File: device_reduce.cuh

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (1222 lines) | stat: -rw-r--r-- 48,347 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2022, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * @file cub::DeviceReduce provides device-wide, parallel operations for
 *       computing a reduction across a sequence of data items residing within
 *       device-accessible memory.
 */

#pragma once

#include <cub/config.cuh>

#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
#  pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
#  pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
#  pragma system_header
#endif // no system header

#include <iterator>
#include <limits>

#include <cub/detail/choose_offset.cuh>
#include <cub/device/dispatch/dispatch_reduce.cuh>
#include <cub/device/dispatch/dispatch_reduce_by_key.cuh>
#include <cub/iterator/arg_index_input_iterator.cuh>
#include <cub/util_deprecated.cuh>

CUB_NAMESPACE_BEGIN


//! @ingroup SingleModule
//!
//! @rst
//! DeviceReduce provides device-wide, parallel operations for computing
//! a reduction across a sequence of data items residing within
//! device-accessible memory.
//!
//! .. image:: ../img/reduce_logo.png
//!     :align: center
//!
//! Overview
//! ====================================
//! A `reduction <http://en.wikipedia.org/wiki/Reduce_(higher-order_function)>`_
//! (or *fold*) uses a binary combining operator to compute a single aggregate
//! from a sequence of input elements.
//!
//! Usage Considerations
//! ====================================
//! @cdp_class{DeviceReduce}
//!
//! Performance
//! ====================================
//! @linear_performance{reduction, reduce-by-key, and run-length encode}
//!
//! The following chart illustrates DeviceReduce::Sum
//! performance across different CUDA architectures for \p int32 keys.
//!
//! .. image:: ../img/reduce_int32.png
//!     :align: center
//!
//! @par
//! The following chart illustrates DeviceReduce::ReduceByKey (summation)
//! performance across different CUDA architectures for `fp32` values. Segments
//! are identified by `int32` keys, and have lengths uniformly sampled
//! from `[1, 1000]`.
//!
//! .. image:: ../img/reduce_by_key_fp32_len_500.png
//!     :align: center
//!
//! @endrst
struct DeviceReduce
{
  /**
   * @brief Computes a device-wide reduction using the specified binary
   *        `reduction_op` functor and initial value `init`.
   *
   * @par
   * - Does not support binary reduction operators that are non-commutative.
   * - Provides "run-to-run" determinism for pseudo-associative reduction
   *   (e.g., addition of floating point types) on the same GPU device.
   *   However, results for pseudo-associative reduction may be inconsistent
   *   from one device to a another device of a different compute-capability
   *   because CUB can employ different tile-sizing for different architectures.
   * - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
   * - @devicestorage
   *
   * @par Snippet
   * The code snippet below illustrates a user-defined min-reduction of a
   * device vector of `int` data elements.
   * @par
   * @code
   * #include <cub/cub.cuh>
   * // or equivalently <cub/device/device_radix_sort.cuh>
   *
   * // CustomMin functor
   * struct CustomMin
   * {
   *     template <typename T>
   *     __device__ __forceinline__
   *     T operator()(const T &a, const T &b) const {
   *         return (b < a) ? b : a;
   *     }
   * };
   *
   * // Declare, allocate, and initialize device-accessible pointers for
   * // input and output
   * int          num_items;  // e.g., 7
   * int          *d_in;      // e.g., [8, 6, 7, 5, 3, 0, 9]
   * int          *d_out;     // e.g., [-]
   * CustomMin    min_op;
   * int          init;       // e.g., INT_MAX
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceReduce::Reduce(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_out, num_items, min_op, init);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run reduction
   * cub::DeviceReduce::Reduce(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_out, num_items, min_op, init);
   *
   * // d_out <-- [0]
   * @endcode
   *
   * @tparam InputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   items \iterator
   *
   * @tparam OutputIteratorT
   *   **[inferred]** Output iterator type for recording the reduced
   *   aggregate \iterator
   *
   * @tparam ReductionOpT
   *   **[inferred]** Binary reduction functor type having member
   *   `T operator()(const T &a, const T &b)`
   *
   * @tparam T
   *   **[inferred]** Data element type that is convertible to the `value` type
   *   of `InputIteratorT`
   *
   * @tparam NumItemsT **[inferred]** Type of num_items
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param d_in[in]
   *   Pointer to the input sequence of data items
   *
   * @param d_out[out]
   *   Pointer to the output aggregate
   *
   * @param num_items[in]
   *   Total number of input items (i.e., length of `d_in`)
   *
   * @param reduction_op[in]
   *   Binary reduction functor
   *
   * @param[in] init
   *   Initial value of the reduction
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename InputIteratorT,
            typename OutputIteratorT,
            typename ReductionOpT,
            typename T,
            typename NumItemsT>
  CUB_RUNTIME_FUNCTION static cudaError_t Reduce(void *d_temp_storage,
                                                 size_t &temp_storage_bytes,
                                                 InputIteratorT d_in,
                                                 OutputIteratorT d_out,
                                                 NumItemsT num_items,
                                                 ReductionOpT reduction_op,
                                                 T init,
                                                 cudaStream_t stream = 0)
  {
    // Signed integer type for global offsets
    using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;

