File: device_select.cuh

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (1104 lines) | stat: -rw-r--r-- 40,820 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2022, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * @file cub::DeviceSelect provides device-wide, parallel operations for
 *       compacting selected items from sequences of data items residing within
 *       device-accessible memory.
 */

#pragma once

#include <cub/config.cuh>

#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
#  pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
#  pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
#  pragma system_header
#endif // no system header

#include <iterator>
#include <stdio.h>

#include <cub/device/dispatch/dispatch_select_if.cuh>
#include <cub/device/dispatch/dispatch_unique_by_key.cuh>
#include <cub/util_deprecated.cuh>

CUB_NAMESPACE_BEGIN


/**
 * @brief DeviceSelect provides device-wide, parallel operations for compacting
 *        selected items from sequences of data items residing within
 *        device-accessible memory. ![](select_logo.png)
 * @ingroup SingleModule
 *
 * @par Overview
 * These operations apply a selection criterion to selectively copy
 * items from a specified input sequence to a compact output sequence.
 *
 * @par Usage Considerations
 * @cdp_class{DeviceSelect}
 *
 * @par Performance
 * @linear_performance{select-flagged, select-if, and select-unique}
 *
 * @par
 * The following chart illustrates DeviceSelect::If performance across
 * different CUDA architectures for `int32` items, where 50% of the items are
 * randomly selected.
 *
 * @image html select_if_int32_50_percent.png
 *
 * @par
 * The following chart illustrates DeviceSelect::Unique performance across
 * different CUDA architectures for `int32` items where segments have lengths
 * uniformly sampled from `[1, 1000]`.
 *
 * @image html select_unique_int32_len_500.png
 *
 * @par
 * @plots_below
 *
 */
struct DeviceSelect
{
  /**
   * @brief Uses the `d_flags` sequence to selectively copy the corresponding
   *        items from `d_in` into `d_out`. The total number of items selected
   *        is written to `d_num_selected_out`. ![](select_flags_logo.png)
   *
   * @par
   * - The value type of `d_flags` must be castable to `bool` (e.g., `bool`,
   *   `char`, `int`, etc.).
   * - Copies of the selected items are compacted into `d_out` and maintain
   *   their original relative ordering.
   * - The range `[d_out, d_out + *d_num_selected_out)` shall not overlap
   *   `[d_in, d_in + num_items)`, `[d_flags, d_flags + num_items)` nor
   *   `d_num_selected_out` in any way.
   * - @devicestorage
   *
   * @par Snippet
   * The code snippet below illustrates the compaction of items selected from
   * an `int` device vector.
   * @par
   * @code
   * #include <cub/cub.cuh>  // or equivalently <cub/device/device_select.cuh>
   *
   * // Declare, allocate, and initialize device-accessible pointers for input,
   * // flags, and output
   * int  num_items;              // e.g., 8
   * int  *d_in;                  // e.g., [1, 2, 3, 4, 5, 6, 7, 8]
   * char *d_flags;               // e.g., [1, 0, 0, 1, 0, 1, 1, 0]
   * int  *d_out;                 // e.g., [ ,  ,  ,  ,  ,  ,  ,  ]
   * int  *d_num_selected_out;    // e.g., [ ]
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceSelect::Flagged(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_flags, d_out, d_num_selected_out, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run selection
   * cub::DeviceSelect::Flagged(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_flags, d_out, d_num_selected_out, num_items);
   *
   * // d_out                 <-- [1, 4, 6, 7]
   * // d_num_selected_out    <-- [4]
   *
   * @endcode
   *
   * @tparam InputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   items \iterator
   *
   * @tparam FlagIterator
   *   **[inferred]** Random-access input iterator type for reading selection
   *   flags \iterator
   *
   * @tparam OutputIteratorT
   *   **[inferred]** Random-access output iterator type for writing selected
   *   items \iterator
   *
   * @tparam NumSelectedIteratorT
   *   **[inferred]** Output iterator type for recording the number of items
   *   selected \iterator
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_in
   *   Pointer to the input sequence of data items
   *
   * @param[in] d_flags
   *   Pointer to the input sequence of selection flags
   *
   * @param[out] d_out
   *   Pointer to the output sequence of selected data items
   *
   * @param[out] d_num_selected_out
   *   Pointer to the output total number of items selected
   *   (i.e., length of `d_out`)
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_in`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename InputIteratorT,
            typename FlagIterator,
            typename OutputIteratorT,
            typename NumSelectedIteratorT>
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  Flagged(void *d_temp_storage,
          size_t &temp_storage_bytes,
          InputIteratorT d_in,
          FlagIterator d_flags,
          OutputIteratorT d_out,
          NumSelectedIteratorT d_num_selected_out,
          int num_items,
          cudaStream_t stream = 0)
  {
    using OffsetT    = int;      // Signed integer type for global offsets
    using SelectOp   = NullType; // Selection op (not used)
    using EqualityOp = NullType; // Equality operator (not used)

