1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* @file cub::AgentReduce implements a stateful abstraction of CUDA thread
* blocks for participating in device-wide reduction.
*/
#pragma once
#include <cub/config.cuh>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <iterator>
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
#include <cub/detail/type_traits.cuh>
#include <cub/grid/grid_even_share.cuh>
#include <cub/grid/grid_mapping.cuh>
#include <cub/iterator/cache_modified_input_iterator.cuh>
#include <cub/util_type.cuh>
CUB_NAMESPACE_BEGIN
/******************************************************************************
* Tuning policy types
******************************************************************************/
/**
* Parameterizable tuning policy type for AgentReduce
* @tparam NOMINAL_BLOCK_THREADS_4B Threads per thread block
* @tparam NOMINAL_ITEMS_PER_THREAD_4B Items per thread (per tile of input)
* @tparam ComputeT Dominant compute type
* @tparam _VECTOR_LOAD_LENGTH Number of items per vectorized load
* @tparam _BLOCK_ALGORITHM Cooperative block-wide reduction algorithm to use
* @tparam _LOAD_MODIFIER Cache load modifier for reading input elements
*/
template <int NOMINAL_BLOCK_THREADS_4B,
int NOMINAL_ITEMS_PER_THREAD_4B,
typename ComputeT,
int _VECTOR_LOAD_LENGTH,
BlockReduceAlgorithm _BLOCK_ALGORITHM,
CacheLoadModifier _LOAD_MODIFIER,
typename ScalingType = MemBoundScaling<NOMINAL_BLOCK_THREADS_4B,
NOMINAL_ITEMS_PER_THREAD_4B,
ComputeT>>
struct AgentReducePolicy : ScalingType
{
/// Number of items per vectorized load
static constexpr int VECTOR_LOAD_LENGTH = _VECTOR_LOAD_LENGTH;
/// Cooperative block-wide reduction algorithm to use
static constexpr BlockReduceAlgorithm BLOCK_ALGORITHM = _BLOCK_ALGORITHM;
/// Cache load modifier for reading input elements
static constexpr CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER;
};
/******************************************************************************
* Thread block abstractions
******************************************************************************/
/**
* @brief AgentReduce implements a stateful abstraction of CUDA thread blocks
* for participating in device-wide reduction .
*
* Each thread reduces only the values it loads. If `FIRST_TILE`, this partial
* reduction is stored into `thread_aggregate`. Otherwise it is accumulated
* into `thread_aggregate`.
*
* @tparam AgentReducePolicy
* Parameterized AgentReducePolicy tuning policy type
*
* @tparam InputIteratorT
* Random-access iterator type for input
*
* @tparam OutputIteratorT
* Random-access iterator type for output
*
* @tparam OffsetT
* Signed integer type for global offsets
*
* @tparam ReductionOp
* Binary reduction operator type having member
* `auto operator()(T &&a, U &&b)`
*
* @tparam AccumT
* The type of intermediate accumulator (according to P2322R6)
*/
template <typename AgentReducePolicy,
typename InputIteratorT,
typename OutputIteratorT,
typename OffsetT,
typename ReductionOp,
typename AccumT>
struct AgentReduce
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
/// The input value type
using InputT = cub::detail::value_t<InputIteratorT>;
/// Vector type of InputT for data movement
using VectorT =
typename CubVector<InputT, AgentReducePolicy::VECTOR_LOAD_LENGTH>::Type;
/// Input iterator wrapper type (for applying cache modifier)
// Wrap the native input pointer with CacheModifiedInputIterator
// or directly use the supplied input iterator type
using WrappedInputIteratorT = cub::detail::conditional_t<
std::is_pointer<InputIteratorT>::value,
CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, InputT, OffsetT>,
InputIteratorT>;
/// Constants
static constexpr int BLOCK_THREADS = AgentReducePolicy::BLOCK_THREADS;
static constexpr int ITEMS_PER_THREAD = AgentReducePolicy::ITEMS_PER_THREAD;
static constexpr int TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD;
static constexpr int VECTOR_LOAD_LENGTH =
CUB_MIN(ITEMS_PER_THREAD, AgentReducePolicy::VECTOR_LOAD_LENGTH);
// Can vectorize according to the policy if the input iterator is a native
// pointer to a primitive type
static constexpr bool ATTEMPT_VECTORIZATION = (VECTOR_LOAD_LENGTH > 1) &&
(ITEMS_PER_THREAD % VECTOR_LOAD_LENGTH == 0) &&
(std::is_pointer<InputIteratorT>::value) &&
Traits<InputT>::PRIMITIVE;
static constexpr CacheLoadModifier LOAD_MODIFIER =
AgentReducePolicy::LOAD_MODIFIER;
static constexpr BlockReduceAlgorithm BLOCK_ALGORITHM =
AgentReducePolicy::BLOCK_ALGORITHM;
/// Parameterized BlockReduce primitive
using BlockReduceT =
BlockReduce<AccumT, BLOCK_THREADS, AgentReducePolicy::BLOCK_ALGORITHM>;
