1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
|
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* @file cub::DeviceReduce provides device-wide, parallel operations for
* computing a reduction across a sequence of data items residing within
* device-accessible memory.
*/
#pragma once
#include <cub/config.cuh>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <iterator>
#include <limits>
#include <cub/detail/choose_offset.cuh>
#include <cub/device/dispatch/dispatch_reduce.cuh>
#include <cub/device/dispatch/dispatch_reduce_by_key.cuh>
#include <cub/iterator/arg_index_input_iterator.cuh>
#include <cub/util_deprecated.cuh>
CUB_NAMESPACE_BEGIN
//! @ingroup SingleModule
//!
//! @rst
//! DeviceReduce provides device-wide, parallel operations for computing
//! a reduction across a sequence of data items residing within
//! device-accessible memory.
//!
//! .. image:: ../img/reduce_logo.png
//! :align: center
//!
//! Overview
//! ====================================
//! A `reduction <http://en.wikipedia.org/wiki/Reduce_(higher-order_function)>`_
//! (or *fold*) uses a binary combining operator to compute a single aggregate
//! from a sequence of input elements.
//!
//! Usage Considerations
//! ====================================
//! @cdp_class{DeviceReduce}
//!
//! Performance
//! ====================================
//! @linear_performance{reduction, reduce-by-key, and run-length encode}
//!
//! The following chart illustrates DeviceReduce::Sum
//! performance across different CUDA architectures for \p int32 keys.
//!
//! .. image:: ../img/reduce_int32.png
//! :align: center
//!
//! @par
//! The following chart illustrates DeviceReduce::ReduceByKey (summation)
//! performance across different CUDA architectures for `fp32` values. Segments
//! are identified by `int32` keys, and have lengths uniformly sampled
//! from `[1, 1000]`.
//!
//! .. image:: ../img/reduce_by_key_fp32_len_500.png
//! :align: center
//!
//! @endrst
struct DeviceReduce
{
/**
* @brief Computes a device-wide reduction using the specified binary
* `reduction_op` functor and initial value `init`.
*
* @par
* - Does not support binary reduction operators that are non-commutative.
* - Provides "run-to-run" determinism for pseudo-associative reduction
* (e.g., addition of floating point types) on the same GPU device.
* However, results for pseudo-associative reduction may be inconsistent
* from one device to a another device of a different compute-capability
* because CUB can employ different tile-sizing for different architectures.
* - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
* - @devicestorage
*
* @par Snippet
* The code snippet below illustrates a user-defined min-reduction of a
* device vector of `int` data elements.
* @par
* @code
* #include <cub/cub.cuh>
* // or equivalently <cub/device/device_radix_sort.cuh>
*
* // CustomMin functor
* struct CustomMin
* {
* template <typename T>
* __device__ __forceinline__
* T operator()(const T &a, const T &b) const {
* return (b < a) ? b : a;
* }
* };
*
* // Declare, allocate, and initialize device-accessible pointers for
* // input and output
* int num_items; // e.g., 7
* int *d_in; // e.g., [8, 6, 7, 5, 3, 0, 9]
* int *d_out; // e.g., [-]
* CustomMin min_op;
* int init; // e.g., INT_MAX
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceReduce::Reduce(
* d_temp_storage, temp_storage_bytes,
* d_in, d_out, num_items, min_op, init);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run reduction
* cub::DeviceReduce::Reduce(
* d_temp_storage, temp_storage_bytes,
* d_in, d_out, num_items, min_op, init);
*
* // d_out <-- [0]
* @endcode
*
* @tparam InputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* items \iterator
*
* @tparam OutputIteratorT
* **[inferred]** Output iterator type for recording the reduced
* aggregate \iterator
*
* @tparam ReductionOpT
* **[inferred]** Binary reduction functor type having member
* `T operator()(const T &a, const T &b)`
*
* @tparam T
* **[inferred]** Data element type that is convertible to the `value` type
* of `InputIteratorT`
*
* @tparam NumItemsT **[inferred]** Type of num_items
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param d_in[in]
* Pointer to the input sequence of data items
*
* @param d_out[out]
* Pointer to the output aggregate
*
* @param num_items[in]
* Total number of input items (i.e., length of `d_in`)
*
* @param reduction_op[in]
* Binary reduction functor
*
* @param[in] init
* Initial value of the reduction
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename InputIteratorT,
typename OutputIteratorT,
typename ReductionOpT,
typename T,
typename NumItemsT>
CUB_RUNTIME_FUNCTION static cudaError_t Reduce(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumItemsT num_items,
ReductionOpT reduction_op,
T init,
cudaStream_t stream = 0)
{
// Signed integer type for global offsets
using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;
return DispatchReduce<InputIteratorT,
OutputIteratorT,
OffsetT,
ReductionOpT,
T>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
static_cast<OffsetT>(num_items),
reduction_op,
init,
stream);
}
template <typename InputIteratorT,
typename OutputIteratorT,
typename ReductionOpT,
typename T>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION static cudaError_t Reduce(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
int num_items,
ReductionOpT reduction_op,
T init,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return Reduce<InputIteratorT, OutputIteratorT, ReductionOpT, T>(
d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
num_items,
reduction_op,
init,
stream);
}
/**
* @brief Computes a device-wide sum using the addition (`+`) operator.
