1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
|
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* @file cub::DeviceSelect provides device-wide, parallel operations for
* compacting selected items from sequences of data items residing within
* device-accessible memory.
*/
#pragma once
#include <cub/config.cuh>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <iterator>
#include <stdio.h>
#include <cub/device/dispatch/dispatch_select_if.cuh>
#include <cub/device/dispatch/dispatch_unique_by_key.cuh>
#include <cub/util_deprecated.cuh>
CUB_NAMESPACE_BEGIN
/**
* @brief DeviceSelect provides device-wide, parallel operations for compacting
* selected items from sequences of data items residing within
* device-accessible memory. 
* @ingroup SingleModule
*
* @par Overview
* These operations apply a selection criterion to selectively copy
* items from a specified input sequence to a compact output sequence.
*
* @par Usage Considerations
* @cdp_class{DeviceSelect}
*
* @par Performance
* @linear_performance{select-flagged, select-if, and select-unique}
*
* @par
* The following chart illustrates DeviceSelect::If performance across
* different CUDA architectures for `int32` items, where 50% of the items are
* randomly selected.
*
* @image html select_if_int32_50_percent.png
*
* @par
* The following chart illustrates DeviceSelect::Unique performance across
* different CUDA architectures for `int32` items where segments have lengths
* uniformly sampled from `[1, 1000]`.
*
* @image html select_unique_int32_len_500.png
*
* @par
* @plots_below
*
*/
struct DeviceSelect
{
/**
* @brief Uses the `d_flags` sequence to selectively copy the corresponding
* items from `d_in` into `d_out`. The total number of items selected
* is written to `d_num_selected_out`. 
*
* @par
* - The value type of `d_flags` must be castable to `bool` (e.g., `bool`,
* `char`, `int`, etc.).
* - Copies of the selected items are compacted into `d_out` and maintain
* their original relative ordering.
* - The range `[d_out, d_out + *d_num_selected_out)` shall not overlap
* `[d_in, d_in + num_items)`, `[d_flags, d_flags + num_items)` nor
* `d_num_selected_out` in any way.
* - @devicestorage
*
* @par Snippet
* The code snippet below illustrates the compaction of items selected from
* an `int` device vector.
* @par
* @code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers for input,
* // flags, and output
* int num_items; // e.g., 8
* int *d_in; // e.g., [1, 2, 3, 4, 5, 6, 7, 8]
* char *d_flags; // e.g., [1, 0, 0, 1, 0, 1, 1, 0]
* int *d_out; // e.g., [ , , , , , , , ]
* int *d_num_selected_out; // e.g., [ ]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSelect::Flagged(
* d_temp_storage, temp_storage_bytes,
* d_in, d_flags, d_out, d_num_selected_out, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run selection
* cub::DeviceSelect::Flagged(
* d_temp_storage, temp_storage_bytes,
* d_in, d_flags, d_out, d_num_selected_out, num_items);
*
* // d_out <-- [1, 4, 6, 7]
* // d_num_selected_out <-- [4]
*
* @endcode
*
* @tparam InputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* items \iterator
*
* @tparam FlagIterator
* **[inferred]** Random-access input iterator type for reading selection
* flags \iterator
*
* @tparam OutputIteratorT
* **[inferred]** Random-access output iterator type for writing selected
* items \iterator
*
* @tparam NumSelectedIteratorT
* **[inferred]** Output iterator type for recording the number of items
* selected \iterator
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_in
* Pointer to the input sequence of data items
*
* @param[in] d_flags
* Pointer to the input sequence of selection flags
*
* @param[out] d_out
* Pointer to the output sequence of selected data items
*
* @param[out] d_num_selected_out
* Pointer to the output total number of items selected
* (i.e., length of `d_out`)
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_in`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename InputIteratorT,
typename FlagIterator,
typename OutputIteratorT,
typename NumSelectedIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
Flagged(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
FlagIterator d_flags,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
int num_items,
cudaStream_t stream = 0)
{
using OffsetT = int; // Signed integer type for global offsets
using SelectOp = NullType; // Selection op (not used)
using EqualityOp = NullType; // Equality operator (not used)
return DispatchSelectIf<InputIteratorT,
FlagIterator,
OutputIteratorT,
NumSelectedIteratorT,
SelectOp,
EqualityOp,
OffsetT,
false>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_in,
d_flags,
d_out,
d_num_selected_out,
SelectOp(),
EqualityOp(),
num_items,
stream);
}
template <typename InputIteratorT,
typename FlagIterator,
typename OutputIteratorT,
typename NumSelectedIteratorT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
Flagged(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
FlagIterator d_flags,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return Flagged<InputIteratorT,
FlagIterator,
OutputIteratorT,
NumSelectedIteratorT>(d_temp_storage,
temp_storage_bytes,
d_in,
d_flags,
d_out,
d_num_selected_out,
num_items,
stream);
}
/**
* @brief Uses the `d_flags` sequence to selectively compact the items in
* `d_data`. The total number of items selected is written to
* `d_num_selected_out`. 