/// Shared memory type required by this thread block
struct _TempStorage
{
typename BlockReduceT::TempStorage reduce;
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage>
{};
//---------------------------------------------------------------------
// Per-thread fields
//---------------------------------------------------------------------
_TempStorage &temp_storage; ///< Reference to temp_storage
InputIteratorT d_in; ///< Input data to reduce
WrappedInputIteratorT d_wrapped_in; ///< Wrapped input data to reduce
ReductionOp reduction_op; ///< Binary reduction operator
//---------------------------------------------------------------------
// Utility
//---------------------------------------------------------------------
// Whether or not the input is aligned with the vector type (specialized for
// types we can vectorize)
template <typename Iterator>
static __device__ __forceinline__ bool
IsAligned(Iterator d_in, Int2Type<true> /*can_vectorize*/)
{
return (size_t(d_in) & (sizeof(VectorT) - 1)) == 0;
}
// Whether or not the input is aligned with the vector type (specialized for
// types we cannot vectorize)
template <typename Iterator>
static __device__ __forceinline__ bool
IsAligned(Iterator /*d_in*/, Int2Type<false> /*can_vectorize*/)
{
return false;
}
//---------------------------------------------------------------------
// Constructor
//---------------------------------------------------------------------
/**
* @brief Constructor
* @param temp_storage Reference to temp_storage
* @param d_in Input data to reduce
* @param reduction_op Binary reduction operator
*/
__device__ __forceinline__ AgentReduce(TempStorage &temp_storage,
InputIteratorT d_in,
ReductionOp reduction_op)
: temp_storage(temp_storage.Alias())
, d_in(d_in)
, d_wrapped_in(d_in)
, reduction_op(reduction_op)
{}
//---------------------------------------------------------------------
// Tile consumption
//---------------------------------------------------------------------
/**
* @brief Consume a full tile of input (non-vectorized)
* @param block_offset The offset the tile to consume
* @param valid_items The number of valid items in the tile
* @param is_full_tile Whether or not this is a full tile
* @param can_vectorize Whether or not we can vectorize loads
*/
template <int IS_FIRST_TILE>
__device__ __forceinline__ void ConsumeTile(AccumT &thread_aggregate,
OffsetT block_offset,
int /*valid_items*/,
Int2Type<true> /*is_full_tile*/,
Int2Type<false> /*can_vectorize*/)
{
AccumT items[ITEMS_PER_THREAD];
// Load items in striped fashion
LoadDirectStriped<BLOCK_THREADS>(threadIdx.x,
d_wrapped_in + block_offset,
items);
// Reduce items within each thread stripe
thread_aggregate =
(IS_FIRST_TILE)
? internal::ThreadReduce(items, reduction_op)
: internal::ThreadReduce(items, reduction_op, thread_aggregate);
}
/**
* Consume a full tile of input (vectorized)
* @param block_offset The offset the tile to consume
* @param valid_items The number of valid items in the tile
* @param is_full_tile Whether or not this is a full tile
* @param can_vectorize Whether or not we can vectorize loads
*/
template <int IS_FIRST_TILE>
__device__ __forceinline__ void ConsumeTile(AccumT &thread_aggregate,
OffsetT block_offset,
int /*valid_items*/,
Int2Type<true> /*is_full_tile*/,
Int2Type<true> /*can_vectorize*/)
{
// Alias items as an array of VectorT and load it in striped fashion
enum
{
WORDS = ITEMS_PER_THREAD / VECTOR_LOAD_LENGTH
};
// Fabricate a vectorized input iterator
InputT *d_in_unqualified = const_cast<InputT *>(d_in) + block_offset +
(threadIdx.x * VECTOR_LOAD_LENGTH);
CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, VectorT, OffsetT>
d_vec_in(reinterpret_cast<VectorT *>(d_in_unqualified));
// Load items as vector items
InputT input_items[ITEMS_PER_THREAD];
VectorT *vec_items = reinterpret_cast<VectorT *>(input_items);
#pragma unroll
for (int i = 0; i < WORDS; ++i)
{
vec_items[i] = d_vec_in[BLOCK_THREADS * i];
}
// Convert from input type to output type
AccumT items[ITEMS_PER_THREAD];
#pragma unroll
for (int i = 0; i < ITEMS_PER_THREAD; ++i)
{
items[i] = input_items[i];
}
// Reduce items within each thread stripe
thread_aggregate =
(IS_FIRST_TILE)
? internal::ThreadReduce(items, reduction_op)
: internal::ThreadReduce(items, reduction_op, thread_aggregate);
}
/**
* Consume a partial tile of input
* @param block_offset The offset the tile to consume
* @param valid_items The number of valid items in the tile
* @param is_full_tile Whether or not this is a full tile
* @param can_vectorize Whether or not we can vectorize loads
*/
