File: agent_reduce.cuh

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (484 lines) | stat: -rw-r--r-- 18,534 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2022, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * @file cub::AgentReduce implements a stateful abstraction of CUDA thread
 *       blocks for participating in device-wide reduction.
 */

#pragma once

#include <cub/config.cuh>

#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
#  pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
#  pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
#  pragma system_header
#endif // no system header

#include <iterator>

#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
#include <cub/detail/type_traits.cuh>
#include <cub/grid/grid_even_share.cuh>
#include <cub/grid/grid_mapping.cuh>
#include <cub/iterator/cache_modified_input_iterator.cuh>
#include <cub/util_type.cuh>

CUB_NAMESPACE_BEGIN

/******************************************************************************
 * Tuning policy types
 ******************************************************************************/

/**
 * Parameterizable tuning policy type for AgentReduce
 * @tparam NOMINAL_BLOCK_THREADS_4B Threads per thread block
 * @tparam NOMINAL_ITEMS_PER_THREAD_4B Items per thread (per tile of input)
 * @tparam ComputeT Dominant compute type
 * @tparam _VECTOR_LOAD_LENGTH Number of items per vectorized load
 * @tparam _BLOCK_ALGORITHM Cooperative block-wide reduction algorithm to use
 * @tparam _LOAD_MODIFIER Cache load modifier for reading input elements
 */
template <int NOMINAL_BLOCK_THREADS_4B,
          int NOMINAL_ITEMS_PER_THREAD_4B,
          typename ComputeT,
          int _VECTOR_LOAD_LENGTH,
          BlockReduceAlgorithm _BLOCK_ALGORITHM,
          CacheLoadModifier _LOAD_MODIFIER,
          typename ScalingType = MemBoundScaling<NOMINAL_BLOCK_THREADS_4B,
                                                 NOMINAL_ITEMS_PER_THREAD_4B,
                                                 ComputeT>>
struct AgentReducePolicy : ScalingType
{
  /// Number of items per vectorized load
  static constexpr int VECTOR_LOAD_LENGTH = _VECTOR_LOAD_LENGTH;

  /// Cooperative block-wide reduction algorithm to use
  static constexpr BlockReduceAlgorithm BLOCK_ALGORITHM = _BLOCK_ALGORITHM;

  /// Cache load modifier for reading input elements
  static constexpr CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER;
};

/******************************************************************************
 * Thread block abstractions
 ******************************************************************************/

/**
 * @brief AgentReduce implements a stateful abstraction of CUDA thread blocks
 *        for participating in device-wide reduction .
 *
 * Each thread reduces only the values it loads. If `FIRST_TILE`, this partial
 * reduction is stored into `thread_aggregate`. Otherwise it is accumulated
 * into `thread_aggregate`.
 *
 * @tparam AgentReducePolicy
 *   Parameterized AgentReducePolicy tuning policy type
 *
 * @tparam InputIteratorT
 *   Random-access iterator type for input
 *
 * @tparam OutputIteratorT
 *   Random-access iterator type for output
 *
 * @tparam OffsetT
 *   Signed integer type for global offsets
 *
 * @tparam ReductionOp
 *   Binary reduction operator type having member
 *   `auto operator()(T &&a, U &&b)`
 *
 * @tparam AccumT
 *   The type of intermediate accumulator (according to P2322R6)
 */
template <typename AgentReducePolicy,
          typename InputIteratorT,
          typename OutputIteratorT,
          typename OffsetT,
          typename ReductionOp,
          typename AccumT>
struct AgentReduce
{
  //---------------------------------------------------------------------
  // Types and constants
  //---------------------------------------------------------------------

  /// The input value type
  using InputT = cub::detail::value_t<InputIteratorT>;

  /// Vector type of InputT for data movement
  using VectorT =
    typename CubVector<InputT, AgentReducePolicy::VECTOR_LOAD_LENGTH>::Type;

  /// Input iterator wrapper type (for applying cache modifier)
  // Wrap the native input pointer with CacheModifiedInputIterator
  // or directly use the supplied input iterator type
  using WrappedInputIteratorT = cub::detail::conditional_t<
    std::is_pointer<InputIteratorT>::value,
    CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, InputT, OffsetT>,
    InputIteratorT>;