    return DispatchSelectIf<InputIteratorT,
                            FlagIterator,
                            OutputIteratorT,
                            NumSelectedIteratorT,
                            SelectOp,
                            EqualityOp,
                            OffsetT,
                            false>::Dispatch(d_temp_storage,
                                             temp_storage_bytes,
                                             d_in,
                                             d_flags,
                                             d_out,
                                             d_num_selected_out,
                                             SelectOp(),
                                             EqualityOp(),
                                             num_items,
                                             stream);
  }

  template <typename InputIteratorT,
            typename FlagIterator,
            typename OutputIteratorT,
            typename NumSelectedIteratorT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  Flagged(void *d_temp_storage,
          size_t &temp_storage_bytes,
          InputIteratorT d_in,
          FlagIterator d_flags,
          OutputIteratorT d_out,
          NumSelectedIteratorT d_num_selected_out,
          int num_items,
          cudaStream_t stream,
          bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return Flagged<InputIteratorT,
                   FlagIterator,
                   OutputIteratorT,
                   NumSelectedIteratorT>(d_temp_storage,
                                         temp_storage_bytes,
                                         d_in,
                                         d_flags,
                                         d_out,
                                         d_num_selected_out,
                                         num_items,
                                         stream);
  }

  /**
   * @brief Uses the `d_flags` sequence to selectively compact the items in
   *        `d_data`. The total number of items selected is written to
   *        `d_num_selected_out`. ![](select_flags_logo.png)
   *
   * @par
   * - The value type of `d_flags` must be castable to `bool` (e.g., `bool`,
   *   `char`, `int`, etc.).
   * - Copies of the selected items are compacted in-place and maintain
   *   their original relative ordering.
   * - The `d_data` may equal `d_flags`. The range
   *  `[d_data, d_data + num_items)` shall not overlap
   *  `[d_flags, d_flags + num_items)` in any other way.
   * - @devicestorage
   *
   * @par Snippet
   * The code snippet below illustrates the compaction of items selected from
   * an `int` device vector.
   * @par
   * @code
   * #include <cub/cub.cuh>  // or equivalently <cub/device/device_select.cuh>
   *
   * // Declare, allocate, and initialize device-accessible pointers for input,
   * // flags, and output
   * int  num_items;              // e.g., 8
   * int  *d_data;                // e.g., [1, 2, 3, 4, 5, 6, 7, 8]
   * char *d_flags;               // e.g., [1, 0, 0, 1, 0, 1, 1, 0]
   * int  *d_num_selected_out;    // e.g., [ ]
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceSelect::Flagged(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_flags, d_num_selected_out, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run selection
   * cub::DeviceSelect::Flagged(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_flags, d_num_selected_out, num_items);
   *
   * // d_data                <-- [1, 4, 6, 7]
   * // d_num_selected_out    <-- [4]
   *
   * @endcode
   *
   * @tparam IteratorT
   *   **[inferred]** Random-access iterator type for reading and writing
   *   selected items \iterator
   *
   * @tparam FlagIterator
   *   **[inferred]** Random-access input iterator type for reading selection
   *   flags \iterator
   *
   * @tparam NumSelectedIteratorT
   *   **[inferred]** Output iterator type for recording the number of items
   *   selected \iterator
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in,out] d_data
   *   Pointer to the sequence of data items
   *
   * @param[in] d_flags
   *   Pointer to the input sequence of selection flags
   *
   * @param[out] d_num_selected_out
   *   Pointer to the output total number of items selected
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_data`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename IteratorT,
            typename FlagIterator,
            typename NumSelectedIteratorT>
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  Flagged(void *d_temp_storage,
          size_t &temp_storage_bytes,
          IteratorT d_data,
          FlagIterator d_flags,
          NumSelectedIteratorT d_num_selected_out,
          int num_items,
          cudaStream_t stream = 0)
  {
    using OffsetT    = int;      // Signed integer type for global offsets
    using SelectOp   = NullType; // Selection op (not used)
    using EqualityOp = NullType; // Equality operator (not used)

