File: agent_scan.cuh

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (596 lines) | stat: -rw-r--r-- 19,454 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2022, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * @file cub::AgentScan implements a stateful abstraction of CUDA thread blocks
 *       for participating in device-wide prefix scan .
 */

#pragma once

#include <cub/config.cuh>

#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
#  pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
#  pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
#  pragma system_header
#endif // no system header

#include <cub/agent/single_pass_scan_operators.cuh>
#include <cub/block/block_load.cuh>
#include <cub/block/block_scan.cuh>
#include <cub/block/block_store.cuh>
#include <cub/grid/grid_queue.cuh>
#include <cub/iterator/cache_modified_input_iterator.cuh>

#include <iterator>

CUB_NAMESPACE_BEGIN

/******************************************************************************
 * Tuning policy types
 ******************************************************************************/

/**
 * @brief Parameterizable tuning policy type for AgentScan
 *
 * @tparam NOMINAL_BLOCK_THREADS_4B
 *   Threads per thread block
 *
 * @tparam NOMINAL_ITEMS_PER_THREAD_4B
 *   Items per thread (per tile of input)
 *
 * @tparam ComputeT
 *   Dominant compute type
 *
 * @tparam _LOAD_ALGORITHM
 *   The BlockLoad algorithm to use
 *
 * @tparam _LOAD_MODIFIER
 *   Cache load modifier for reading input elements
 *
 * @tparam _STORE_ALGORITHM
 *   The BlockStore algorithm to use
 *
 * @tparam _SCAN_ALGORITHM
 *   The BlockScan algorithm to use
 *
 * @tparam DelayConstructorT
 *   Implementation detail, do not specify directly, requirements on the
 *   content of this type are subject to breaking change.
 */
template <int NOMINAL_BLOCK_THREADS_4B,
          int NOMINAL_ITEMS_PER_THREAD_4B,
          typename ComputeT,
          BlockLoadAlgorithm _LOAD_ALGORITHM,
          CacheLoadModifier _LOAD_MODIFIER,
          BlockStoreAlgorithm _STORE_ALGORITHM,
          BlockScanAlgorithm _SCAN_ALGORITHM,
          typename ScalingType = MemBoundScaling<NOMINAL_BLOCK_THREADS_4B,
                                                 NOMINAL_ITEMS_PER_THREAD_4B,
                                                 ComputeT>,
          typename DelayConstructorT = detail::default_delay_constructor_t<ComputeT>>
struct AgentScanPolicy : ScalingType
{
  static constexpr BlockLoadAlgorithm LOAD_ALGORITHM   = _LOAD_ALGORITHM;
  static constexpr CacheLoadModifier LOAD_MODIFIER     = _LOAD_MODIFIER;
  static constexpr BlockStoreAlgorithm STORE_ALGORITHM = _STORE_ALGORITHM;
  static constexpr BlockScanAlgorithm SCAN_ALGORITHM   = _SCAN_ALGORITHM;

  struct detail
  {
    using delay_constructor_t = DelayConstructorT;
  };
};

/******************************************************************************
 * Thread block abstractions
 ******************************************************************************/

/**
 * @brief AgentScan implements a stateful abstraction of CUDA thread blocks for
 *        participating in device-wide prefix scan.
 * @tparam AgentScanPolicyT
 *   Parameterized AgentScanPolicyT tuning policy type
 *
 * @tparam InputIteratorT
 *   Random-access input iterator type
 *
 * @tparam OutputIteratorT
 *   Random-access output iterator type
 *
 * @tparam ScanOpT
 *   Scan functor type
 *
 * @tparam InitValueT
 *   The init_value element for ScanOpT type (cub::NullType for inclusive scan)
 *
 * @tparam OffsetT
 *   Signed integer type for global offsets
 *
 */
template <typename AgentScanPolicyT,
          typename InputIteratorT,
          typename OutputIteratorT,
          typename ScanOpT,
          typename InitValueT,
          typename OffsetT,
          typename AccumT>
struct AgentScan
{
  //---------------------------------------------------------------------
  // Types and constants
  //---------------------------------------------------------------------

  // The input value type
  using InputT = cub::detail::value_t<InputIteratorT>;

  // Tile status descriptor interface type
  using ScanTileStateT = ScanTileState<AccumT>;

