1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* @file
* Thread utilities for sequential reduction over statically-sized array types
*/
#pragma once
#include <cub/config.cuh>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <cub/detail/type_traits.cuh>
#include <cub/thread/thread_operators.cuh>
CUB_NAMESPACE_BEGIN
/// Internal namespace (to prevent ADL mishaps between static functions when mixing different CUB installations)
namespace internal {
/**
* @brief Sequential reduction over statically-sized array types
*
* @param[in] input
* Input array
*
* @param[in] reduction_op
* Binary reduction operator
*
* @param[in] prefix
* Prefix to seed reduction with
*/
template <int LENGTH,
typename T,
typename ReductionOp,
typename PrefixT,
typename AccumT = detail::accumulator_t<ReductionOp, PrefixT, T>>
__device__ __forceinline__ AccumT
ThreadReduce(T *input, ReductionOp reduction_op, PrefixT prefix, Int2Type<LENGTH> /*length*/)
{
AccumT retval = prefix;
#pragma unroll
for (int i = 0; i < LENGTH; ++i)
retval = reduction_op(retval, input[i]);
return retval;
}
/**
* @brief Perform a sequential reduction over @p LENGTH elements of the @p input array,
* seeded with the specified @p prefix. The aggregate is returned.
*
* @tparam LENGTH
* LengthT of input array
*
* @tparam T
* <b>[inferred]</b> The data type to be reduced.
*
* @tparam ReductionOp
* <b>[inferred]</b> Binary reduction operator type having member
* <tt>T operator()(const T &a, const T &b)</tt>
*
* @param[in] input
* Input array
*
* @param[in] reduction_op
* Binary reduction operator
*
* @param[in] prefix
* Prefix to seed reduction with
*/
template <int LENGTH,
typename T,
typename ReductionOp,
typename PrefixT,
typename AccumT = detail::accumulator_t<ReductionOp, PrefixT, T>>
__device__ __forceinline__ AccumT ThreadReduce(T *input, ReductionOp reduction_op, PrefixT prefix)
{
return ThreadReduce(input, reduction_op, prefix, Int2Type<LENGTH>());
}
/**
* @brief Perform a sequential reduction over @p LENGTH elements of the @p input array.
* The aggregate is returned.
*
* @tparam LENGTH
* LengthT of input array
*
* @tparam T
* <b>[inferred]</b> The data type to be reduced.
*
* @tparam ReductionOp
* <b>[inferred]</b> Binary reduction operator type having member
* <tt>T operator()(const T &a, const T &b)</tt>
*
* @param[in] input
* Input array
*
* @param[in] reduction_op
* Binary reduction operator
*/
template <int LENGTH, typename T, typename ReductionOp>
__device__ __forceinline__ T ThreadReduce(T *input, ReductionOp reduction_op)
{
T prefix = input[0];
return ThreadReduce<LENGTH - 1>(input + 1, reduction_op, prefix);
}
/**
* @brief Perform a sequential reduction over the statically-sized @p input array,
* seeded with the specified @p prefix. The aggregate is returned.
*
* @tparam LENGTH
* <b>[inferred]</b> LengthT of @p input array
*
* @tparam T
* <b>[inferred]</b> The data type to be reduced.
*
* @tparam ReductionOp
* <b>[inferred]</b> Binary reduction operator type having member
* <tt>T operator()(const T &a, const T &b)</tt>
*
* @param[in] input
* Input array
*
* @param[in] reduction_op
* Binary reduction operator
*
* @param[in] prefix
* Prefix to seed reduction with
*/
template <int LENGTH,
typename T,
typename ReductionOp,
typename PrefixT,
typename AccumT = detail::accumulator_t<ReductionOp, PrefixT, T>>
__device__ __forceinline__ AccumT ThreadReduce(T (&input)[LENGTH],
ReductionOp reduction_op,
PrefixT prefix)
{
return ThreadReduce(input, reduction_op, prefix, Int2Type<LENGTH>());
}
/**
* @brief Serial reduction with the specified operator
*
* @tparam LENGTH
* <b>[inferred]</b> LengthT of @p input array
*
* @tparam T
* <b>[inferred]</b> The data type to be reduced.
*
* @tparam ReductionOp
* <b>[inferred]</b> Binary reduction operator type having member
* <tt>T operator()(const T &a, const T &b)</tt>
*
* @param[in] input
* Input array
*
* @param[in] reduction_op
* Binary reduction operator
*/
template <int LENGTH, typename T, typename ReductionOp>
__device__ __forceinline__ T ThreadReduce(T (&input)[LENGTH], ReductionOp reduction_op)
{
return ThreadReduce<LENGTH>((T*) input, reduction_op);
}
} // internal namespace
CUB_NAMESPACE_END
|