    constexpr bool may_alias = true;

    return DispatchSelectIf<IteratorT,
                            FlagIterator,
                            IteratorT,
                            NumSelectedIteratorT,
                            SelectOp,
                            EqualityOp,
                            OffsetT,
                            false,
                            may_alias>::Dispatch(d_temp_storage,
                                                 temp_storage_bytes,
                                                 d_data, // in
                                                 d_flags,
                                                 d_data, // out
                                                 d_num_selected_out,
                                                 SelectOp(),
                                                 EqualityOp(),
                                                 num_items,
                                                 stream);
  }

  template <typename IteratorT,
            typename FlagIterator,
            typename NumSelectedIteratorT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  Flagged(void *d_temp_storage,
          size_t &temp_storage_bytes,
          IteratorT d_data,
          FlagIterator d_flags,
          NumSelectedIteratorT d_num_selected_out,
          int num_items,
          cudaStream_t stream,
          bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return Flagged<IteratorT, FlagIterator, NumSelectedIteratorT>(
      d_temp_storage,
      temp_storage_bytes,
      d_data,
      d_flags,
      d_num_selected_out,
      num_items,
      stream);
  }

  /**
   * @brief Uses the `select_op` functor to selectively copy items from `d_in`
   *        into `d_out`. The total number of items selected is written to
   *        `d_num_selected_out`. ![](select_logo.png)
   *
   * @par
   * - Copies of the selected items are compacted into `d_out` and maintain
   *   their original relative ordering.
   * - The range `[d_out, d_out + *d_num_selected_out)` shall not overlap
   *   `[d_in, d_in + num_items)` nor `d_num_selected_out` in any way.
   * - @devicestorage
   *
   * @par Performance
   * The following charts illustrate saturated select-if performance across
   * different CUDA architectures for `int32` and `int64` items, respectively.
   * Items are selected with 50% probability.
   *
   * @image html select_if_int32_50_percent.png
   * @image html select_if_int64_50_percent.png
   *
   * @par
   * The following charts are similar, but 5% selection probability:
   *
   * @image html select_if_int32_5_percent.png
   * @image html select_if_int64_5_percent.png
   *
   * @par Snippet
   * The code snippet below illustrates the compaction of items selected from
   * an `int` device vector.
   * @par
   * @code
   * #include <cub/cub.cuh>   // or equivalently <cub/device/device_select.cuh>
   *
   * // Functor type for selecting values less than some criteria
   * struct LessThan
   * {
   *     int compare;
   *
   *     CUB_RUNTIME_FUNCTION __forceinline__
   *     LessThan(int compare) : compare(compare) {}
   *
   *     CUB_RUNTIME_FUNCTION __forceinline__
   *     bool operator()(const int &a) const {
   *         return (a < compare);
   *     }
   * };
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int      num_items;              // e.g., 8
   * int      *d_in;                  // e.g., [0, 2, 3, 9, 5, 2, 81, 8]
   * int      *d_out;                 // e.g., [ ,  ,  ,  ,  ,  ,  ,  ]
   * int      *d_num_selected_out;    // e.g., [ ]
   * LessThan select_op(7);
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceSelect::If(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_out, d_num_selected_out, num_items, select_op);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run selection
   * cub::DeviceSelect::If(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_out, d_num_selected_out, num_items, select_op);
   *
   * // d_out                 <-- [0, 2, 3, 5, 2]
   * // d_num_selected_out    <-- [5]
   * @endcode
   *
   * @tparam InputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   items \iterator
   *
   * @tparam OutputIteratorT
   *   **[inferred]** Random-access output iterator type for writing selected
   *   items \iterator
   *
   * @tparam NumSelectedIteratorT
   *   **[inferred]** Output iterator type for recording the number of items
   *   selected \iterator
   *
   * @tparam SelectOp
   *   **[inferred]** Selection operator type having member
   *   `bool operator()(const T &a)`
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_in
   *   Pointer to the input sequence of data items
   *
   * @param[out] d_out
   *   Pointer to the output sequence of selected data items
   *
   * @param[out] d_num_selected_out
   *   Pointer to the output total number of items selected
   *   (i.e., length of `d_out`)
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_in`)
   *
   * @param[in] select_op
   *   Unary selection operator
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename InputIteratorT,
            typename OutputIteratorT,
            typename NumSelectedIteratorT,
            typename SelectOp>
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  If(void *d_temp_storage,
     size_t &temp_storage_bytes,
     InputIteratorT d_in,
     OutputIteratorT d_out,
     NumSelectedIteratorT d_num_selected_out,
     int num_items,
     SelectOp select_op,
     cudaStream_t stream = 0)
  {
    using OffsetT      = int;        // Signed integer type for global offsets
    using FlagIterator = NullType *; // FlagT iterator type (not used)
    using EqualityOp   = NullType;   // Equality operator (not used)