*
* @par
* - Uses `0` as the initial value of the reduction.
* - Does not support \p + operators that are non-commutative..
* - Provides "run-to-run" determinism for pseudo-associative reduction
* (e.g., addition of floating point types) on the same GPU device.
* However, results for pseudo-associative reduction may be inconsistent
* from one device to a another device of a different compute-capability
* because CUB can employ different tile-sizing for different architectures.
* - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
* - @devicestorage
*
* @par Performance
* The following charts illustrate saturated sum-reduction performance across
* different CUDA architectures for `int32` and `int64` items, respectively.
*
* @image html reduce_int32.png
* @image html reduce_int64.png
*
* @par Snippet
* The code snippet below illustrates the sum-reduction of a device vector
* of `int` data elements.
* @par
* @code
* #include <cub/cub.cuh>
* // or equivalently <cub/device/device_radix_sort.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 7
* int *d_in; // e.g., [8, 6, 7, 5, 3, 0, 9]
* int *d_out; // e.g., [-]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceReduce::Sum(
* d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run sum-reduction
* cub::DeviceReduce::Sum(
* d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
*
* // d_out <-- [38]
* @endcode
*
* @tparam InputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* items \iterator
*
* @tparam OutputIteratorT
* **[inferred]** Output iterator type for recording the reduced
* aggregate \iterator
*
* @tparam NumItemsT **[inferred]** Type of num_items
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_in
* Pointer to the input sequence of data items
*
* @param[out] d_out
* Pointer to the output aggregate
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_in`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename InputIteratorT,
typename OutputIteratorT,
typename NumItemsT>
CUB_RUNTIME_FUNCTION static cudaError_t Sum(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumItemsT num_items,
cudaStream_t stream = 0)
{
// Signed integer type for global offsets
using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;
// The output value type
using OutputT =
cub::detail::non_void_value_t<OutputIteratorT,
cub::detail::value_t<InputIteratorT>>;
using InitT = OutputT;
return DispatchReduce<InputIteratorT,
OutputIteratorT,
OffsetT,
cub::Sum,
InitT>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
static_cast<OffsetT>(num_items),
cub::Sum(),
InitT{}, // zero-initialize
stream);
}
template <typename InputIteratorT, typename OutputIteratorT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION static cudaError_t Sum(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return Sum<InputIteratorT, OutputIteratorT>(d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
num_items,
stream);
}
/**
* @brief Computes a device-wide minimum using the less-than ('<') operator.
*
* @par
* - Uses `std::numeric_limits<T>::max()` as the initial value of the reduction.
* - Does not support `<` operators that are non-commutative.
* - Provides "run-to-run" determinism for pseudo-associative reduction
* (e.g., addition of floating point types) on the same GPU device.
* However, results for pseudo-associative reduction may be inconsistent
* from one device to a another device of a different compute-capability
* because CUB can employ different tile-sizing for different architectures.
* - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
* - @devicestorage
*
* @par Snippet
* The code snippet below illustrates the min-reduction of a device vector of
* `int` data elements.