    return DispatchReduce<InputIteratorT,
                          OutputIteratorT,
                          OffsetT,
                          ReductionOpT,
                          T>::Dispatch(d_temp_storage,
                                       temp_storage_bytes,
                                       d_in,
                                       d_out,
                                       static_cast<OffsetT>(num_items),
                                       reduction_op,
                                       init,
                                       stream);
  }

  template <typename InputIteratorT,
            typename OutputIteratorT,
            typename ReductionOpT,
            typename T>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION static cudaError_t Reduce(void *d_temp_storage,
                                                 size_t &temp_storage_bytes,
                                                 InputIteratorT d_in,
                                                 OutputIteratorT d_out,
                                                 int num_items,
                                                 ReductionOpT reduction_op,
                                                 T init,
                                                 cudaStream_t stream,
                                                 bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return Reduce<InputIteratorT, OutputIteratorT, ReductionOpT, T>(
      d_temp_storage,
      temp_storage_bytes,
      d_in,
      d_out,
      num_items,
      reduction_op,
      init,
      stream);
  }

  /**
   * @brief Computes a device-wide sum using the addition (`+`) operator.
   *
   * @par
   * - Uses `0` as the initial value of the reduction.
   * - Does not support \p + operators that are non-commutative..
   * - Provides "run-to-run" determinism for pseudo-associative reduction
   *   (e.g., addition of floating point types) on the same GPU device.
   *   However, results for pseudo-associative reduction may be inconsistent
   *   from one device to a another device of a different compute-capability
   *   because CUB can employ different tile-sizing for different architectures.
   * - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
   * - @devicestorage
   *
   * @par Performance
   * The following charts illustrate saturated sum-reduction performance across
   * different CUDA architectures for `int32` and `int64` items, respectively.
   *
   * @image html reduce_int32.png
   * @image html reduce_int64.png
   *
   * @par Snippet
   * The code snippet below illustrates the sum-reduction of a device vector
   * of `int` data elements.
   * @par
   * @code
   * #include <cub/cub.cuh>
   * // or equivalently <cub/device/device_radix_sort.cuh>
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int  num_items;      // e.g., 7
   * int  *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
   * int  *d_out;         // e.g., [-]
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceReduce::Sum(
   *   d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run sum-reduction
   * cub::DeviceReduce::Sum(
   *   d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
   *
   * // d_out <-- [38]
   * @endcode
   *
   * @tparam InputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   items \iterator
   *
   * @tparam OutputIteratorT
   *   **[inferred]** Output iterator type for recording the reduced
   *   aggregate \iterator
   *
   * @tparam NumItemsT **[inferred]** Type of num_items
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_in
   *   Pointer to the input sequence of data items
   *
   * @param[out] d_out
   *   Pointer to the output aggregate
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_in`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename InputIteratorT,
            typename OutputIteratorT,
            typename NumItemsT>
  CUB_RUNTIME_FUNCTION static cudaError_t Sum(void *d_temp_storage,
                                              size_t &temp_storage_bytes,
                                              InputIteratorT d_in,
                                              OutputIteratorT d_out,
                                              NumItemsT num_items,
                                              cudaStream_t stream = 0)
  {
    // Signed integer type for global offsets
    using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;