    return DispatchSelectIf<InputIteratorT,
                            FlagIterator,
                            OutputIteratorT,
                            NumSelectedIteratorT,
                            SelectOp,
                            EqualityOp,
                            OffsetT,
                            false>::Dispatch(d_temp_storage,
                                             temp_storage_bytes,
                                             d_in,
                                             NULL,
                                             d_out,
                                             d_num_selected_out,
                                             select_op,
                                             EqualityOp(),
                                             num_items,
                                             stream);
  }

  template <typename InputIteratorT,
            typename OutputIteratorT,
            typename NumSelectedIteratorT,
            typename SelectOp>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  If(void *d_temp_storage,
     size_t &temp_storage_bytes,
     InputIteratorT d_in,
     OutputIteratorT d_out,
     NumSelectedIteratorT d_num_selected_out,
     int num_items,
     SelectOp select_op,
     cudaStream_t stream,
     bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return If<InputIteratorT, OutputIteratorT, NumSelectedIteratorT, SelectOp>(
      d_temp_storage,
      temp_storage_bytes,
      d_in,
      d_out,
      d_num_selected_out,
      num_items,
      select_op,
      stream);
  }

  /**
   * @brief Uses the `select_op` functor to selectively compact items in
   *        `d_data`. The total number of items selected is written to
   *        `d_num_selected_out`. ![](select_logo.png)
   *
   * @par
   * - Copies of the selected items are compacted in `d_data` and maintain
   *   their original relative ordering.
   * - @devicestorage
   *
   * @par Snippet
   * The code snippet below illustrates the compaction of items selected from
   * an `int` device vector.
   * @par
   * @code
   * #include <cub/cub.cuh>   // or equivalently <cub/device/device_select.cuh>
   *
   * // Functor type for selecting values less than some criteria
   * struct LessThan
   * {
   *     int compare;
   *
   *     CUB_RUNTIME_FUNCTION __forceinline__
   *     LessThan(int compare) : compare(compare) {}
   *
   *     CUB_RUNTIME_FUNCTION __forceinline__
   *     bool operator()(const int &a) const {
   *         return (a < compare);
   *     }
   * };
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int      num_items;              // e.g., 8
   * int      *d_data;                // e.g., [0, 2, 3, 9, 5, 2, 81, 8]
   * int      *d_num_selected_out;    // e.g., [ ]
   * LessThan select_op(7);
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceSelect::If(
   *   d_temp_storage, temp_storage_bytes,
   *   d_data, d_num_selected_out, num_items, select_op);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run selection
   * cub::DeviceSelect::If(
   *   d_temp_storage, temp_storage_bytes,
   *   d_data, d_num_selected_out, num_items, select_op);
   *
   * // d_data                <-- [0, 2, 3, 5, 2]
   * // d_num_selected_out    <-- [5]
   * @endcode
   *
   * @tparam IteratorT
   *   **[inferred]** Random-access input iterator type for reading and
   *   writing items \iterator
   *
   * @tparam NumSelectedIteratorT
   *   **[inferred]** Output iterator type for recording the number of items
   *   selected \iterator
   *
   * @tparam SelectOp
   *   **[inferred]** Selection operator type having member
   *   `bool operator()(const T &a)`
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in,out] d_data
   *   Pointer to the sequence of data items
   *
   * @param[out] d_num_selected_out
   *   Pointer to the output total number of items selected
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_data`)
   *
   * @param[in] select_op
   *   Unary selection operator
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename IteratorT,
            typename NumSelectedIteratorT,
            typename SelectOp>
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  If(void *d_temp_storage,
     size_t &temp_storage_bytes,
     IteratorT d_data,
     NumSelectedIteratorT d_num_selected_out,
     int num_items,
     SelectOp select_op,
     cudaStream_t stream = 0)
  {
    using OffsetT      = int;        // Signed integer type for global offsets
    using FlagIterator = NullType *; // FlagT iterator type (not used)
    using EqualityOp   = NullType;   // Equality operator (not used)