  /// Constants
  static constexpr int BLOCK_THREADS      = AgentReducePolicy::BLOCK_THREADS;
  static constexpr int ITEMS_PER_THREAD   = AgentReducePolicy::ITEMS_PER_THREAD;
  static constexpr int TILE_ITEMS         = BLOCK_THREADS * ITEMS_PER_THREAD;
  static constexpr int VECTOR_LOAD_LENGTH =
    CUB_MIN(ITEMS_PER_THREAD, AgentReducePolicy::VECTOR_LOAD_LENGTH);

  // Can vectorize according to the policy if the input iterator is a native
  // pointer to a primitive type
  static constexpr bool ATTEMPT_VECTORIZATION = (VECTOR_LOAD_LENGTH > 1) &&
                            (ITEMS_PER_THREAD % VECTOR_LOAD_LENGTH == 0) &&
                            (std::is_pointer<InputIteratorT>::value) &&
                            Traits<InputT>::PRIMITIVE;

  static constexpr CacheLoadModifier LOAD_MODIFIER =
    AgentReducePolicy::LOAD_MODIFIER;

  static constexpr BlockReduceAlgorithm BLOCK_ALGORITHM =
    AgentReducePolicy::BLOCK_ALGORITHM;

  /// Parameterized BlockReduce primitive
  using BlockReduceT =
    BlockReduce<AccumT, BLOCK_THREADS, AgentReducePolicy::BLOCK_ALGORITHM>;

  /// Shared memory type required by this thread block
  struct _TempStorage
  {
    typename BlockReduceT::TempStorage reduce;
  };

  /// Alias wrapper allowing storage to be unioned
  struct TempStorage : Uninitialized<_TempStorage>
  {};

  //---------------------------------------------------------------------
  // Per-thread fields
  //---------------------------------------------------------------------

  _TempStorage &temp_storage;         ///< Reference to temp_storage
  InputIteratorT d_in;                ///< Input data to reduce
  WrappedInputIteratorT d_wrapped_in; ///< Wrapped input data to reduce
  ReductionOp reduction_op;           ///< Binary reduction operator

  //---------------------------------------------------------------------
  // Utility
  //---------------------------------------------------------------------

  // Whether or not the input is aligned with the vector type (specialized for
  // types we can vectorize)
  template <typename Iterator>
  static __device__ __forceinline__ bool
  IsAligned(Iterator d_in, Int2Type<true> /*can_vectorize*/)
  {
    return (size_t(d_in) & (sizeof(VectorT) - 1)) == 0;
  }

  // Whether or not the input is aligned with the vector type (specialized for
  // types we cannot vectorize)
  template <typename Iterator>
  static __device__ __forceinline__ bool
  IsAligned(Iterator /*d_in*/, Int2Type<false> /*can_vectorize*/)
  {
    return false;
  }

  //---------------------------------------------------------------------
  // Constructor
  //---------------------------------------------------------------------

  /**
   * @brief Constructor
   * @param temp_storage Reference to temp_storage
   * @param d_in Input data to reduce
   * @param reduction_op Binary reduction operator
   */
  __device__ __forceinline__ AgentReduce(TempStorage &temp_storage,
                                         InputIteratorT d_in,
                                         ReductionOp reduction_op)
      : temp_storage(temp_storage.Alias())
      , d_in(d_in)
      , d_wrapped_in(d_in)
      , reduction_op(reduction_op)
  {}

  //---------------------------------------------------------------------
  // Tile consumption
  //---------------------------------------------------------------------

  /**
   * @brief Consume a full tile of input (non-vectorized)
   * @param block_offset The offset the tile to consume
   * @param valid_items The number of valid items in the tile
   * @param is_full_tile Whether or not this is a full tile
   * @param can_vectorize Whether or not we can vectorize loads
   */
  template <int IS_FIRST_TILE>
  __device__ __forceinline__ void ConsumeTile(AccumT &thread_aggregate,
                                              OffsetT block_offset,
                                              int /*valid_items*/,
                                              Int2Type<true> /*is_full_tile*/,
                                              Int2Type<false> /*can_vectorize*/)
  {
    AccumT items[ITEMS_PER_THREAD];