    // The output value type
    using OutputT =
      cub::detail::non_void_value_t<OutputIteratorT,
                                    cub::detail::value_t<InputIteratorT>>;

    using InitT = OutputT;

    return DispatchReduce<InputIteratorT,
                          OutputIteratorT,
                          OffsetT,
                          cub::Sum,
                          InitT>::Dispatch(d_temp_storage,
                                           temp_storage_bytes,
                                           d_in,
                                           d_out,
                                           static_cast<OffsetT>(num_items),
                                           cub::Sum(),
                                           InitT{}, // zero-initialize
                                           stream);
  }

  template <typename InputIteratorT, typename OutputIteratorT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION static cudaError_t Sum(void *d_temp_storage,
                                              size_t &temp_storage_bytes,
                                              InputIteratorT d_in,
                                              OutputIteratorT d_out,
                                              int num_items,
                                              cudaStream_t stream,
                                              bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return Sum<InputIteratorT, OutputIteratorT>(d_temp_storage,
                                                temp_storage_bytes,
                                                d_in,
                                                d_out,
                                                num_items,
                                                stream);
  }

  /**
   * @brief Computes a device-wide minimum using the less-than ('<') operator.
   *
   * @par
   * - Uses `std::numeric_limits<T>::max()` as the initial value of the reduction.
   * - Does not support `<` operators that are non-commutative.
   * - Provides "run-to-run" determinism for pseudo-associative reduction
   *   (e.g., addition of floating point types) on the same GPU device.
   *   However, results for pseudo-associative reduction may be inconsistent
   *   from one device to a another device of a different compute-capability
   *   because CUB can employ different tile-sizing for different architectures.
   * - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
   * - @devicestorage
   *
   * @par Snippet
   * The code snippet below illustrates the min-reduction of a device vector of
   * `int` data elements.
   * @par
   * @code
   * #include <cub/cub.cuh>
   * // or equivalently <cub/device/device_radix_sort.cuh>
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int  num_items;      // e.g., 7
   * int  *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
   * int  *d_out;         // e.g., [-]
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceReduce::Min(
   *   d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run min-reduction
   * cub::DeviceReduce::Min(
   *   d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
   *
   * // d_out <-- [0]
   * @endcode
   *
   * @tparam InputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   items \iterator
   *
   * @tparam OutputIteratorT
   *   **[inferred]** Output iterator type for recording the reduced
   *   aggregate \iterator
   *
   * @tparam NumItemsT **[inferred]** Type of num_items
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_in
   *   Pointer to the input sequence of data items
   *
   * @param[out] d_out
   *   Pointer to the output aggregate
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_in`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename InputIteratorT,
            typename OutputIteratorT,
            typename NumItemsT>
  CUB_RUNTIME_FUNCTION static cudaError_t Min(void *d_temp_storage,
                                              size_t &temp_storage_bytes,
                                              InputIteratorT d_in,
                                              OutputIteratorT d_out,
                                              NumItemsT num_items,
                                              cudaStream_t stream = 0)
  {
    // Signed integer type for global offsets
    using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;

    // The input value type
    using InputT = cub::detail::value_t<InputIteratorT>;

    using InitT = InputT;

    return DispatchReduce<InputIteratorT,
                          OutputIteratorT,
                          OffsetT,
                          cub::Min,
                          InitT>::Dispatch(d_temp_storage,
                                           temp_storage_bytes,
                                           d_in,
                                           d_out,
                                           static_cast<OffsetT>(num_items),
                                           cub::Min(),
                                           // replace with
                                           // std::numeric_limits<T>::max() when
                                           // C++11 support is more prevalent
                                           Traits<InitT>::Max(),
                                           stream);
  }

  template <typename InputIteratorT, typename OutputIteratorT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION static cudaError_t Min(void *d_temp_storage,
                                              size_t &temp_storage_bytes,
                                              InputIteratorT d_in,
                                              OutputIteratorT d_out,
                                              int num_items,
                                              cudaStream_t stream,
                                              bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return Min<InputIteratorT, OutputIteratorT>(d_temp_storage,
                                                temp_storage_bytes,
                                                d_in,
                                                d_out,
                                                num_items,
                                                stream);
  }