template <int IS_FIRST_TILE, int CAN_VECTORIZE>
__device__ __forceinline__ void
ConsumeTile(AccumT &thread_aggregate,
OffsetT block_offset,
int valid_items,
Int2Type<false> /*is_full_tile*/,
Int2Type<CAN_VECTORIZE> /*can_vectorize*/)
{
// Partial tile
int thread_offset = threadIdx.x;
// Read first item
if ((IS_FIRST_TILE) && (thread_offset < valid_items))
{
thread_aggregate = d_wrapped_in[block_offset + thread_offset];
thread_offset += BLOCK_THREADS;
}
// Continue reading items (block-striped)
while (thread_offset < valid_items)
{
InputT item(d_wrapped_in[block_offset + thread_offset]);
thread_aggregate = reduction_op(thread_aggregate, item);
thread_offset += BLOCK_THREADS;
}
}
//---------------------------------------------------------------
// Consume a contiguous segment of tiles
//---------------------------------------------------------------------
/**
* @brief Reduce a contiguous segment of input tiles
* @param even_share GridEvenShare descriptor
* @param can_vectorize Whether or not we can vectorize loads
*/
template <int CAN_VECTORIZE>
__device__ __forceinline__ AccumT
ConsumeRange(GridEvenShare<OffsetT> &even_share,
Int2Type<CAN_VECTORIZE> can_vectorize)
{
AccumT thread_aggregate{};
if (even_share.block_end - even_share.block_offset < TILE_ITEMS)
{
// First tile isn't full (not all threads have valid items)
int valid_items = even_share.block_end - even_share.block_offset;
ConsumeTile<true>(thread_aggregate,
even_share.block_offset,
valid_items,
Int2Type<false>(),
can_vectorize);
return BlockReduceT(temp_storage.reduce)
.Reduce(thread_aggregate, reduction_op, valid_items);
}
// Extracting this into a function saves 8% of generated kernel size by allowing to reuse
// the block reduction below. This also workaround hang in nvcc.
ConsumeFullTileRange(thread_aggregate, even_share, can_vectorize);
// Compute block-wide reduction (all threads have valid items)
return BlockReduceT(temp_storage.reduce)
.Reduce(thread_aggregate, reduction_op);
}
/**
* @brief Reduce a contiguous segment of input tiles
* @param[in] block_offset Threadblock begin offset (inclusive)
* @param[in] block_end Threadblock end offset (exclusive)
*/
__device__ __forceinline__ AccumT ConsumeRange(OffsetT block_offset,
OffsetT block_end)
{
GridEvenShare<OffsetT> even_share;
even_share.template BlockInit<TILE_ITEMS>(block_offset, block_end);
return (IsAligned(d_in + block_offset, Int2Type<ATTEMPT_VECTORIZATION>()))
? ConsumeRange(even_share,
Int2Type < true && ATTEMPT_VECTORIZATION > ())
: ConsumeRange(even_share,
Int2Type < false && ATTEMPT_VECTORIZATION > ());
}
/**
* Reduce a contiguous segment of input tiles
* @param[in] even_share GridEvenShare descriptor
*/
__device__ __forceinline__ AccumT
ConsumeTiles(GridEvenShare<OffsetT> &even_share)
{
// Initialize GRID_MAPPING_STRIP_MINE even-share descriptor for this thread block
even_share.template BlockInit<TILE_ITEMS, GRID_MAPPING_STRIP_MINE>();
return (IsAligned(d_in, Int2Type<ATTEMPT_VECTORIZATION>()))
? ConsumeRange(even_share,
Int2Type < true && ATTEMPT_VECTORIZATION > ())
: ConsumeRange(even_share,
Int2Type < false && ATTEMPT_VECTORIZATION > ());
}
private:
/**
* @brief Reduce a contiguous segment of input tiles with more than `TILE_ITEMS` elements
* @param even_share GridEvenShare descriptor
* @param can_vectorize Whether or not we can vectorize loads
*/
template <int CAN_VECTORIZE>
__device__ __forceinline__ void
ConsumeFullTileRange(AccumT &thread_aggregate,
GridEvenShare<OffsetT> &even_share,
Int2Type<CAN_VECTORIZE> can_vectorize)
{
// At least one full block
ConsumeTile<true>(thread_aggregate,
even_share.block_offset,
TILE_ITEMS,
Int2Type<true>(),
can_vectorize);
if (even_share.block_end - even_share.block_offset < even_share.block_stride)
{
// Exit early to handle offset overflow
return;
}
even_share.block_offset += even_share.block_stride;
// Consume subsequent full tiles of input, at least one full tile was processed, so
// `even_share.block_end >= TILE_ITEMS`
while (even_share.block_offset <= even_share.block_end - TILE_ITEMS)
{
ConsumeTile<false>(thread_aggregate,
even_share.block_offset,
TILE_ITEMS,
Int2Type<true>(),
can_vectorize);
if (even_share.block_end - even_share.block_offset < even_share.block_stride)
{
// Exit early to handle offset overflow
return;
}
even_share.block_offset += even_share.block_stride;
}
// Consume a partially-full tile
if (even_share.block_offset < even_share.block_end)
{
int valid_items = even_share.block_end - even_share.block_offset;
ConsumeTile<false>(thread_aggregate,
even_share.block_offset,
valid_items,
Int2Type<false>(),
can_vectorize);
}
}
};
CUB_NAMESPACE_END
|