    // Load items in striped fashion
    LoadDirectStriped<BLOCK_THREADS>(threadIdx.x,
                                     d_wrapped_in + block_offset,
                                     items);

    // Reduce items within each thread stripe
    thread_aggregate =
      (IS_FIRST_TILE)
        ? internal::ThreadReduce(items, reduction_op)
        : internal::ThreadReduce(items, reduction_op, thread_aggregate);
  }

  /**
   * Consume a full tile of input (vectorized)
   * @param block_offset The offset the tile to consume
   * @param valid_items The number of valid items in the tile
   * @param is_full_tile Whether or not this is a full tile
   * @param can_vectorize Whether or not we can vectorize loads
   */
  template <int IS_FIRST_TILE>
  __device__ __forceinline__ void ConsumeTile(AccumT &thread_aggregate,
                                              OffsetT block_offset,
                                              int /*valid_items*/,
                                              Int2Type<true> /*is_full_tile*/,
                                              Int2Type<true> /*can_vectorize*/)
  {
    // Alias items as an array of VectorT and load it in striped fashion
    enum
    {
      WORDS = ITEMS_PER_THREAD / VECTOR_LOAD_LENGTH
    };

    // Fabricate a vectorized input iterator
    InputT *d_in_unqualified = const_cast<InputT *>(d_in) + block_offset +
                               (threadIdx.x * VECTOR_LOAD_LENGTH);
    CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, VectorT, OffsetT>
      d_vec_in(reinterpret_cast<VectorT *>(d_in_unqualified));

    // Load items as vector items
    InputT input_items[ITEMS_PER_THREAD];
    VectorT *vec_items = reinterpret_cast<VectorT *>(input_items);
#pragma unroll
    for (int i = 0; i < WORDS; ++i)
    {
      vec_items[i] = d_vec_in[BLOCK_THREADS * i];
    }

    // Convert from input type to output type
    AccumT items[ITEMS_PER_THREAD];
#pragma unroll
    for (int i = 0; i < ITEMS_PER_THREAD; ++i)
    {
      items[i] = input_items[i];
    }

    // Reduce items within each thread stripe
    thread_aggregate =
      (IS_FIRST_TILE)
        ? internal::ThreadReduce(items, reduction_op)
        : internal::ThreadReduce(items, reduction_op, thread_aggregate);
  }

  /**
   * Consume a partial tile of input
   * @param block_offset The offset the tile to consume
   * @param valid_items The number of valid items in the tile
   * @param is_full_tile Whether or not this is a full tile
   * @param can_vectorize Whether or not we can vectorize loads
   */
  template <int IS_FIRST_TILE, int CAN_VECTORIZE>
  __device__ __forceinline__ void
  ConsumeTile(AccumT &thread_aggregate,
              OffsetT block_offset,
              int valid_items,
              Int2Type<false> /*is_full_tile*/,
              Int2Type<CAN_VECTORIZE> /*can_vectorize*/)
  {
    // Partial tile
    int thread_offset = threadIdx.x;

    // Read first item
    if ((IS_FIRST_TILE) && (thread_offset < valid_items))
    {
      thread_aggregate = d_wrapped_in[block_offset + thread_offset];
      thread_offset += BLOCK_THREADS;
    }

    // Continue reading items (block-striped)
    while (thread_offset < valid_items)
    {
      InputT item(d_wrapped_in[block_offset + thread_offset]);

      thread_aggregate = reduction_op(thread_aggregate, item);
      thread_offset += BLOCK_THREADS;
    }
  }

  //---------------------------------------------------------------
  // Consume a contiguous segment of tiles
  //---------------------------------------------------------------------

  /**
   * @brief Reduce a contiguous segment of input tiles
   * @param even_share GridEvenShare descriptor
   * @param can_vectorize Whether or not we can vectorize loads
   */
  template <int CAN_VECTORIZE>
  __device__ __forceinline__ AccumT
  ConsumeRange(GridEvenShare<OffsetT> &even_share,
               Int2Type<CAN_VECTORIZE> can_vectorize)
  {
    AccumT thread_aggregate{};

    if (even_share.block_end - even_share.block_offset < TILE_ITEMS)
    {
      // First tile isn't full (not all threads have valid items)
      int valid_items = even_share.block_end - even_share.block_offset;
      ConsumeTile<true>(thread_aggregate,
                        even_share.block_offset,
                        valid_items,
                        Int2Type<false>(),
                        can_vectorize);
      return BlockReduceT(temp_storage.reduce)
        .Reduce(thread_aggregate, reduction_op, valid_items);
    }