  /**
   * @brief Finds the first device-wide minimum using the less-than ('<')
   *        operator, also returning the index of that item.
   *
   * @par
   * - The output value type of `d_out` is cub::KeyValuePair `<int, T>`
   *   (assuming the value type of `d_in` is `T`)
   *   - The minimum is written to `d_out.value` and its offset in the input
   *     array is written to `d_out.key`.
   *   - The `{1, std::numeric_limits<T>::max()}` tuple is produced for
   *     zero-length inputs
   * - Does not support `<` operators that are non-commutative.
   * - Provides "run-to-run" determinism for pseudo-associative reduction
   *   (e.g., addition of floating point types) on the same GPU device.
   *   However, results for pseudo-associative reduction may be inconsistent
   *   from one device to a another device of a different compute-capability
   *   because CUB can employ different tile-sizing for different architectures.
   * - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
   * - @devicestorage
   *
   * @par Snippet
   * The code snippet below illustrates the argmin-reduction of a device vector
   * of `int` data elements.
   * @par
   * @code
   * #include <cub/cub.cuh>
   * // or equivalently <cub/device/device_radix_sort.cuh>
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int                      num_items;      // e.g., 7
   * int                      *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
   * KeyValuePair<int, int>   *d_out;         // e.g., [{-,-}]
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceReduce::ArgMin(
   *   d_temp_storage, temp_storage_bytes, d_in, d_argmin, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run argmin-reduction
   * cub::DeviceReduce::ArgMin(
   *   d_temp_storage, temp_storage_bytes, d_in, d_argmin, num_items);
   *
   * // d_out <-- [{5, 0}]
   *
   * @endcode
   *
   * @tparam InputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input items
   *   (of some type `T`) \iterator
   *
   * @tparam OutputIteratorT
   *   **[inferred]** Output iterator type for recording the reduced aggregate
   *   (having value type `cub::KeyValuePair<int, T>`) \iterator
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to \p temp_storage_bytes and no work is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_in
   *   Pointer to the input sequence of data items
   *
   * @param[out] d_out
   *   Pointer to the output aggregate
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_in`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename InputIteratorT,
            typename OutputIteratorT>
  CUB_RUNTIME_FUNCTION static cudaError_t ArgMin(void *d_temp_storage,
                                                 size_t &temp_storage_bytes,
                                                 InputIteratorT d_in,
                                                 OutputIteratorT d_out,
                                                 int num_items,
                                                 cudaStream_t stream = 0)
  {
    // Signed integer type for global offsets
    using OffsetT = int;

    // The input type
    using InputValueT = cub::detail::value_t<InputIteratorT>;

    // The output tuple type
    using OutputTupleT =
      cub::detail::non_void_value_t<OutputIteratorT, KeyValuePair<OffsetT, InputValueT>>;

    using AccumT = OutputTupleT;

    using InitT = detail::reduce::empty_problem_init_t<AccumT>;

    // The output value type
    using OutputValueT = typename OutputTupleT::Value;

    // Wrapped input iterator to produce index-value <OffsetT, InputT> tuples
    using ArgIndexInputIteratorT =
      ArgIndexInputIterator<InputIteratorT, OffsetT, OutputValueT>;

    ArgIndexInputIteratorT d_indexed_in(d_in);

    // Initial value
    // TODO Address https://github.com/NVIDIA/cub/issues/651
    InitT initial_value{AccumT(1, Traits<InputValueT>::Max())};

    return DispatchReduce<ArgIndexInputIteratorT,
                          OutputIteratorT,
                          OffsetT,
                          cub::ArgMin,
                          InitT,
                          AccumT>::Dispatch(d_temp_storage,
                                            temp_storage_bytes,
                                            d_indexed_in,
                                            d_out,
                                            num_items,
                                            cub::ArgMin(),
                                            initial_value,
                                            stream);
  }

  template <typename InputIteratorT, typename OutputIteratorT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION static cudaError_t ArgMin(void *d_temp_storage,
                                                 size_t &temp_storage_bytes,
                                                 InputIteratorT d_in,
                                                 OutputIteratorT d_out,
                                                 int num_items,
                                                 cudaStream_t stream,
                                                 bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return ArgMin<InputIteratorT, OutputIteratorT>(d_temp_storage,
                                                   temp_storage_bytes,
                                                   d_in,
                                                   d_out,
                                                   num_items,
                                                   stream);
  }