    constexpr bool may_alias = true;

    return DispatchSelectIf<IteratorT,
                            FlagIterator,
                            IteratorT,
                            NumSelectedIteratorT,
                            SelectOp,
                            EqualityOp,
                            OffsetT,
                            false,
                            may_alias>::Dispatch(d_temp_storage,
                                                 temp_storage_bytes,
                                                 d_data, // in
                                                 NULL,
                                                 d_data, // out
                                                 d_num_selected_out,
                                                 select_op,
                                                 EqualityOp(),
                                                 num_items,
                                                 stream);
  }

  template <typename IteratorT,
            typename NumSelectedIteratorT,
            typename SelectOp>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  If(void *d_temp_storage,
     size_t &temp_storage_bytes,
     IteratorT d_data,
     NumSelectedIteratorT d_num_selected_out,
     int num_items,
     SelectOp select_op,
     cudaStream_t stream,
     bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return If<IteratorT, NumSelectedIteratorT, SelectOp>(d_temp_storage,
                                                         temp_storage_bytes,
                                                         d_data,
                                                         d_num_selected_out,
                                                         num_items,
                                                         select_op,
                                                         stream);
  }

  /**
   * @brief Given an input sequence `d_in` having runs of consecutive
   *        equal-valued keys, only the first key from each run is selectively
   *        copied to `d_out`. The total number of items selected is written to
   *        `d_num_selected_out`. ![](unique_logo.png)
   *
   * @par
   * - The `==` equality operator is used to determine whether keys are
   *   equivalent
   * - Copies of the selected items are compacted into `d_out` and maintain
   *   their original relative ordering.
   * - The range `[d_out, d_out + *d_num_selected_out)` shall not overlap
   *   `[d_in, d_in + num_items)` nor `d_num_selected_out` in any way.
   * - @devicestorage
   *
   * @par Performance
   * The following charts illustrate saturated select-unique performance across different
   * CUDA architectures for `int32` and `int64` items, respectively. Segments
   * have lengths uniformly sampled from `[1, 1000]`.
   *
   * @image html select_unique_int32_len_500.png
   * @image html select_unique_int64_len_500.png
   *
   * @par
   * The following charts are similar, but with segment lengths uniformly
   * sampled from `[1, 10]`:
   *
   * @image html select_unique_int32_len_5.png
   * @image html select_unique_int64_len_5.png
   *
   * @par Snippet
   * The code snippet below illustrates the compaction of items selected from
   * an `int` device vector.
   * @par
   * @code
   * #include <cub/cub.cuh>   // or equivalently <cub/device/device_select.cuh>
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int  num_items;              // e.g., 8
   * int  *d_in;                  // e.g., [0, 2, 2, 9, 5, 5, 5, 8]
   * int  *d_out;                 // e.g., [ ,  ,  ,  ,  ,  ,  ,  ]
   * int  *d_num_selected_out;    // e.g., [ ]
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceSelect::Unique(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_out, d_num_selected_out, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run selection
   * cub::DeviceSelect::Unique(
   *   d_temp_storage, temp_storage_bytes,
   *   d_in, d_out, d_num_selected_out, num_items);
   *
   * // d_out                 <-- [0, 2, 9, 5, 8]
   * // d_num_selected_out    <-- [5]
   * @endcode
   *
   * @tparam InputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   items \iterator
   *
   * @tparam OutputIteratorT
   *   **[inferred]** Random-access output iterator type for writing selected
   *   items \iterator
   *
   * @tparam NumSelectedIteratorT
   *   **[inferred]** Output iterator type for recording the number of items
   *   selected \iterator
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_in
   *   Pointer to the input sequence of data items
   *
   * @param[out] d_out
   *   Pointer to the output sequence of selected data items
   *
   * @param[out] d_num_selected_out
   *   Pointer to the output total number of items selected
   *   (i.e., length of `d_out`)
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_in`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename InputIteratorT,
            typename OutputIteratorT,
            typename NumSelectedIteratorT>
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  Unique(void *d_temp_storage,
         size_t &temp_storage_bytes,
         InputIteratorT d_in,
         OutputIteratorT d_out,
         NumSelectedIteratorT d_num_selected_out,
         int num_items,
         cudaStream_t stream = 0)
  {
    using OffsetT      = int;        // Signed integer type for global offsets
    using FlagIterator = NullType *; // FlagT iterator type (not used)
    using SelectOp     = NullType;   // Selection op (not used)
    using EqualityOp   = Equality;   // Default == operator