*
* @par
* - The value type of `d_flags` must be castable to `bool` (e.g., `bool`,
* `char`, `int`, etc.).
* - Copies of the selected items are compacted in-place and maintain
* their original relative ordering.
* - The `d_data` may equal `d_flags`. The range
* `[d_data, d_data + num_items)` shall not overlap
* `[d_flags, d_flags + num_items)` in any other way.
* - @devicestorage
*
* @par Snippet
* The code snippet below illustrates the compaction of items selected from
* an `int` device vector.
* @par
* @code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers for input,
* // flags, and output
* int num_items; // e.g., 8
* int *d_data; // e.g., [1, 2, 3, 4, 5, 6, 7, 8]
* char *d_flags; // e.g., [1, 0, 0, 1, 0, 1, 1, 0]
* int *d_num_selected_out; // e.g., [ ]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSelect::Flagged(
* d_temp_storage, temp_storage_bytes,
* d_in, d_flags, d_num_selected_out, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run selection
* cub::DeviceSelect::Flagged(
* d_temp_storage, temp_storage_bytes,
* d_in, d_flags, d_num_selected_out, num_items);
*
* // d_data <-- [1, 4, 6, 7]
* // d_num_selected_out <-- [4]
*
* @endcode
*
* @tparam IteratorT
* **[inferred]** Random-access iterator type for reading and writing
* selected items \iterator
*
* @tparam FlagIterator
* **[inferred]** Random-access input iterator type for reading selection
* flags \iterator
*
* @tparam NumSelectedIteratorT
* **[inferred]** Output iterator type for recording the number of items
* selected \iterator
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in,out] d_data
* Pointer to the sequence of data items
*
* @param[in] d_flags
* Pointer to the input sequence of selection flags
*
* @param[out] d_num_selected_out
* Pointer to the output total number of items selected
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_data`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename IteratorT,
typename FlagIterator,
typename NumSelectedIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
Flagged(void *d_temp_storage,
size_t &temp_storage_bytes,
IteratorT d_data,
FlagIterator d_flags,
NumSelectedIteratorT d_num_selected_out,
int num_items,
cudaStream_t stream = 0)
{
using OffsetT = int; // Signed integer type for global offsets
using SelectOp = NullType; // Selection op (not used)
using EqualityOp = NullType; // Equality operator (not used)
constexpr bool may_alias = true;
return DispatchSelectIf<IteratorT,
FlagIterator,
IteratorT,
NumSelectedIteratorT,
SelectOp,
EqualityOp,
OffsetT,
false,
may_alias>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_data, // in
d_flags,
d_data, // out
d_num_selected_out,
SelectOp(),
EqualityOp(),
num_items,
stream);
}
template <typename IteratorT,
typename FlagIterator,
typename NumSelectedIteratorT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
Flagged(void *d_temp_storage,
size_t &temp_storage_bytes,
IteratorT d_data,
FlagIterator d_flags,
NumSelectedIteratorT d_num_selected_out,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return Flagged<IteratorT, FlagIterator, NumSelectedIteratorT>(
d_temp_storage,
temp_storage_bytes,
d_data,
d_flags,
d_num_selected_out,
num_items,
stream);
}
/**
* @brief Uses the `select_op` functor to selectively copy items from `d_in`
* into `d_out`. The total number of items selected is written to
* `d_num_selected_out`. 