  /**
   * @brief Computes a device-wide maximum using the greater-than ('>') operator.
   *
   * @par
   * - Uses `std::numeric_limits<T>::lowest()` as the initial value of the
   *   reduction.
   * - Does not support `>` operators that are non-commutative.
   * - Provides "run-to-run" determinism for pseudo-associative reduction
   *   (e.g., addition of floating point types) on the same GPU device.
   *   However, results for pseudo-associative reduction may be inconsistent
   *   from one device to a another device of a different compute-capability
   *   because CUB can employ different tile-sizing for different architectures.
   * - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
   * - @devicestorage
   *
   * @par Snippet
   * The code snippet below illustrates the max-reduction of a device vector of
   * `int` data elements.
   * @par
   * @code
   * #include <cub/cub.cuh>
   * // or equivalently <cub/device/device_radix_sort.cuh>
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int  num_items;      // e.g., 7
   * int  *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
   * int  *d_out;         // e.g., [-]
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceReduce::Max(
   *   d_temp_storage, temp_storage_bytes, d_in, d_max, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run max-reduction
   * cub::DeviceReduce::Max(
   *   d_temp_storage, temp_storage_bytes, d_in, d_max, num_items);
   *
   * // d_out <-- [9]
   * @endcode
   *
   * @tparam InputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   items \iterator
   *
   * @tparam OutputIteratorT
   *   **[inferred]** Output iterator type for recording the reduced
   *   aggregate \iterator
   *
   * @tparam NumItemsT **[inferred]** Type of num_items
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_in
   *   Pointer to the input sequence of data items
   *
   * @param[out] d_out
   *   Pointer to the output aggregate
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_in`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename InputIteratorT,
            typename OutputIteratorT,
            typename NumItemsT>
  CUB_RUNTIME_FUNCTION static cudaError_t Max(void *d_temp_storage,
                                              size_t &temp_storage_bytes,
                                              InputIteratorT d_in,
                                              OutputIteratorT d_out,
                                              NumItemsT num_items,
                                              cudaStream_t stream = 0)
  {
    // Signed integer type for global offsets
    using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;

    // The input value type
    using InputT = cub::detail::value_t<InputIteratorT>;

    using InitT = InputT;

    return DispatchReduce<InputIteratorT,
                          OutputIteratorT,
                          OffsetT,
                          cub::Max,
                          InitT>::Dispatch(d_temp_storage,
                                           temp_storage_bytes,
                                           d_in,
                                           d_out,
                                           static_cast<OffsetT>(num_items),
                                           cub::Max(),
                                           // replace with
                                           // std::numeric_limits<T>::lowest()
                                           // when C++11 support is more
                                           // prevalent
                                           Traits<InitT>::Lowest(),
                                           stream);
  }

  template <typename InputIteratorT, typename OutputIteratorT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION static cudaError_t Max(void *d_temp_storage,
                                              size_t &temp_storage_bytes,
                                              InputIteratorT d_in,
                                              OutputIteratorT d_out,
                                              int num_items,
                                              cudaStream_t stream,
                                              bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return Max<InputIteratorT, OutputIteratorT>(d_temp_storage,
                                                temp_storage_bytes,
                                                d_in,
                                                d_out,
                                                num_items,
                                                stream);
  }