    return DispatchSelectIf<InputIteratorT,
                            FlagIterator,
                            OutputIteratorT,
                            NumSelectedIteratorT,
                            SelectOp,
                            EqualityOp,
                            OffsetT,
                            false>::Dispatch(d_temp_storage,
                                             temp_storage_bytes,
                                             d_in,
                                             NULL,
                                             d_out,
                                             d_num_selected_out,
                                             SelectOp(),
                                             EqualityOp(),
                                             num_items,
                                             stream);
  }

  template <typename InputIteratorT,
            typename OutputIteratorT,
            typename NumSelectedIteratorT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  Unique(void *d_temp_storage,
         size_t &temp_storage_bytes,
         InputIteratorT d_in,
         OutputIteratorT d_out,
         NumSelectedIteratorT d_num_selected_out,
         int num_items,
         cudaStream_t stream,
         bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return Unique<InputIteratorT, OutputIteratorT, NumSelectedIteratorT>(
      d_temp_storage,
      temp_storage_bytes,
      d_in,
      d_out,
      d_num_selected_out,
      num_items,
      stream);
  }

  /**
   * @brief Given an input sequence `d_keys_in` and `d_values_in` with runs of
   *        key-value pairs with consecutive equal-valued keys, only the first
   *        key and its value from each run is selectively copied to
   *        `d_keys_out` and `d_values_out`. The total number of items selected
   *        is written to `d_num_selected_out`. ![](unique_logo.png)
   *
   * @par
   * - The `==` equality operator is used to determine whether keys are
   *   equivalent
   * - Copies of the selected items are compacted into `d_out` and maintain
   *   their original relative ordering.
   * - In-place operations are not supported. There must be no overlap between
   *   any of the provided ranges:
   *   - `[d_keys_in,          d_keys_in    + num_items)`
   *   - `[d_keys_out,         d_keys_out   + *d_num_selected_out)`
   *   - `[d_values_in,        d_values_in  + num_items)`
   *   - `[d_values_out,       d_values_out + *d_num_selected_out)`
   *   - `[d_num_selected_out, d_num_selected_out + 1)`
   * - @devicestorage
   *
   * @par Snippet
   * The code snippet below illustrates the compaction of items selected from
   * an `int` device vector.
   * @par
   * @code
   * #include <cub/cub.cuh>   // or equivalently <cub/device/device_select.cuh>
   *
   * // Declare, allocate, and initialize device-accessible pointers
   * // for input and output
   * int  num_items;              // e.g., 8
   * int  *d_keys_in;             // e.g., [0, 2, 2, 9, 5, 5, 5, 8]
   * int  *d_values_in;           // e.g., [1, 2, 3, 4, 5, 6, 7, 8]
   * int  *d_keys_out;            // e.g., [ ,  ,  ,  ,  ,  ,  ,  ]
   * int  *d_values_out;          // e.g., [ ,  ,  ,  ,  ,  ,  ,  ]
   * int  *d_num_selected_out;    // e.g., [ ]
   * ...
   *
   * // Determine temporary device storage requirements
   * void     *d_temp_storage = NULL;
   * size_t   temp_storage_bytes = 0;
   * cub::DeviceSelect::UniqueByKey(
   *   d_temp_storage, temp_storage_bytes,
   *   d_keys_in, d_values_in,
   *   d_keys_out, d_values_out, d_num_selected_out, num_items);
   *
   * // Allocate temporary storage
   * cudaMalloc(&d_temp_storage, temp_storage_bytes);
   *
   * // Run selection
   * cub::DeviceSelect::UniqueByKey(
   *   d_temp_storage, temp_storage_bytes,
   *   d_keys_in, d_values_in,
   *   d_keys_out, d_values_out, d_num_selected_out, num_items);
   *
   * // d_keys_out            <-- [0, 2, 9, 5, 8]
   * // d_values_out          <-- [1, 2, 4, 5, 8]
   * // d_num_selected_out    <-- [5]
   * @endcode
   *
   * @tparam KeyInputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   keys \iterator
   *
   * @tparam ValueInputIteratorT
   *   **[inferred]** Random-access input iterator type for reading input
   *   values \iterator
   *
   * @tparam KeyOutputIteratorT
   *   **[inferred]** Random-access output iterator type for writing selected
   *   keys \iterator
   *
   * @tparam ValueOutputIteratorT
   *   **[inferred]** Random-access output iterator type for writing selected
   *   values \iterator
   *
   * @tparam NumSelectedIteratorT
   *   **[inferred]** Output iterator type for recording the number of items
   *   selected \iterator
   *
   * @param[in] d_temp_storage
   *   Device-accessible allocation of temporary storage. When `nullptr`, the
   *   required allocation size is written to `temp_storage_bytes` and no work
   *   is done.
   *
   * @param[in,out] temp_storage_bytes
   *   Reference to size in bytes of `d_temp_storage` allocation
   *
   * @param[in] d_keys_in
   *   Pointer to the input sequence of keys
   *
   * @param[in] d_values_in
   *   Pointer to the input sequence of values
   *
   * @param[out] d_keys_out
   *   Pointer to the output sequence of selected keys
   *
   * @param[out] d_values_out
   *   Pointer to the output sequence of selected values
   *
   * @param[out] d_num_selected_out
   *   Pointer to the total number of items selected (i.e., length of
   *   `d_keys_out` or `d_values_out`)
   *
   * @param[in] num_items
   *   Total number of input items (i.e., length of `d_keys_in` or
   *   `d_values_in`)
   *
   * @param[in] stream
   *   **[optional]** CUDA stream to launch kernels within.
   *   Default is stream<sub>0</sub>.
   */
  template <typename KeyInputIteratorT,
            typename ValueInputIteratorT,
            typename KeyOutputIteratorT,
            typename ValueOutputIteratorT,
            typename NumSelectedIteratorT>
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  UniqueByKey(void *d_temp_storage,
              size_t &temp_storage_bytes,
              KeyInputIteratorT d_keys_in,
              ValueInputIteratorT d_values_in,
              KeyOutputIteratorT d_keys_out,
              ValueOutputIteratorT d_values_out,
              NumSelectedIteratorT d_num_selected_out,
              int num_items,
              cudaStream_t stream = 0)
  {
    using OffsetT    = int;
    using EqualityOp = Equality;