  // Input iterator wrapper type (for applying cache modifier)
  // Wrap the native input pointer with CacheModifiedInputIterator
  // or directly use the supplied input iterator type
  using WrappedInputIteratorT = cub::detail::conditional_t<
    std::is_pointer<InputIteratorT>::value,
    CacheModifiedInputIterator<AgentScanPolicyT::LOAD_MODIFIER, InputT, OffsetT>,
    InputIteratorT>;

  // Constants
  enum
  {
    // Inclusive scan if no init_value type is provided
    IS_INCLUSIVE     = std::is_same<InitValueT, NullType>::value,
    BLOCK_THREADS    = AgentScanPolicyT::BLOCK_THREADS,
    ITEMS_PER_THREAD = AgentScanPolicyT::ITEMS_PER_THREAD,
    TILE_ITEMS       = BLOCK_THREADS * ITEMS_PER_THREAD,
  };

  // Parameterized BlockLoad type
  typedef BlockLoad<AccumT,
                    AgentScanPolicyT::BLOCK_THREADS,
                    AgentScanPolicyT::ITEMS_PER_THREAD,
                    AgentScanPolicyT::LOAD_ALGORITHM>
    BlockLoadT;

  // Parameterized BlockStore type
  typedef BlockStore<AccumT,
                     AgentScanPolicyT::BLOCK_THREADS,
                     AgentScanPolicyT::ITEMS_PER_THREAD,
                     AgentScanPolicyT::STORE_ALGORITHM>
    BlockStoreT;

  // Parameterized BlockScan type
  typedef BlockScan<AccumT,
                    AgentScanPolicyT::BLOCK_THREADS,
                    AgentScanPolicyT::SCAN_ALGORITHM>
    BlockScanT;

  // Callback type for obtaining tile prefix during block scan
  using DelayConstructorT = typename AgentScanPolicyT::detail::delay_constructor_t;
  using TilePrefixCallbackOpT =
    TilePrefixCallbackOp<AccumT, ScanOpT, ScanTileStateT, 0 /* PTX */, DelayConstructorT>;

  // Stateful BlockScan prefix callback type for managing a running total while
  // scanning consecutive tiles
  typedef BlockScanRunningPrefixOp<AccumT, ScanOpT> RunningPrefixCallbackOp;

  // Shared memory type for this thread block
  union _TempStorage
  {
    // Smem needed for tile loading
    typename BlockLoadT::TempStorage load;

    // Smem needed for tile storing
    typename BlockStoreT::TempStorage store;

    struct ScanStorage
    {
      // Smem needed for cooperative prefix callback
      typename TilePrefixCallbackOpT::TempStorage prefix;

      // Smem needed for tile scanning
      typename BlockScanT::TempStorage scan;
    } scan_storage;
  };

  // Alias wrapper allowing storage to be unioned
  struct TempStorage : Uninitialized<_TempStorage>
  {};

  //---------------------------------------------------------------------
  // Per-thread fields
  //---------------------------------------------------------------------

  _TempStorage &temp_storage; ///< Reference to temp_storage
  WrappedInputIteratorT d_in; ///< Input data
  OutputIteratorT d_out;      ///< Output data
  ScanOpT scan_op;            ///< Binary scan operator
  InitValueT init_value;      ///< The init_value element for ScanOpT

  //---------------------------------------------------------------------
  // Block scan utility methods
  //---------------------------------------------------------------------

  /**
   * Exclusive scan specialization (first tile)
   */
  __device__ __forceinline__ void ScanTile(AccumT (&items)[ITEMS_PER_THREAD],
                                           AccumT init_value,
                                           ScanOpT scan_op,
                                           AccumT &block_aggregate,
                                           Int2Type<false> /*is_inclusive*/)
  {
    BlockScanT(temp_storage.scan_storage.scan)
      .ExclusiveScan(items, items, init_value, scan_op, block_aggregate);
    block_aggregate = scan_op(init_value, block_aggregate);
  }

  /**
   * Inclusive scan specialization (first tile)
   */
  __device__ __forceinline__ void ScanTile(AccumT (&items)[ITEMS_PER_THREAD],
                                           InitValueT /*init_value*/,
                                           ScanOpT scan_op,
                                           AccumT &block_aggregate,
                                           Int2Type<true> /*is_inclusive*/)
  {
    BlockScanT(temp_storage.scan_storage.scan)
      .InclusiveScan(items, items, scan_op, block_aggregate);
  }