  /**
   * @brief Finds the first device-wide maximum using the greater-than ('>')
   *        operator, also returning the index of that item
   *
   * @par
   * - The output value type of `d_out` is cub::KeyValuePair `<int, T>`
   *   (assuming the value type of `d_in` is `T`)
   *   - The maximum is written to `d_out.value` and its offset in the input
   *     array is written to `d_out.key`.
   *   - The `{1, std::numeric_limits<T>::lowest()}` tuple is produced for
   *     zero-length inputs
   * - Does not support `>` operators that are non-commutative.
   * - Provides "run-to-run" determinism for pseudo-associative reduction
   *   (e.g., addition of floating point types) on the same GPU device.
   *   However, results for pseudo-associative reduction may be inconsistent
   *   from one device to a another device of a different compute-capability
   *   because CUB can employ different tile-sizing for different architectures.
   * - The range `[d_in, d_in + num_items)` shall not overlap `d_out`.
   * - @devicestorage
   *
   * @par Snippet
   * The code snippet below illustrates the argmax-reduction of a device vector
   * of `int` data elements.
   * @par
   * @code
   * #include <cub/cub.cuh>
   * // or equivalently <cub/device/device_reduce.cuh>
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int                      num_items;      // e.g., 7
   * int                      *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
   * KeyValuePair<int, int>   *d_out;         // e.g., [{-,-}]
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceReduce::ArgMax(
   *   d_temp_storage, temp_storage_bytes, d_in, d_argmax, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run argmax-reduction
   * cub::DeviceReduce::ArgMax(
   *   d_temp_storage, temp_storage_bytes, d_in, d_argmax, num_items);
   *
   * // d_out <-- [{6, 9}]
   *
   * @endcode
   *
   * @tparam InputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input items
   *   (of some type \p T) \iterator
   *
   * @tparam OutputIteratorT
   *   **[inferred]** Output iterator type for recording the reduced aggregate
   *   (having value type `cub::KeyValuePair<int, T>`) \iterator
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_in
   *   Pointer to the input sequence of data items
   *
   * @param[out] d_out
   *   Pointer to the output aggregate
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_in`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename InputIteratorT,
            typename OutputIteratorT>
  CUB_RUNTIME_FUNCTION static cudaError_t ArgMax(void *d_temp_storage,
                                                 size_t &temp_storage_bytes,
                                                 InputIteratorT d_in,
                                                 OutputIteratorT d_out,
                                                 int num_items,
                                                 cudaStream_t stream = 0)
  {
    // Signed integer type for global offsets
    using OffsetT = int;

    // The input type
    using InputValueT = cub::detail::value_t<InputIteratorT>;

    // The output tuple type
    using OutputTupleT =
      cub::detail::non_void_value_t<OutputIteratorT,
                                    KeyValuePair<OffsetT, InputValueT>>;

    using AccumT = OutputTupleT;

    // The output value type
    using OutputValueT = typename OutputTupleT::Value;

    using InitT = detail::reduce::empty_problem_init_t<AccumT>;

    // Wrapped input iterator to produce index-value <OffsetT, InputT> tuples
    using ArgIndexInputIteratorT =
      ArgIndexInputIterator<InputIteratorT, OffsetT, OutputValueT>;

    ArgIndexInputIteratorT d_indexed_in(d_in);

    // Initial value
    // TODO Address https://github.com/NVIDIA/cub/issues/651
    InitT initial_value{AccumT(1, Traits<InputValueT>::Lowest())};

    return DispatchReduce<ArgIndexInputIteratorT,
                          OutputIteratorT,
                          OffsetT,
                          cub::ArgMax,
                          InitT,
                          AccumT>::Dispatch(d_temp_storage,
                                            temp_storage_bytes,
                                            d_indexed_in,
                                            d_out,
                                            num_items,
                                            cub::ArgMax(),
                                            initial_value,
                                            stream);
  }

  template <typename InputIteratorT, typename OutputIteratorT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION static cudaError_t ArgMax(void *d_temp_storage,
                                                 size_t &temp_storage_bytes,
                                                 InputIteratorT d_in,
                                                 OutputIteratorT d_out,
                                                 int num_items,
                                                 cudaStream_t stream,
                                                 bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return ArgMax<InputIteratorT, OutputIteratorT>(d_temp_storage,
                                                   temp_storage_bytes,
                                                   d_in,
                                                   d_out,
                                                   num_items,
                                                   stream);
  }