    // Extracting this into a function saves 8% of generated kernel size by allowing to reuse
    // the block reduction below. This also workaround hang in nvcc.
    ConsumeFullTileRange(thread_aggregate, even_share, can_vectorize);

    // Compute block-wide reduction (all threads have valid items)
    return BlockReduceT(temp_storage.reduce)
      .Reduce(thread_aggregate, reduction_op);
  }

  /**
   * @brief Reduce a contiguous segment of input tiles
   * @param[in] block_offset Threadblock begin offset (inclusive)
   * @param[in] block_end Threadblock end offset (exclusive)
   */
  __device__ __forceinline__ AccumT ConsumeRange(OffsetT block_offset,
                                                 OffsetT block_end)
  {
    GridEvenShare<OffsetT> even_share;
    even_share.template BlockInit<TILE_ITEMS>(block_offset, block_end);

    return (IsAligned(d_in + block_offset, Int2Type<ATTEMPT_VECTORIZATION>()))
             ? ConsumeRange(even_share,
                            Int2Type < true && ATTEMPT_VECTORIZATION > ())
             : ConsumeRange(even_share,
                            Int2Type < false && ATTEMPT_VECTORIZATION > ());
  }

  /**
   * Reduce a contiguous segment of input tiles
   * @param[in] even_share GridEvenShare descriptor
   */
  __device__ __forceinline__ AccumT
  ConsumeTiles(GridEvenShare<OffsetT> &even_share)
  {
    // Initialize GRID_MAPPING_STRIP_MINE even-share descriptor for this thread block
    even_share.template BlockInit<TILE_ITEMS, GRID_MAPPING_STRIP_MINE>();

    return (IsAligned(d_in, Int2Type<ATTEMPT_VECTORIZATION>()))
             ? ConsumeRange(even_share,
                            Int2Type < true && ATTEMPT_VECTORIZATION > ())
             : ConsumeRange(even_share,
                            Int2Type < false && ATTEMPT_VECTORIZATION > ());
  }

private:
  /**
   * @brief Reduce a contiguous segment of input tiles with more than `TILE_ITEMS` elements
   * @param even_share GridEvenShare descriptor
   * @param can_vectorize Whether or not we can vectorize loads
   */
  template <int CAN_VECTORIZE>
  __device__ __forceinline__ void
  ConsumeFullTileRange(AccumT &thread_aggregate,
                       GridEvenShare<OffsetT> &even_share,
                       Int2Type<CAN_VECTORIZE> can_vectorize)
  {
    // At least one full block
    ConsumeTile<true>(thread_aggregate,
                      even_share.block_offset,
                      TILE_ITEMS,
                      Int2Type<true>(),
                      can_vectorize);

    if (even_share.block_end - even_share.block_offset < even_share.block_stride)
    {
      // Exit early to handle offset overflow
      return;
    }

    even_share.block_offset += even_share.block_stride;

    // Consume subsequent full tiles of input, at least one full tile was processed, so
    // `even_share.block_end >= TILE_ITEMS`
    while (even_share.block_offset <= even_share.block_end - TILE_ITEMS)
    {
      ConsumeTile<false>(thread_aggregate,
                         even_share.block_offset,
                         TILE_ITEMS,
                         Int2Type<true>(),
                         can_vectorize);

      if (even_share.block_end - even_share.block_offset < even_share.block_stride)
      {
        // Exit early to handle offset overflow
        return;
      }

      even_share.block_offset += even_share.block_stride;
    }

    // Consume a partially-full tile
    if (even_share.block_offset < even_share.block_end)
    {
      int valid_items = even_share.block_end - even_share.block_offset;
      ConsumeTile<false>(thread_aggregate,
                         even_share.block_offset,
                         valid_items,
                         Int2Type<false>(),
                         can_vectorize);
    }
  }
};

CUB_NAMESPACE_END