  /**
   * Exclusive scan specialization (subsequent tiles)
   */
  template <typename PrefixCallback>
  __device__ __forceinline__ void ScanTile(AccumT (&items)[ITEMS_PER_THREAD],
                                           ScanOpT scan_op,
                                           PrefixCallback &prefix_op,
                                           Int2Type<false> /*is_inclusive*/)
  {
    BlockScanT(temp_storage.scan_storage.scan)
      .ExclusiveScan(items, items, scan_op, prefix_op);
  }

  /**
   * Inclusive scan specialization (subsequent tiles)
   */
  template <typename PrefixCallback>
  __device__ __forceinline__ void ScanTile(AccumT (&items)[ITEMS_PER_THREAD],
                                           ScanOpT scan_op,
                                           PrefixCallback &prefix_op,
                                           Int2Type<true> /*is_inclusive*/)
  {
    BlockScanT(temp_storage.scan_storage.scan)
      .InclusiveScan(items, items, scan_op, prefix_op);
  }

  //---------------------------------------------------------------------
  // Constructor
  //---------------------------------------------------------------------

  /**
   * @param temp_storage
   *   Reference to temp_storage
   *
   * @param d_in
   *   Input data
   *
   * @param d_out
   *   Output data
   *
   * @param scan_op
   *   Binary scan operator
   *
   * @param init_value
   *   Initial value to seed the exclusive scan
   */
  __device__ __forceinline__ AgentScan(TempStorage &temp_storage,
                                       InputIteratorT d_in,
                                       OutputIteratorT d_out,
                                       ScanOpT scan_op,
                                       InitValueT init_value)
      : temp_storage(temp_storage.Alias())
      , d_in(d_in)
      , d_out(d_out)
      , scan_op(scan_op)
      , init_value(init_value)
  {}

  //---------------------------------------------------------------------
  // Cooperatively scan a device-wide sequence of tiles with other CTAs
  //---------------------------------------------------------------------

  /**
   * Process a tile of input (dynamic chained scan)
   * @tparam IS_LAST_TILE
   *   Whether the current tile is the last tile
   *
   * @param num_remaining
   *   Number of global input items remaining (including this tile)
   *
   * @param tile_idx
   *   Tile index
   *
   * @param tile_offset
   *   Tile offset
   *
   * @param tile_state
   *   Global tile state descriptor
   */
  template <bool IS_LAST_TILE>
  __device__ __forceinline__ void ConsumeTile(OffsetT num_remaining,
                                              int tile_idx,
                                              OffsetT tile_offset,
                                              ScanTileStateT &tile_state)
  {
    // Load items
    AccumT items[ITEMS_PER_THREAD];

    if (IS_LAST_TILE)
    {
      // Fill last element with the first element because collectives are
      // not suffix guarded.
      BlockLoadT(temp_storage.load)
        .Load(d_in + tile_offset, items, num_remaining, *(d_in + tile_offset));
    }
    else
    {
      BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items);
    }

    CTA_SYNC();

    // Perform tile scan
    if (tile_idx == 0)
    {
      // Scan first tile
      AccumT block_aggregate;
      ScanTile(items,
               init_value,
               scan_op,
               block_aggregate,
               Int2Type<IS_INCLUSIVE>());

      if ((!IS_LAST_TILE) && (threadIdx.x == 0))
      {
        tile_state.SetInclusive(0, block_aggregate);
      }
    }
    else
    {
      // Scan non-first tile
      TilePrefixCallbackOpT prefix_op(tile_state,
                                      temp_storage.scan_storage.prefix,
                                      scan_op,
                                      tile_idx);
      ScanTile(items, scan_op, prefix_op, Int2Type<IS_INCLUSIVE>());
    }

    CTA_SYNC();

    // Store items
    if (IS_LAST_TILE)
    {
      BlockStoreT(temp_storage.store)
        .Store(d_out + tile_offset, items, num_remaining);
    }
    else
    {
      BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items);
    }
  }

  /**
   * @brief Scan tiles of items as part of a dynamic chained scan
   *
   * @param num_items
   *   Total number of input items
   *
   * @param tile_state
   *   Global tile state descriptor
   *
   * @param start_tile
   *   The starting tile for the current grid
   */
  __device__ __forceinline__ void ConsumeRange(OffsetT num_items,
                                               ScanTileStateT &tile_state,
                                               int start_tile)
  {
    // Blocks are launched in increasing order, so just assign one tile per
    // block

    // Current tile index
    int tile_idx = start_tile + blockIdx.x;

    // Global offset for the current tile
    OffsetT tile_offset = OffsetT(TILE_ITEMS) * tile_idx;