*
* @par
* - Copies of the selected items are compacted into `d_out` and maintain
* their original relative ordering.
* - The range `[d_out, d_out + *d_num_selected_out)` shall not overlap
* `[d_in, d_in + num_items)` nor `d_num_selected_out` in any way.
* - @devicestorage
*
* @par Performance
* The following charts illustrate saturated select-if performance across
* different CUDA architectures for `int32` and `int64` items, respectively.
* Items are selected with 50% probability.
*
* @image html select_if_int32_50_percent.png
* @image html select_if_int64_50_percent.png
*
* @par
* The following charts are similar, but 5% selection probability:
*
* @image html select_if_int32_5_percent.png
* @image html select_if_int64_5_percent.png
*
* @par Snippet
* The code snippet below illustrates the compaction of items selected from
* an `int` device vector.
* @par
* @code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh>
*
* // Functor type for selecting values less than some criteria
* struct LessThan
* {
* int compare;
*
* CUB_RUNTIME_FUNCTION __forceinline__
* LessThan(int compare) : compare(compare) {}
*
* CUB_RUNTIME_FUNCTION __forceinline__
* bool operator()(const int &a) const {
* return (a < compare);
* }
* };
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 8
* int *d_in; // e.g., [0, 2, 3, 9, 5, 2, 81, 8]
* int *d_out; // e.g., [ , , , , , , , ]
* int *d_num_selected_out; // e.g., [ ]
* LessThan select_op(7);
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSelect::If(
* d_temp_storage, temp_storage_bytes,
* d_in, d_out, d_num_selected_out, num_items, select_op);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run selection
* cub::DeviceSelect::If(
* d_temp_storage, temp_storage_bytes,
* d_in, d_out, d_num_selected_out, num_items, select_op);
*
* // d_out <-- [0, 2, 3, 5, 2]
* // d_num_selected_out <-- [5]
* @endcode
*
* @tparam InputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* items \iterator
*
* @tparam OutputIteratorT
* **[inferred]** Random-access output iterator type for writing selected
* items \iterator
*
* @tparam NumSelectedIteratorT
* **[inferred]** Output iterator type for recording the number of items
* selected \iterator
*
* @tparam SelectOp
* **[inferred]** Selection operator type having member
* `bool operator()(const T &a)`
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_in
* Pointer to the input sequence of data items
*
* @param[out] d_out
* Pointer to the output sequence of selected data items
*
* @param[out] d_num_selected_out
* Pointer to the output total number of items selected
* (i.e., length of `d_out`)
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_in`)
*
* @param[in] select_op
* Unary selection operator
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename InputIteratorT,
typename OutputIteratorT,
typename NumSelectedIteratorT,
typename SelectOp>
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
If(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
int num_items,
SelectOp select_op,
cudaStream_t stream = 0)
{
using OffsetT = int; // Signed integer type for global offsets
using FlagIterator = NullType *; // FlagT iterator type (not used)
using EqualityOp = NullType; // Equality operator (not used)
return DispatchSelectIf<InputIteratorT,
FlagIterator,
OutputIteratorT,
NumSelectedIteratorT,
SelectOp,
EqualityOp,
OffsetT,
false>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_in,
NULL,
d_out,
d_num_selected_out,
select_op,
EqualityOp(),
num_items,
stream);
}
template <typename InputIteratorT,
typename OutputIteratorT,
typename NumSelectedIteratorT,
typename SelectOp>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
If(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
int num_items,
SelectOp select_op,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return If<InputIteratorT, OutputIteratorT, NumSelectedIteratorT, SelectOp>(
d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
d_num_selected_out,
num_items,
select_op,
stream);
}
/**
* @brief Uses the `select_op` functor to selectively compact items in
* `d_data`. The total number of items selected is written to
* `d_num_selected_out`. 