  /**
   * @brief Reduces segments of values, where segments are demarcated by
   *        corresponding runs of identical keys.
   *
   * @par
   * This operation computes segmented reductions within `d_values_in` using
   * the specified binary `reduction_op` functor. The segments are identified
   * by "runs" of corresponding keys in `d_keys_in`, where runs are maximal
   * ranges of consecutive, identical keys. For the *i*<sup>th</sup> run
   * encountered, the first key of the run and the corresponding value
   * aggregate of that run are written to `d_unique_out[i] and
   * `d_aggregates_out[i]`, respectively. The total number of runs encountered
   * is written to `d_num_runs_out`.
   *
   * @par
   * - The `==` equality operator is used to determine whether keys are
   *   equivalent
   * - Provides "run-to-run" determinism for pseudo-associative reduction
   *   (e.g., addition of floating point types) on the same GPU device.
   *   However, results for pseudo-associative reduction may be inconsistent
   *   from one device to a another device of a different compute-capability
   *   because CUB can employ different tile-sizing for different architectures.
   * - Let `out` be any of
   *   `[d_unique_out, d_unique_out + *d_num_runs_out)`
   *   `[d_aggregates_out, d_aggregates_out + *d_num_runs_out)`
   *   `d_num_runs_out`. The ranges represented by `out` shall not overlap
   *   `[d_keys_in, d_keys_in + num_items)`,
   *   `[d_values_in, d_values_in + num_items)` nor `out` in any way.
   * - @devicestorage
   *
   * @par Performance
   * The following chart illustrates reduction-by-key (sum) performance across
   * different CUDA architectures for `fp32` and `fp64` values, respectively.
   * Segments are identified by `int32` keys, and have lengths uniformly
   * sampled from `[1, 1000]`.
   *
   * @image html reduce_by_key_fp32_len_500.png
   * @image html reduce_by_key_fp64_len_500.png
   *
   * @par
   * The following charts are similar, but with segment lengths uniformly
   * sampled from [1,10]:
   *
   * @image html reduce_by_key_fp32_len_5.png
   * @image html reduce_by_key_fp64_len_5.png
   *
   * @par Snippet
   * The code snippet below illustrates the segmented reduction of `int` values
   * grouped by runs of associated `int` keys.
   * @par
   * @code
   * #include <cub/cub.cuh>
   * // or equivalently <cub/device/device_reduce.cuh>
   *
   * // CustomMin functor
   * struct CustomMin
   * {
   *     template <typename T>
   *     CUB_RUNTIME_FUNCTION __forceinline__
   *     T operator()(const T &a, const T &b) const {
   *         return (b < a) ? b : a;
   *     }
   * };
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int          num_items;          // e.g., 8
   * int          *d_keys_in;         // e.g., [0, 2, 2, 9, 5, 5, 5, 8]
   * int          *d_values_in;       // e.g., [0, 7, 1, 6, 2, 5, 3, 4]
   * int          *d_unique_out;      // e.g., [-, -, -, -, -, -, -, -]
   * int          *d_aggregates_out;  // e.g., [-, -, -, -, -, -, -, -]
   * int          *d_num_runs_out;    // e.g., [-]
   * CustomMin    reduction_op;
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceReduce::ReduceByKey(
   *   d_temp_storage, temp_storage_bytes,
   *   d_keys_in, d_unique_out, d_values_in,
   *   d_aggregates_out, d_num_runs_out, reduction_op, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run reduce-by-key
   * cub::DeviceReduce::ReduceByKey(
   *   d_temp_storage, temp_storage_bytes,
   *   d_keys_in, d_unique_out, d_values_in,
   *   d_aggregates_out, d_num_runs_out, reduction_op, num_items);
   *
   * // d_unique_out      <-- [0, 2, 9, 5, 8]
   * // d_aggregates_out  <-- [0, 1, 6, 2, 4]
   * // d_num_runs_out    <-- [5]
   * @endcode
   *
   * @tparam KeysInputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   keys \iterator
   *
   * @tparam UniqueOutputIteratorT
   *   **[inferred]** Random-access output iterator type for writing unique
   *   output keys \iterator
   *
   * @tparam ValuesInputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   values \iterator
   *
   * @tparam AggregatesOutputIterator
   *   **[inferred]** Random-access output iterator type for writing output
   *   value aggregates \iterator
   *
   * @tparam NumRunsOutputIteratorT
   *   **[inferred]** Output iterator type for recording the number of runs
   *   encountered \iterator
   *
   * @tparam ReductionOpT
   *   **[inferred]*8 Binary reduction functor type having member
   *   `T operator()(const T &a, const T &b)`
   *
   * @tparam NumItemsT **[inferred]** Type of num_items
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_keys_in
   *   Pointer to the input sequence of keys
   *
   * @param[out] d_unique_out
   *   Pointer to the output sequence of unique keys (one key per run)
   *
   * @param[in] d_values_in
   *   Pointer to the input sequence of corresponding values
   *
   * @param[out] d_aggregates_out
   *   Pointer to the output sequence of value aggregates
   *   (one aggregate per run)
   *
   * @param[out] d_num_runs_out
   *   Pointer to total number of runs encountered
   *   (i.e., the length of `d_unique_out`)
   *
   * @param[in] reduction_op
   *   Binary reduction functor
   *
   * @param[in] num_items
   *   Total number of associated key+value pairs
   *   (i.e., the length of `d_in_keys` and `d_in_values`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename KeysInputIteratorT,
            typename UniqueOutputIteratorT,
            typename ValuesInputIteratorT,
            typename AggregatesOutputIteratorT,
            typename NumRunsOutputIteratorT,
            typename ReductionOpT,
            typename NumItemsT>
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  ReduceByKey(void *d_temp_storage,
              size_t &temp_storage_bytes,
              KeysInputIteratorT d_keys_in,
              UniqueOutputIteratorT d_unique_out,
              ValuesInputIteratorT d_values_in,
              AggregatesOutputIteratorT d_aggregates_out,
              NumRunsOutputIteratorT d_num_runs_out,
              ReductionOpT reduction_op,
              NumItemsT num_items,
              cudaStream_t stream = 0)
  {
    // Signed integer type for global offsets
    using OffsetT = typename detail::ChooseOffsetT<NumItemsT>::Type;

