1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
|
/*
* Copyright 2008-2019 NVIDIA Corporation
* Copyright 2013 Filipe RNC Maia
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*! \file complex.h
* \brief Complex numbers
*/
#pragma once
#include <thrust/detail/config.h>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <cmath>
#include <complex>
#include <sstream>
#include <thrust/detail/type_traits.h>
#if THRUST_CPP_DIALECT >= 2011
# define THRUST_STD_COMPLEX_REAL(z) \
reinterpret_cast< \
const typename thrust::detail::remove_reference<decltype(z)>::type::value_type (&)[2] \
>(z)[0]
# define THRUST_STD_COMPLEX_IMAG(z) \
reinterpret_cast< \
const typename thrust::detail::remove_reference<decltype(z)>::type::value_type (&)[2] \
>(z)[1]
# define THRUST_STD_COMPLEX_DEVICE __device__
#else
# define THRUST_STD_COMPLEX_REAL(z) (z).real()
# define THRUST_STD_COMPLEX_IMAG(z) (z).imag()
# define THRUST_STD_COMPLEX_DEVICE
#endif
THRUST_NAMESPACE_BEGIN
/*
* Calls to the standard math library from inside the thrust namespace
* with real arguments require explicit scope otherwise they will fail
* to resolve as it will find the equivalent complex function but then
* fail to match the template, and give up looking for other scopes.
*/
/*! \addtogroup numerics
* \{
*/
/*! \addtogroup complex_numbers Complex Numbers
* \{
*/
/*! \cond
*/
namespace detail
{
template <typename T, std::size_t Align>
struct complex_storage;
#if THRUST_CPP_DIALECT >= 2011 \
&& (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_GCC) \
&& (THRUST_GCC_VERSION >= 40800)
// C++11 implementation, excluding GCC 4.7, which doesn't have `alignas`.
template <typename T, std::size_t Align>
struct complex_storage
{
struct alignas(Align) type { T x; T y; };
};
#elif (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_MSVC) \
|| ( (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_GCC) \
&& (THRUST_GCC_VERSION < 40600))
// C++03 implementation for MSVC and GCC <= 4.5.
//
// We have to implement `aligned_type` with specializations for MSVC
// and GCC 4.2 and older because they require literals as arguments to
// their alignment attribute.
#if (THRUST_HOST_COMPILER == THRUST_HOST_COMPILER_MSVC)
// MSVC implementation.
#define THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(X) \
template <typename T> \
struct complex_storage<T, X> \
{ \
__declspec(align(X)) struct type { T x; T y; }; \
}; \
/**/
#else
// GCC <= 4.2 implementation.
#define THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(X) \
template <typename T> \
struct complex_storage<T, X> \
{ \
struct type { T x; T y; } __attribute__((aligned(X))); \
}; \
/**/
#endif
// The primary template is a fallback, which doesn't specify any alignment.
// It's only used when T is very large and we're using an older compilers
// which we have to fully specialize each alignment case.
template <typename T, std::size_t Align>
struct complex_storage
{
T x; T y;
};
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(1);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(2);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(4);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(8);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(16);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(32);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(64);
THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION(128);
#undef THRUST_DEFINE_COMPLEX_STORAGE_SPECIALIZATION
#else
// C++03 implementation for GCC > 4.5, Clang, PGI, ICPC, and xlC.
template <typename T, std::size_t Align>
struct complex_storage
{
struct type { T x; T y; } __attribute__((aligned(Align)));
};
#endif
} // end namespace detail
/*! \endcond
*/
/*! \p complex is the Thrust equivalent to <tt>std::complex</tt>. It is
* functionally identical to it, but can also be used in device code which
* <tt>std::complex</tt> currently cannot.
*
* \tparam T The type used to hold the real and imaginary parts. Should be
* <tt>float</tt> or <tt>double</tt>. Others types are not supported.
*
*/
template <typename T>
struct complex
{
public:
/*! \p value_type is the type of \p complex's real and imaginary parts.
*/
typedef T value_type;
/* --- Constructors --- */
/*! Construct a complex number with an imaginary part of 0.
*
* \param re The real part of the number.
*/
__host__ __device__
complex(const T& re);
/*! Construct a complex number from its real and imaginary parts.
*
* \param re The real part of the number.
* \param im The imaginary part of the number.