    return DispatchUniqueByKey<KeyInputIteratorT,
                               ValueInputIteratorT,
                               KeyOutputIteratorT,
                               ValueOutputIteratorT,
                               NumSelectedIteratorT,
                               EqualityOp,
                               OffsetT>::Dispatch(d_temp_storage,
                                                  temp_storage_bytes,
                                                  d_keys_in,
                                                  d_values_in,
                                                  d_keys_out,
                                                  d_values_out,
                                                  d_num_selected_out,
                                                  EqualityOp(),
                                                  num_items,
                                                  stream);
  }

  template <typename KeyInputIteratorT,
            typename ValueInputIteratorT,
            typename KeyOutputIteratorT,
            typename ValueOutputIteratorT,
            typename NumSelectedIteratorT>
  CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
  CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t
  UniqueByKey(void *d_temp_storage,
              size_t &temp_storage_bytes,
              KeyInputIteratorT d_keys_in,
              ValueInputIteratorT d_values_in,
              KeyOutputIteratorT d_keys_out,
              ValueOutputIteratorT d_values_out,
              NumSelectedIteratorT d_num_selected_out,
              int num_items,
              cudaStream_t stream,
              bool debug_synchronous)
  {
    CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG

    return UniqueByKey<KeyInputIteratorT,
                       ValueInputIteratorT,
                       KeyOutputIteratorT,
                       ValueOutputIteratorT,
                       NumSelectedIteratorT>(d_temp_storage,
                                             temp_storage_bytes,
                                             d_keys_in,
                                             d_values_in,
                                             d_keys_out,
                                             d_values_out,
                                             d_num_selected_out,
                                             num_items,
                                             stream);
  }
};

/**
 * @example example_device_select_flagged.cu
 * @example example_device_select_if.cu
 * @example example_device_select_unique.cu
 */

CUB_NAMESPACE_END