    // FlagT iterator type (not used)

    // Selection op (not used)

    // Default == operator
    typedef Equality EqualityOp;

    return DispatchReduceByKey<KeysInputIteratorT,
                               UniqueOutputIteratorT,
                               ValuesInputIteratorT,
                               AggregatesOutputIteratorT,
                               NumRunsOutputIteratorT,
                               EqualityOp,
                               ReductionOpT,
                               OffsetT>::Dispatch(d_temp_storage,
                                                  temp_storage_bytes,
                                                  d_keys_in,
                                                  d_unique_out,
                                                  d_values_in,
                                                  d_aggregates_out,
                                                  d_num_runs_out,
                                                  EqualityOp(),
                                                  reduction_op,
                                                  static_cast<OffsetT>(num_items),
                                                  stream);
  }

  template <typename KeysInputIteratorT,
            typename UniqueOutputIteratorT,
            typename ValuesInputIteratorT,
            typename AggregatesOutputIteratorT,
            typename NumRunsOutputIteratorT,
            typename ReductionOpT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  ReduceByKey(void *d_temp_storage,
              size_t &temp_storage_bytes,
              KeysInputIteratorT d_keys_in,
              UniqueOutputIteratorT d_unique_out,
              ValuesInputIteratorT d_values_in,
              AggregatesOutputIteratorT d_aggregates_out,
              NumRunsOutputIteratorT d_num_runs_out,
              ReductionOpT reduction_op,
              int num_items,
              cudaStream_t stream,
              bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return ReduceByKey<KeysInputIteratorT,
                       UniqueOutputIteratorT,
                       ValuesInputIteratorT,
                       AggregatesOutputIteratorT,
                       NumRunsOutputIteratorT,
                       ReductionOpT>(d_temp_storage,
                                     temp_storage_bytes,
                                     d_keys_in,
                                     d_unique_out,
                                     d_values_in,
                                     d_aggregates_out,
                                     d_num_runs_out,
                                     reduction_op,
                                     num_items,
                                     stream);
  }
};

/**
 * @example example_device_reduce.cu
 */

CUB_NAMESPACE_END