1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* @file
* cub::DeviceSpmv provides device-wide parallel operations for performing sparse-matrix * vector
* multiplication (SpMV).
*/
#pragma once
#include <cub/config.cuh>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <stdio.h>
#include <iterator>
#include <limits>
#include <cub/config.cuh>
#include <cub/device/dispatch/dispatch_spmv_orig.cuh>
#include <cub/util_deprecated.cuh>
CUB_NAMESPACE_BEGIN
/**
* @brief DeviceSpmv provides device-wide parallel operations for performing
* sparse-matrix * dense-vector multiplication (SpMV).
*
* @ingroup SingleModule
*
* @par Overview
* The [<em>SpMV computation</em>](http://en.wikipedia.org/wiki/Sparse_matrix-vector_multiplication)
* performs the matrix-vector operation
* <em>y</em> = <b>A</b>*<em>x</em> + <em>y</em>,
* where:
* - <b>A</b> is an <em>m</em>x<em>n</em> sparse matrix whose non-zero structure is specified in
* [<em>compressed-storage-row (CSR) format</em>](http://en.wikipedia.org/wiki/Sparse_matrix#Compressed_row_Storage_.28CRS_or_CSR.29)
* (i.e., three arrays: <em>values</em>, <em>row_offsets</em>, and <em>column_indices</em>)
* - <em>x</em> and <em>y</em> are dense vectors
*
* @par Usage Considerations
* @cdp_class{DeviceSpmv}
*
*/
struct DeviceSpmv
{
/******************************************************************//**
* @name CSR matrix operations
*********************************************************************/
//@{
/**
* @brief This function performs the matrix-vector operation
* <em>y</em> = <b>A</b>*<em>x</em>.
*
* @par Snippet
* The code snippet below illustrates SpMV upon a 9x9 CSR matrix <b>A</b>
* representing a 3x3 lattice (24 non-zeros).
*
* @par
* @code
* #include <cub/cub.cuh> // or equivalently <cub/device/device_spmv.cuh>
*
* // Declare, allocate, and initialize device-accessible pointers for input matrix A, input
* vector x,
* // and output vector y
* int num_rows = 9;
* int num_cols = 9;
* int num_nonzeros = 24;
*
* float* d_values; // e.g., [1, 1, 1, 1, 1, 1, 1, 1,
* // 1, 1, 1, 1, 1, 1, 1, 1,
* // 1, 1, 1, 1, 1, 1, 1, 1]
*
* int* d_column_indices; // e.g., [1, 3, 0, 2, 4, 1, 5, 0,
* // 4, 6, 1, 3, 5, 7, 2, 4,
* // 8, 3, 7, 4, 6, 8, 5, 7]
*
* int* d_row_offsets; // e.g., [0, 2, 5, 7, 10, 14, 17, 19, 22, 24]
*
* float* d_vector_x; // e.g., [1, 1, 1, 1, 1, 1, 1, 1, 1]
* float* d_vector_y; // e.g., [ , , , , , , , , ]
* ...
*
* // Determine temporary device storage requirements
* void* d_temp_storage = NULL;
* size_t temp_storage_bytes = 0;
* cub::DeviceSpmv::CsrMV(d_temp_storage, temp_storage_bytes, d_values,
* d_row_offsets, d_column_indices, d_vector_x, d_vector_y,
* num_rows, num_cols, num_nonzeros);
*
* // Allocate temporary storage
* cudaMalloc(&d_temp_storage, temp_storage_bytes);
*
* // Run SpMV
* cub::DeviceSpmv::CsrMV(d_temp_storage, temp_storage_bytes, d_values,
* d_row_offsets, d_column_indices, d_vector_x, d_vector_y,
* num_rows, num_cols, num_nonzeros);
*
* // d_vector_y <-- [2, 3, 2, 3, 4, 3, 2, 3, 2]
*
* @endcode
*
* @tparam ValueT
* <b>[inferred]</b> Matrix and vector value type (e.g., @p float, @p double, etc.)
*
* @param[in] d_temp_storage
* Device-accessible allocation of temporary storage.
* When NULL, the required allocation size is written to @p temp_storage_bytes
* and no work is done.
*
* @param[in,out] temp_storage_bytes
* Reference to size in bytes of @p d_temp_storage allocation
*
* @param[in] d_values
* Pointer to the array of @p num_nonzeros values of the corresponding nonzero elements
* of matrix <b>A</b>.
*
* @param[in] d_row_offsets
* Pointer to the array of @p m + 1 offsets demarcating the start of every row in
* @p d_column_indices and @p d_values (with the final entry being equal to @p num_nonzeros)
*
* @param[in] d_column_indices
* Pointer to the array of @p num_nonzeros column-indices of the corresponding nonzero
* elements of matrix <b>A</b>. (Indices are zero-valued.)
*
* @param[in] d_vector_x
* Pointer to the array of @p num_cols values corresponding to the dense input vector
* <em>x</em>
*
* @param[out] d_vector_y
* Pointer to the array of @p num_rows values corresponding to the dense output vector
* <em>y</em>
*
* @param[in] num_rows
* number of rows of matrix <b>A</b>.
*
* @param[in] num_cols
* number of columns of matrix <b>A</b>.
*
* @param[in] num_nonzeros
* number of nonzero elements of matrix <b>A</b>.
*
* @param[in] stream
* <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
*/
template <typename ValueT>
CUB_RUNTIME_FUNCTION static cudaError_t CsrMV(void *d_temp_storage,
size_t &temp_storage_bytes,
const ValueT *d_values,
const int *d_row_offsets,
const int *d_column_indices,
const ValueT *d_vector_x,
ValueT *d_vector_y,
int num_rows,
int num_cols,
int num_nonzeros,
cudaStream_t stream = 0)
{
SpmvParams<ValueT, int> spmv_params;
spmv_params.d_values = d_values;
spmv_params.d_row_end_offsets = d_row_offsets + 1;
spmv_params.d_column_indices = d_column_indices;
spmv_params.d_vector_x = d_vector_x;
spmv_params.d_vector_y = d_vector_y;
spmv_params.num_rows = num_rows;
spmv_params.num_cols = num_cols;
spmv_params.num_nonzeros = num_nonzeros;
spmv_params.alpha = ValueT{1};
spmv_params.beta = ValueT{0};
return DispatchSpmv<ValueT, int>::Dispatch(
d_temp_storage,
temp_storage_bytes,
spmv_params,
stream);
}
template <typename ValueT>
CUB_DETAIL_RUNTIME_DEBUG_SYNC_IS_NOT_SUPPORTED
CUB_RUNTIME_FUNCTION static cudaError_t CsrMV(void *d_temp_storage,
size_t &temp_storage_bytes,
const ValueT *d_values,
const int *d_row_offsets,
const int *d_column_indices,
const ValueT *d_vector_x,
ValueT *d_vector_y,
int num_rows,
int num_cols,
int num_nonzeros,
cudaStream_t stream,
bool debug_synchronous)
{
CUB_DETAIL_RUNTIME_DEBUG_SYNC_USAGE_LOG
return CsrMV<ValueT>(d_temp_storage,
temp_storage_bytes,
d_values,
d_row_offsets,
d_column_indices,
d_vector_x,
d_vector_y,
num_rows,
num_cols,
num_nonzeros,
stream);
}
//@} end member group
};
CUB_NAMESPACE_END
|