* @par
* @code
* #include <cub/cub.cuh>
* // or equivalently <cub/device/device_radix_sort.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 7
* int *d_in; // e.g., [8, 6, 7, 5, 3, 0, 9]
* int *d_out; // e.g., [-]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceReduce::Min(
* d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run min-reduction
* cub::DeviceReduce::Min(
* d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
*
* // d_out <-- [0]
* @endcode
*
* @tparam InputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* items \iterator
*
* @tparam OutputIteratorT
* **[inferred]** Output iterator type for recording the reduced
* aggregate \iterator
*
* @tparam NumItemsT **[inferred]** Type of num_items
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_in
* Pointer to the input sequence of data items
*
* @param[out] d_out
* Pointer to the output aggregate
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_in`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename InputIteratorT,
typename OutputIteratorT,
typename NumItemsT>
CUB_RUNTIME_FUNCTION static cudaError_t Min(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumItemsT num_items,
cudaStream_t stream = 0)
{
// Signed integer type for global offsets
using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;
// The input value type
using InputT = cub::detail::value_t<InputIteratorT>;
using InitT = InputT;
return DispatchReduce<InputIteratorT,
OutputIteratorT,
OffsetT,
cub::Min,
InitT>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
static_cast<OffsetT>(num_items),
cub::Min(),
// replace with
// std::numeric_limits<T>::max() when
// C++11 support is more prevalent
Traits<InitT>::Max(),
stream);
}
template <typename InputIteratorT, typename OutputIteratorT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION static cudaError_t Min(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return Min<InputIteratorT, OutputIteratorT>(d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
num_items,
stream);
}
/**
* @brief Finds the first device-wide minimum using the less-than ('<')
* operator, also returning the index of that item.
*
* @par
* - The output value type of `d_out` is cub::KeyValuePair `<int, T>`
* (assuming the value type of `d_in` is `T`)
* - The minimum is written to `d_out.value` and its offset in the input
* array is written to `d_out.key`.
* - The `{1, std::numeric_limits<T>::max()}` tuple is produced for
* zero-length inputs
* - Does not support `<` operators that are non-commutative.
* - Provides "run-to-run" determinism for pseudo-associative reduction
* (e.g., addition of floating point types) on the same GPU device.
* However, results for pseudo-associative reduction may be inconsistent
* from one device to a another device of a different compute-capability
* because CUB can employ different tile-sizing for different architectures.
* - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
* - @devicestorage
*
* @par Snippet
* The code snippet below illustrates the argmin-reduction of a device vector
* of `int` data elements.
* @par
* @code
* #include <cub/cub.cuh>
* // or equivalently <cub/device/device_radix_sort.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 7
* int *d_in; // e.g., [8, 6, 7, 5, 3, 0, 9]
* KeyValuePair<int, int> *d_out; // e.g., [{-,-}]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceReduce::ArgMin(
* d_temp_storage, temp_storage_bytes, d_in, d_argmin, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run argmin-reduction
* cub::DeviceReduce::ArgMin(
* d_temp_storage, temp_storage_bytes, d_in, d_argmin, num_items);
*
* // d_out <-- [{5, 0}]
*
* @endcode
*
* @tparam InputIteratorT
* **[inferred]** Random-access input iterator type for reading input items
* (of some type `T`) \iterator
*
* @tparam OutputIteratorT
* **[inferred]** Output iterator type for recording the reduced aggregate
* (having value type `cub::KeyValuePair<int, T>`) \iterator
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to \p temp_storage_bytes and no work is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_in
* Pointer to the input sequence of data items
*
* @param[out] d_out
* Pointer to the output aggregate
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_in`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename InputIteratorT,
typename OutputIteratorT>
CUB_RUNTIME_FUNCTION static cudaError_t ArgMin(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
int num_items,
cudaStream_t stream = 0)
{
// Signed integer type for global offsets
using OffsetT = int;
// The input type
using InputValueT = cub::detail::value_t<InputIteratorT>;
// The output tuple type
using OutputTupleT =
cub::detail::non_void_value_t<OutputIteratorT, KeyValuePair<OffsetT, InputValueT>>;
using AccumT = OutputTupleT;
using InitT = detail::reduce::empty_problem_init_t<AccumT>;
// The output value type
using OutputValueT = typename OutputTupleT::Value;
// Wrapped input iterator to produce index-value <OffsetT, InputT> tuples
using ArgIndexInputIteratorT =
ArgIndexInputIterator<InputIteratorT, OffsetT, OutputValueT>;
ArgIndexInputIteratorT d_indexed_in(d_in);
// Initial value
// TODO Address https://github.com/NVIDIA/cub/issues/651
InitT initial_value{AccumT(1, Traits<InputValueT>::Max())};
return DispatchReduce<ArgIndexInputIteratorT,
OutputIteratorT,
OffsetT,
cub::ArgMin,
InitT,
AccumT>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_indexed_in,
d_out,
num_items,
cub::ArgMin(),
initial_value,
stream);
}
template <typename InputIteratorT, typename OutputIteratorT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION static cudaError_t ArgMin(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return ArgMin<InputIteratorT, OutputIteratorT>(d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
num_items,
stream);
}
/**
* @brief Computes a device-wide maximum using the greater-than ('>') operator.
