile
ConsumeTile<IS_ALIGNED, false>(tile_offset, num_remaining);
break;
}
// Consume full tile
ConsumeTile<IS_ALIGNED, true>(tile_offset, TILE_SAMPLES);
tile_offset += gridDim.x * TILE_SAMPLES;
}
}
}
//---------------------------------------------------------------------
// Parameter extraction
//---------------------------------------------------------------------
// Return a native pixel pointer (specialized for CacheModifiedInputIterator types)
template <
CacheLoadModifier _MODIFIER,
typename _ValueT,
typename _OffsetT>
__device__ __forceinline__ SampleT* NativePointer(CacheModifiedInputIterator<_MODIFIER, _ValueT, _OffsetT> itr)
{
return itr.ptr;
}
// Return a native pixel pointer (specialized for other types)
template <typename IteratorT>
__device__ __forceinline__ SampleT* NativePointer(IteratorT itr)
{
return NULL;
}
//---------------------------------------------------------------------
// Interface
//---------------------------------------------------------------------
/**
* @brief Constructor
*
* @param temp_storage
* Reference to temp_storage
*
* @param d_samples
* Input data to reduce
*
* @param num_output_bins
* The number bins per final output histogram
*
* @param num_privatized_bins
* The number bins per privatized histogram
*
* @param d_output_histograms
* Reference to final output histograms
*
* @param d_privatized_histograms
* Reference to privatized histograms
*
* @param output_decode_op
* The transform operator for determining output bin-ids from privatized counter indices, one for each channel
*
* @param privatized_decode_op
* The transform operator for determining privatized counter indices from samples, one for each channel
*/
__device__ __forceinline__
AgentHistogram(TempStorage &temp_storage,
SampleIteratorT d_samples,
int (&num_output_bins)[NUM_ACTIVE_CHANNELS],
int (&num_privatized_bins)[NUM_ACTIVE_CHANNELS],
CounterT *(&d_output_histograms)[NUM_ACTIVE_CHANNELS],
CounterT *(&d_privatized_histograms)[NUM_ACTIVE_CHANNELS],
OutputDecodeOpT (&output_decode_op)[NUM_ACTIVE_CHANNELS],
PrivatizedDecodeOpT (&privatized_decode_op)[NUM_ACTIVE_CHANNELS])
: temp_storage(temp_storage.Alias())
, d_wrapped_samples(d_samples)
, d_native_samples(NativePointer(d_wrapped_samples))
, num_output_bins(num_output_bins)
, num_privatized_bins(num_privatized_bins)
, d_output_histograms(d_output_histograms)
, output_decode_op(output_decode_op)
, privatized_decode_op(privatized_decode_op)
, prefer_smem((MEM_PREFERENCE == SMEM) ? true : // prefer smem privatized histograms
(MEM_PREFERENCE == GMEM) ? false
: // prefer gmem privatized histograms
blockIdx.x & 1) // prefer blended privatized histograms
{
int blockId = (blockIdx.y * gridDim.x) + blockIdx.x;
// Initialize the locations of this block's privatized histograms
for (int CHANNEL = 0; CHANNEL < NUM_ACTIVE_CHANNELS; ++CHANNEL)
this->d_privatized_histograms[CHANNEL] = d_privatized_histograms[CHANNEL] + (blockId * num_privatized_bins[CHANNEL]);
}
/**
* @brief Consume image
*
* @param num_row_pixels
* The number of multi-channel pixels per row in the region of interest
*
* @param num_rows
* The number of rows in the region of interest
*
* @param row_stride_samples
* The number of samples between starts of consecutive rows in the region of interest
*
* @param tiles_per_row
* Number of image tiles per row
*
* @param tile_queue
* Queue descriptor for assigning tiles of work to thread blocks
*/
__device__ __forceinline__ void ConsumeTiles(OffsetT num_row_pixels,
OffsetT num_rows,
OffsetT row_stride_samples,
int tiles_per_row,
GridQueue<int> tile_queue)
{
// Check whether all row starting offsets are vec-aligned (in single-channel) or pixel-aligned (in multi-channel)
int vec_mask = AlignBytes<VecT>::ALIGN_BYTES - 1;
int pixel_mask = AlignBytes<PixelT>::ALIGN_BYTES - 1;
size_t row_bytes = sizeof(SampleT) * row_stride_samples;
bool vec_aligned_rows = (NUM_CHANNELS == 1) && (SAMPLES_PER_THREAD % VecSize == 0) && // Single channel
((size_t(d_native_samples) & vec_mask) == 0) && // ptr is quad-aligned
((num_rows == 1) || ((row_bytes & vec_mask) == 0)); // number of row-samples is a multiple of the alignment of the quad
bool pixel_aligned_rows = (NUM_CHANNELS > 1) && // Multi channel
((size_t(d_native_samples) & pixel_mask) == 0) && // ptr is pixel-aligned
((row_bytes & pixel_mask) == 0); // number of row-samples is a multiple of the alignment of the pixel
// Whether rows are aligned and can be vectorized
if ((d_native_samples != NULL) && (vec_aligned_rows || pixel_aligned_rows))
ConsumeTiles<true>(num_row_pixels, num_rows, row_stride_samples, tiles_per_row, tile_queue, Int2Type<IS_WORK_STEALING>());
else
ConsumeTiles<false>(num_row_pixels, num_rows, row_stride_samples, tiles_per_row, tile_queue, Int2Type<IS_WORK_STEALING>());
}
/**
* Initialize privatized bin counters. Specialized for privatized shared-memory counters
*/
__device__ __forceinline__ void InitBinCounters()
{
if (prefer_smem)
InitSmemBinCounters();
else
InitGmemBinCounters();
}
/**
* Store privatized histogram to device-accessible memory. Specialized for privatized shared-memory counters
*/
__device__ __forceinline__ void StoreOutput()
{
if (prefer_smem)
StoreSmemOutput();
else
StoreGmemOutput();
}
};
CUB_NAMESPACE_END
|