*
* @par
* - Copies of the selected items are compacted in `d_data` and maintain
* their original relative ordering.
* - @devicestorage
*
* @par Snippet
* The code snippet below illustrates the compaction of items selected from
* an `int` device vector.
* @par
* @code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh>
*
* // Functor type for selecting values less than some criteria
* struct LessThan
* {
* int compare;
*
* CUB_RUNTIME_FUNCTION __forceinline__
* LessThan(int compare) : compare(compare) {}
*
* CUB_RUNTIME_FUNCTION __forceinline__
* bool operator()(const int &a) const {
* return (a < compare);
* }
* };
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 8
* int *d_data; // e.g., [0, 2, 3, 9, 5, 2, 81, 8]
* int *d_num_selected_out; // e.g., [ ]
* LessThan select_op(7);
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSelect::If(
* d_temp_storage, temp_storage_bytes,
* d_data, d_num_selected_out, num_items, select_op);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run selection
* cub::DeviceSelect::If(
* d_temp_storage, temp_storage_bytes,
* d_data, d_num_selected_out, num_items, select_op);
*
* // d_data <-- [0, 2, 3, 5, 2]
* // d_num_selected_out <-- [5]
* @endcode
*
* @tparam IteratorT
* **[inferred]** Random-access input iterator type for reading and
* writing items \iterator
*
* @tparam NumSelectedIteratorT
* **[inferred]** Output iterator type for recording the number of items
* selected \iterator
*
* @tparam SelectOp
* **[inferred]** Selection operator type having member
* `bool operator()(const T &a)`
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in,out] d_data
* Pointer to the sequence of data items
*
* @param[out] d_num_selected_out
* Pointer to the output total number of items selected
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_data`)
*
* @param[in] select_op
* Unary selection operator
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename IteratorT,
typename NumSelectedIteratorT,
typename SelectOp>
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
If(void *d_temp_storage,
size_t &temp_storage_bytes,
IteratorT d_data,
NumSelectedIteratorT d_num_selected_out,
int num_items,
SelectOp select_op,
cudaStream_t stream = 0)
{
using OffsetT = int; // Signed integer type for global offsets
using FlagIterator = NullType *; // FlagT iterator type (not used)
using EqualityOp = NullType; // Equality operator (not used)
constexpr bool may_alias = true;
return DispatchSelectIf<IteratorT,
FlagIterator,
IteratorT,
NumSelectedIteratorT,
SelectOp,
EqualityOp,
OffsetT,
false,
may_alias>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_data, // in
NULL,
d_data, // out
d_num_selected_out,
select_op,
EqualityOp(),
num_items,
stream);
}
template <typename IteratorT,
typename NumSelectedIteratorT,
typename SelectOp>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
If(void *d_temp_storage,
size_t &temp_storage_bytes,
IteratorT d_data,
NumSelectedIteratorT d_num_selected_out,
int num_items,
SelectOp select_op,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return If<IteratorT, NumSelectedIteratorT, SelectOp>(d_temp_storage,
temp_storage_bytes,
d_data,
d_num_selected_out,
num_items,
select_op,
stream);
}
/**
* @brief Given an input sequence `d_in` having runs of consecutive
* equal-valued keys, only the first key from each run is selectively
* copied to `d_out`. The total number of items selected is written to
* `d_num_selected_out`. 
*
* @par
* - The `==` equality operator is used to determine whether keys are
* equivalent
* - Copies of the selected items are compacted into `d_out` and maintain
* their original relative ordering.
* - The range `[d_out, d_out + *d_num_selected_out)` shall not overlap
* `[d_in, d_in + num_items)` nor `d_num_selected_out` in any way.
* - @devicestorage
*
* @par Performance
* The following charts illustrate saturated select-unique performance across different
* CUDA architectures for `int32` and `int64` items, respectively. Segments
* have lengths uniformly sampled from `[1, 1000]`.