*
* @par
* - Uses `std::numeric_limits<T>::lowest()` as the initial value of the
* reduction.
* - Does not support `>` operators that are non-commutative.
* - Provides "run-to-run" determinism for pseudo-associative reduction
* (e.g., addition of floating point types) on the same GPU device.
* However, results for pseudo-associative reduction may be inconsistent
* from one device to a another device of a different compute-capability
* because CUB can employ different tile-sizing for different architectures.
* - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
* - @devicestorage
*
* @par Snippet
* The code snippet below illustrates the max-reduction of a device vector of
* `int` data elements.
* @par
* @code
* #include <cub/cub.cuh>
* // or equivalently <cub/device/device_radix_sort.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 7
* int *d_in; // e.g., [8, 6, 7, 5, 3, 0, 9]
* int *d_out; // e.g., [-]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceReduce::Max(
* d_temp_storage, temp_storage_bytes, d_in, d_max, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run max-reduction
* cub::DeviceReduce::Max(
* d_temp_storage, temp_storage_bytes, d_in, d_max, num_items);
*
* // d_out <-- [9]
* @endcode
*
* @tparam InputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* items \iterator
*
* @tparam OutputIteratorT
* **[inferred]** Output iterator type for recording the reduced
* aggregate \iterator
*
* @tparam NumItemsT **[inferred]** Type of num_items
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_in
* Pointer to the input sequence of data items
*
* @param[out] d_out
* Pointer to the output aggregate
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_in`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename InputIteratorT,
typename OutputIteratorT,
typename NumItemsT>
CUB_RUNTIME_FUNCTION static cudaError_t Max(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumItemsT num_items,
cudaStream_t stream = 0)
{
// Signed integer type for global offsets
using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;
// The input value type
using InputT = cub::detail::value_t<InputIteratorT>;
using InitT = InputT;
return DispatchReduce<InputIteratorT,
OutputIteratorT,
OffsetT,
cub::Max,
InitT>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
static_cast<OffsetT>(num_items),
cub::Max(),
// replace with
// std::numeric_limits<T>::lowest()
// when C++11 support is more
// prevalent
Traits<InitT>::Lowest(),
stream);
}
template <typename InputIteratorT, typename OutputIteratorT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION static cudaError_t Max(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return Max<InputIteratorT, OutputIteratorT>(d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
num_items,
stream);
}
/**
* @brief Finds the first device-wide maximum using the greater-than ('>')
* operator, also returning the index of that item
*
* @par
* - The output value type of `d_out` is cub::KeyValuePair `<int, T>`
* (assuming the value type of `d_in` is `T`)
* - The maximum is written to `d_out.value` and its offset in the input
* array is written to `d_out.key`.
* - The `{1, std::numeric_limits<T>::lowest()}` tuple is produced for
* zero-length inputs
* - Does not support `>` operators that are non-commutative.
* - Provides "run-to-run" determinism for pseudo-associative reduction
* (e.g., addition of floating point types) on the same GPU device.
* However, results for pseudo-associative reduction may be inconsistent
* from one device to a another device of a different compute-capability
* because CUB can employ different tile-sizing for different architectures.
* - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
* - @devicestorage
*
* @par Snippet
* The code snippet below illustrates the argmax-reduction of a device vector
* of `int` data elements.