    // Remaining items (including this tile)
    OffsetT num_remaining = num_items - tile_offset;

    if (num_remaining > TILE_ITEMS)
    {
      // Not last tile
      ConsumeTile<false>(num_remaining, tile_idx, tile_offset, tile_state);
    }
    else if (num_remaining > 0)
    {
      // Last tile
      ConsumeTile<true>(num_remaining, tile_idx, tile_offset, tile_state);
    }
  }

  //---------------------------------------------------------------------------
  // Scan an sequence of consecutive tiles (independent of other thread blocks)
  //---------------------------------------------------------------------------

  /**
   * @brief Process a tile of input
   *
   * @param tile_offset
   *   Tile offset
   *
   * @param prefix_op
   *   Running prefix operator
   *
   * @param valid_items
   *   Number of valid items in the tile
   */
  template <bool IS_FIRST_TILE, bool IS_LAST_TILE>
  __device__ __forceinline__ void ConsumeTile(OffsetT tile_offset,
                                              RunningPrefixCallbackOp &prefix_op,
                                              int valid_items = TILE_ITEMS)
  {
    // Load items
    AccumT items[ITEMS_PER_THREAD];

    if (IS_LAST_TILE)
    {
      // Fill last element with the first element because collectives are
      // not suffix guarded.
      BlockLoadT(temp_storage.load)
        .Load(d_in + tile_offset, items, valid_items, *(d_in + tile_offset));
    }
    else
    {
      BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items);
    }

    CTA_SYNC();

    // Block scan
    if (IS_FIRST_TILE)
    {
      AccumT block_aggregate;
      ScanTile(items,
               init_value,
               scan_op,
               block_aggregate,
               Int2Type<IS_INCLUSIVE>());
      prefix_op.running_total = block_aggregate;
    }
    else
    {
      ScanTile(items, scan_op, prefix_op, Int2Type<IS_INCLUSIVE>());
    }

    CTA_SYNC();

    // Store items
    if (IS_LAST_TILE)
    {
      BlockStoreT(temp_storage.store)
        .Store(d_out + tile_offset, items, valid_items);
    }
    else
    {
      BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items);
    }
  }

  /**
   * @brief Scan a consecutive share of input tiles
   *
   * @param[in] range_offset
   *   Threadblock begin offset (inclusive)
   *
   * @param[in] range_end
   *   Threadblock end offset (exclusive)
   */
  __device__ __forceinline__ void ConsumeRange(OffsetT range_offset,
                                               OffsetT range_end)
  {
    BlockScanRunningPrefixOp<AccumT, ScanOpT> prefix_op(scan_op);

    if (range_offset + TILE_ITEMS <= range_end)
    {
      // Consume first tile of input (full)
      ConsumeTile<true, true>(range_offset, prefix_op);
      range_offset += TILE_ITEMS;

      // Consume subsequent full tiles of input
      while (range_offset + TILE_ITEMS <= range_end)
      {
        ConsumeTile<false, true>(range_offset, prefix_op);
        range_offset += TILE_ITEMS;
      }

      // Consume a partially-full tile
      if (range_offset < range_end)
      {
        int valid_items = range_end - range_offset;
        ConsumeTile<false, false>(range_offset, prefix_op, valid_items);
      }
    }
    else
    {
      // Consume the first tile of input (partially-full)
      int valid_items = range_end - range_offset;
      ConsumeTile<true, false>(range_offset, prefix_op, valid_items);
    }
  }

  /**
   * @brief Scan a consecutive share of input tiles, seeded with the
   *        specified prefix value
   * @param[in] range_offset
   *   Threadblock begin offset (inclusive)
   *
   * @param[in] range_end
   *   Threadblock end offset (exclusive)
   *
   * @param[in] prefix
   *   The prefix to apply to the scan segment
   */
  __device__ __forceinline__ void ConsumeRange(OffsetT range_offset,
                                               OffsetT range_end,
                                               AccumT prefix)
  {
    BlockScanRunningPrefixOp<AccumT, ScanOpT> prefix_op(prefix, scan_op);

    // Consume full tiles of input
    while (range_offset + TILE_ITEMS <= range_end)
    {
      ConsumeTile<true, false>(range_offset, prefix_op);
      range_offset += TILE_ITEMS;
    }

    // Consume a partially-full tile
    if (range_offset < range_end)
    {
      int valid_items = range_end - range_offset;
      ConsumeTile<false, false>(range_offset, prefix_op, valid_items);
    }
  }
};

CUB_NAMESPACE_END