*
* @image html select_unique_int32_len_500.png
* @image html select_unique_int64_len_500.png
*
* @par
* The following charts are similar, but with segment lengths uniformly
* sampled from `[1, 10]`:
*
* @image html select_unique_int32_len_5.png
* @image html select_unique_int64_len_5.png
*
* @par Snippet
* The code snippet below illustrates the compaction of items selected from
* an `int` device vector.
* @par
* @code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 8
* int *d_in; // e.g., [0, 2, 2, 9, 5, 5, 5, 8]
* int *d_out; // e.g., [ , , , , , , , ]
* int *d_num_selected_out; // e.g., [ ]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSelect::Unique(
* d_temp_storage, temp_storage_bytes,
* d_in, d_out, d_num_selected_out, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run selection
* cub::DeviceSelect::Unique(
* d_temp_storage, temp_storage_bytes,
* d_in, d_out, d_num_selected_out, num_items);
*
* // d_out <-- [0, 2, 9, 5, 8]
* // d_num_selected_out <-- [5]
* @endcode
*
* @tparam InputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* items \iterator
*
* @tparam OutputIteratorT
* **[inferred]** Random-access output iterator type for writing selected
* items \iterator
*
* @tparam NumSelectedIteratorT
* **[inferred]** Output iterator type for recording the number of items
* selected \iterator
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_in
* Pointer to the input sequence of data items
*
* @param[out] d_out
* Pointer to the output sequence of selected data items
*
* @param[out] d_num_selected_out
* Pointer to the output total number of items selected
* (i.e., length of `d_out`)
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_in`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename InputIteratorT,
typename OutputIteratorT,
typename NumSelectedIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
Unique(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
int num_items,
cudaStream_t stream = 0)
{
using OffsetT = int; // Signed integer type for global offsets
using FlagIterator = NullType *; // FlagT iterator type (not used)
using SelectOp = NullType; // Selection op (not used)
using EqualityOp = Equality; // Default == operator
return DispatchSelectIf<InputIteratorT,
FlagIterator,
OutputIteratorT,
NumSelectedIteratorT,
SelectOp,
EqualityOp,
OffsetT,
false>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_in,
NULL,
d_out,
d_num_selected_out,
SelectOp(),
EqualityOp(),
num_items,
stream);
}
template <typename InputIteratorT,
typename OutputIteratorT,
typename NumSelectedIteratorT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
Unique(void *d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
NumSelectedIteratorT d_num_selected_out,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return Unique<InputIteratorT, OutputIteratorT, NumSelectedIteratorT>(
d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
d_num_selected_out,
num_items,
stream);
}
/**
* @brief Given an input sequence `d_keys_in` and `d_values_in` with runs of
* key-value pairs with consecutive equal-valued keys, only the first
* key and its value from each run is selectively copied to
* `d_keys_out` and `d_values_out`. The total number of items selected
* is written to `d_num_selected_out`. 
*
* @par
* - The `==` equality operator is used to determine whether keys are
* equivalent
* - Copies of the selected items are compacted into `d_out` and maintain
* their original relative ordering.
* - In-place operations are not supported. There must be no overlap between
* any of the provided ranges:
* - `[d_keys_in, d_keys_in + num_items)`
* - `[d_keys_out, d_keys_out + *d_num_selected_out)`
* - `[d_values_in, d_values_in + num_items)`
* - `[d_values_out, d_values_out + *d_num_selected_out)`
* - `[d_num_selected_out, d_num_selected_out + 1)`
* - @devicestorage
*
* @par Snippet
* The code snippet below illustrates the compaction of items selected from
* an `int` device vector.
* @par
* @code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_select.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers
* // for input and output
* int num_items; // e.g., 8
* int *d_keys_in; // e.g., [0, 2, 2, 9, 5, 5, 5, 8]
* int *d_values_in; // e.g., [1, 2, 3, 4, 5, 6, 7, 8]
* int *d_keys_out; // e.g., [ , , , , , , , ]
* int *d_values_out; // e.g., [ , , , , , , , ]
* int *d_num_selected_out; // e.g., [ ]
* ...