* @par
* @code
* #include <cub/cub.cuh>
* // or equivalently <cub/device/device_reduce.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 7
* int *d_in; // e.g., [8, 6, 7, 5, 3, 0, 9]
* KeyValuePair<int, int> *d_out; // e.g., [{-,-}]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceReduce::ArgMax(
* d_temp_storage, temp_storage_bytes, d_in, d_argmax, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run argmax-reduction
* cub::DeviceReduce::ArgMax(
* d_temp_storage, temp_storage_bytes, d_in, d_argmax, num_items);
*
* // d_out <-- [{6, 9}]
*
* @endcode
*
* @tparam InputIteratorT
* **[inferred]** Random-access input iterator type for reading input items
* (of some type \p T) \iterator
*
* @tparam OutputIteratorT
* **[inferred]** Output iterator type for recording the reduced aggregate
* (having value type `cub::KeyValuePair<int, T>`) \iterator
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_in
* Pointer to the input sequence of data items
*
* @param[out] d_out
* Pointer to the output aggregate
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_in`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename InputIteratorT,
typename OutputIteratorT>
CUB_RUNTIME_FUNCTION static cudaError_t ArgMax(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
int num_items,
cudaStream_t stream = 0)
{
// Signed integer type for global offsets
using OffsetT = int;
// The input type
using InputValueT = cub::detail::value_t<InputIteratorT>;
// The output tuple type
using OutputTupleT =
cub::detail::non_void_value_t<OutputIteratorT,
KeyValuePair<OffsetT, InputValueT>>;
using AccumT = OutputTupleT;
// The output value type
using OutputValueT = typename OutputTupleT::Value;
using InitT = detail::reduce::empty_problem_init_t<AccumT>;
// Wrapped input iterator to produce index-value <OffsetT, InputT> tuples
using ArgIndexInputIteratorT =
ArgIndexInputIterator<InputIteratorT, OffsetT, OutputValueT>;
ArgIndexInputIteratorT d_indexed_in(d_in);
// Initial value
// TODO Address https://github.com/NVIDIA/cub/issues/651
InitT initial_value{AccumT(1, Traits<InputValueT>::Lowest())};
return DispatchReduce<ArgIndexInputIteratorT,
OutputIteratorT,
OffsetT,
cub::ArgMax,
InitT,
AccumT>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_indexed_in,
d_out,
num_items,
cub::ArgMax(),
initial_value,
stream);
}
template <typename InputIteratorT, typename OutputIteratorT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION static cudaError_t ArgMax(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return ArgMax<InputIteratorT, OutputIteratorT>(d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
num_items,
stream);
}
/**
* @brief Reduces segments of values, where segments are demarcated by
* corresponding runs of identical keys.
*
* @par
* This operation computes segmented reductions within `d_values_in` using
* the specified binary `reduction_op` functor. The segments are identified
* by "runs" of corresponding keys in `d_keys_in`, where runs are maximal
* ranges of consecutive, identical keys. For the *i*<sup>th</sup> run
* encountered, the first key of the run and the corresponding value
* aggregate of that run are written to `d_unique_out[i] and
* `d_aggregates_out[i]`, respectively. The total number of runs encountered
* is written to `d_num_runs_out`.
*
* @par
* - The `==` equality operator is used to determine whether keys are
* equivalent
* - Provides "run-to-run" determinism for pseudo-associative reduction
* (e.g., addition of floating point types) on the same GPU device.
* However, results for pseudo-associative reduction may be inconsistent
* from one device to a another device of a different compute-capability
* because CUB can employ different tile-sizing for different architectures.
* - Let `out` be any of
* `[d_unique_out, d_unique_out + *d_num_runs_out)`
* `[d_aggregates_out, d_aggregates_out + *d_num_runs_out)`
* `d_num_runs_out`. The ranges represented by `out` shall not overlap
* `[d_keys_in, d_keys_in + num_items)`,
* `[d_values_in, d_values_in + num_items)` nor `out` in any way.
* - @devicestorage
*
* @par Performance
* The following chart illustrates reduction-by-key (sum) performance across
* different CUDA architectures for `fp32` and `fp64` values, respectively.
* Segments are identified by `int32` keys, and have lengths uniformly
* sampled from `[1, 1000]`.
*
* @image html reduce_by_key_fp32_len_500.png
* @image html reduce_by_key_fp64_len_500.png
*
* @par
* The following charts are similar, but with segment lengths uniformly
* sampled from [1,10]:
*
* @image html reduce_by_key_fp32_len_5.png
* @image html reduce_by_key_fp64_len_5.png
*
* @par Snippet
* The code snippet below illustrates the segmented reduction of `int` values
* grouped by runs of associated `int` keys.
* @par
* @code
* #include <cub/cub.cuh>
* // or equivalently <cub/device/device_reduce.cuh>
*
* // CustomMin functor
* struct CustomMin
* {
* template <typename T>
* CUB_RUNTIME_FUNCTION __forceinline__
* T operator()(const T &a, const T &b) const {
* return (b < a) ? b : a;
* }
* };
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 8
* int *d_keys_in; // e.g., [0, 2, 2, 9, 5, 5, 5, 8]
* int *d_values_in; // e.g., [0, 7, 1, 6, 2, 5, 3, 4]
* int *d_unique_out; // e.g., [-, -, -, -, -, -, -, -]
* int *d_aggregates_out; // e.g., [-, -, -, -, -, -, -, -]
* int *d_num_runs_out; // e.g., [-]
* CustomMin reduction_op;
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceReduce::ReduceByKey(
* d_temp_storage, temp_storage_bytes,
* d_keys_in, d_unique_out, d_values_in,
* d_aggregates_out, d_num_runs_out, reduction_op, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run reduce-by-key
* cub::DeviceReduce::ReduceByKey(
* d_temp_storage, temp_storage_bytes,
* d_keys_in, d_unique_out, d_values_in,
* d_aggregates_out, d_num_runs_out, reduction_op, num_items);
*
* // d_unique_out <-- [0, 2, 9, 5, 8]
* // d_aggregates_out <-- [0, 1, 6, 2, 4]
* // d_num_runs_out <-- [5]
* @endcode
*
* @tparam KeysInputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* keys \iterator
*
* @tparam UniqueOutputIteratorT
* **[inferred]** Random-access output iterator type for writing unique
* output keys \iterator
*
* @tparam ValuesInputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* values \iterator
*
* @tparam AggregatesOutputIterator
* **[inferred]** Random-access output iterator type for writing output
* value aggregates \iterator
*
* @tparam NumRunsOutputIteratorT
* **[inferred]** Output iterator type for recording the number of runs
* encountered \iterator
*
* @tparam ReductionOpT
* **[inferred]*8 Binary reduction functor type having member
* `T operator()(const T &a, const T &b)`
*
* @tparam NumItemsT **[inferred]** Type of num_items
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_keys_in
* Pointer to the input sequence of keys
*
* @param[out] d_unique_out
* Pointer to the output sequence of unique keys (one key per run)
*
* @param[in] d_values_in
* Pointer to the input sequence of corresponding values
*
* @param[out] d_aggregates_out
* Pointer to the output sequence of value aggregates
* (one aggregate per run)
*
* @param[out] d_num_runs_out
* Pointer to total number of runs encountered
* (i.e., the length of `d_unique_out`)
*
* @param[in] reduction_op
* Binary reduction functor
*
* @param[in] num_items
* Total number of associated key+value pairs
* (i.e., the length of `d_in_keys` and `d_in_values`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename KeysInputIteratorT,
typename UniqueOutputIteratorT,
typename ValuesInputIteratorT,
typename AggregatesOutputIteratorT,
typename NumRunsOutputIteratorT,
typename ReductionOpT,
typename NumItemsT>
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
ReduceByKey(void *d_temp_storage,
size_t &temp_storage_bytes,
KeysInputIteratorT d_keys_in,
UniqueOutputIteratorT d_unique_out,
ValuesInputIteratorT d_values_in,
AggregatesOutputIteratorT d_aggregates_out,
NumRunsOutputIteratorT d_num_runs_out,
ReductionOpT reduction_op,
NumItemsT num_items,
cudaStream_t stream = 0)
{
// Signed integer type for global offsets
using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;
// FlagT iterator type (not used)
// Selection op (not used)
// Default == operator
typedef Equality EqualityOp;
return DispatchReduceByKey<KeysInputIteratorT,
UniqueOutputIteratorT,
ValuesInputIteratorT,
AggregatesOutputIteratorT,
NumRunsOutputIteratorT,
EqualityOp,
ReductionOpT,
OffsetT>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_keys_in,
d_unique_out,
d_values_in,
d_aggregates_out,
d_num_runs_out,
EqualityOp(),
reduction_op,
static_cast<OffsetT>(num_items),
stream);
}
template <typename KeysInputIteratorT,
typename UniqueOutputIteratorT,
typename ValuesInputIteratorT,
typename AggregatesOutputIteratorT,
typename NumRunsOutputIteratorT,
typename ReductionOpT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
ReduceByKey(void *d_temp_storage,
size_t &temp_storage_bytes,
KeysInputIteratorT d_keys_in,
UniqueOutputIteratorT d_unique_out,
ValuesInputIteratorT d_values_in,
AggregatesOutputIteratorT d_aggregates_out,
NumRunsOutputIteratorT d_num_runs_out,
ReductionOpT reduction_op,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return ReduceByKey<KeysInputIteratorT,
UniqueOutputIteratorT,
ValuesInputIteratorT,
AggregatesOutputIteratorT,
NumRunsOutputIteratorT,
ReductionOpT>(d_temp_storage,
temp_storage_bytes,
d_keys_in,
d_unique_out,
d_values_in,
d_aggregates_out,
d_num_runs_out,
reduction_op,
num_items,
stream);
}
};
/**
* @example example_device_reduce.cu
*/
CUB_NAMESPACE_END
|