*
* // Determine temporary device storage requirements
* void *d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSelect::UniqueByKey(
* d_temp_storage, temp_storage_bytes,
* d_keys_in, d_values_in,
* d_keys_out, d_values_out, d_num_selected_out, num_items);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run selection
* cub::DeviceSelect::UniqueByKey(
* d_temp_storage, temp_storage_bytes,
* d_keys_in, d_values_in,
* d_keys_out, d_values_out, d_num_selected_out, num_items);
*
* // d_keys_out <-- [0, 2, 9, 5, 8]
* // d_values_out <-- [1, 2, 4, 5, 8]
* // d_num_selected_out <-- [5]
* @endcode
*
* @tparam KeyInputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* keys \iterator
*
* @tparam ValueInputIteratorT
* **[inferred]** Random-access input iterator type for reading input
* values \iterator
*
* @tparam KeyOutputIteratorT
* **[inferred]** Random-access output iterator type for writing selected
* keys \iterator
*
* @tparam ValueOutputIteratorT
* **[inferred]** Random-access output iterator type for writing selected
* values \iterator
*
* @tparam NumSelectedIteratorT
* **[inferred]** Output iterator type for recording the number of items
* selected \iterator
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage. When `nullptr`, the
* required allocation size is written to `temp_storage_bytes` and no work
* is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of `d_temp_storage` allocation
*
* @param[in] d_keys_in
* Pointer to the input sequence of keys
*
* @param[in] d_values_in
* Pointer to the input sequence of values
*
* @param[out] d_keys_out
* Pointer to the output sequence of selected keys
*
* @param[out] d_values_out
* Pointer to the output sequence of selected values
*
* @param[out] d_num_selected_out
* Pointer to the total number of items selected (i.e., length of
* `d_keys_out` or `d_values_out`)
*
* @param[in] num_items
* Total number of input items (i.e., length of `d_keys_in` or
* `d_values_in`)
*
* @param[in] stream
* **[optional]** CUDA stream to launch kernels within.
* Default is stream<sub>0</sub>.
*/
template <typename KeyInputIteratorT,
typename ValueInputIteratorT,
typename KeyOutputIteratorT,
typename ValueOutputIteratorT,
typename NumSelectedIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
UniqueByKey(void *d_temp_storage,
size_t &temp_storage_bytes,
KeyInputIteratorT d_keys_in,
ValueInputIteratorT d_values_in,
KeyOutputIteratorT d_keys_out,
ValueOutputIteratorT d_values_out,
NumSelectedIteratorT d_num_selected_out,
int num_items,
cudaStream_t stream = 0)
{
using OffsetT = int;
using EqualityOp = Equality;
return DispatchUniqueByKey<KeyInputIteratorT,
ValueInputIteratorT,
KeyOutputIteratorT,
ValueOutputIteratorT,
NumSelectedIteratorT,
EqualityOp,
OffsetT>::Dispatch(d_temp_storage,
temp_storage_bytes,
d_keys_in,
d_values_in,
d_keys_out,
d_values_out,
d_num_selected_out,
EqualityOp(),
num_items,
stream);
}
template <typename KeyInputIteratorT,
typename ValueInputIteratorT,
typename KeyOutputIteratorT,
typename ValueOutputIteratorT,
typename NumSelectedIteratorT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
UniqueByKey(void *d_temp_storage,
size_t &temp_storage_bytes,
KeyInputIteratorT d_keys_in,
ValueInputIteratorT d_values_in,
KeyOutputIteratorT d_keys_out,
ValueOutputIteratorT d_values_out,
NumSelectedIteratorT d_num_selected_out,
int num_items,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return UniqueByKey<KeyInputIteratorT,
ValueInputIteratorT,
KeyOutputIteratorT,
ValueOutputIteratorT,
NumSelectedIteratorT>(d_temp_storage,
temp_storage_bytes,
d_keys_in,
d_values_in,
d_keys_out,
d_values_out,
d_num_selected_out,
num_items,
stream);
}
};
/**
* @example example_device_select_flagged.cu
* @example example_device_select_if.cu
* @example example_device_select_unique.cu
*/
CUB_NAMESPACE_END
|