*/
__host__ __device__
complex(const T& re, const T& im);
#if THRUST_CPP_DIALECT >= 2011
/*! Default construct a complex number.
*/
complex() = default;
/*! This copy constructor copies from a \p complex with a type that is
* convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*/
complex(const complex<T>& z) = default;
#else
/*! Default construct a complex number.
*/
__host__ __device__
complex();
/*! This copy constructor copies from a \p complex with a type that is
* convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*/
__host__ __device__
complex(const complex<T>& z);
#endif
/*! This converting copy constructor copies from a \p complex with a type
* that is convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex(const complex<U>& z);
/*! This converting copy constructor copies from a <tt>std::complex</tt> with
* a type that is convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*/
__host__ THRUST_STD_COMPLEX_DEVICE
complex(const std::complex<T>& z);
/*! This converting copy constructor copies from a <tt>std::complex</tt> with
* a type that is convertible to this \p complex's \c value_type.
*
* \param z The \p complex to copy from.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ THRUST_STD_COMPLEX_DEVICE
complex(const std::complex<U>& z);
/* --- Assignment Operators --- */
/*! Assign `re` to the real part of this \p complex and set the imaginary part
* to 0.
*
* \param re The real part of the number.
*/
__host__ __device__
complex& operator=(const T& re);
#if THRUST_CPP_DIALECT >= 2011
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*/
complex& operator=(const complex<T>& z) = default;
#else
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*/
__host__ __device__
complex& operator=(const complex<T>& z);
#endif
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex& operator=(const complex<U>& z);
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*/
__host__ THRUST_STD_COMPLEX_DEVICE
complex& operator=(const std::complex<T>& z);
/*! Assign `z.real()` and `z.imag()` to the real and imaginary parts of this
* \p complex respectively.
*
* \param z The \p complex to copy from.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ THRUST_STD_COMPLEX_DEVICE
complex& operator=(const std::complex<U>& z);
/* --- Compound Assignment Operators --- */
/*! Adds a \p complex to this \p complex and assigns the result to this
* \p complex.
*
* \param z The \p complex to be added.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator+=(const complex<U>& z);
/*! Subtracts a \p complex from this \p complex and assigns the result to
* this \p complex.
*
* \param z The \p complex to be subtracted.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator-=(const complex<U>& z);
/*! Multiplies this \p complex by another \p complex and assigns the result
* to this \p complex.
*
* \param z The \p complex to be multiplied.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator*=(const complex<U>& z);
/*! Divides this \p complex by another \p complex and assigns the result to
* this \p complex.
*
* \param z The \p complex to be divided.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator/=(const complex<U>& z);
/*! Adds a scalar to this \p complex and assigns the result to this
* \p complex.
*
* \param z The \p complex to be added.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator+=(const U& z);
/*! Subtracts a scalar from this \p complex and assigns the result to
* this \p complex.
*
* \param z The scalar to be subtracted.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator-=(const U& z);
/*! Multiplies this \p complex by a scalar and assigns the result
* to this \p complex.
*
* \param z The scalar to be multiplied.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator*=(const U& z);
/*! Divides this \p complex by a scalar and assigns the result to
* this \p complex.
*
* \param z The scalar to be divided.
*
* \tparam U is convertible to \c value_type.
*/
template <typename U>
__host__ __device__
complex<T>& operator/=(const U& z);
/* --- Getter functions ---
* The volatile ones are there to help for example
* with certain reductions optimizations
*/
/*! Returns the real part of this \p complex.
*/
__host__ __device__
T real() const volatile { return data.x; }
/*! Returns the imaginary part of this \p complex.
*/
__host__ __device__
T imag() const volatile { return data.y; }
/*! Returns the real part of this \p complex.
*/
__host__ __device__
T real() const { return data.x; }
/*! Returns the imaginary part of this \p complex.
*/
__host__ __device__
T imag() const { return data.y; }
/* --- Setter functions ---
* The volatile ones are there to help for example
* with certain reductions optimizations
*/
/*! Sets the real part of this \p complex.
*
* \param re The new real part of this \p complex.
*/
__host__ __device__
void real(T re) volatile { data.x = re; }
/*! Sets the imaginary part of this \p complex.
*
* \param im The new imaginary part of this \p complex.e
*/
__host__ __device__
void imag(T im) volatile { data.y = im; }
/*! Sets the real part of this \p complex.
*
* \param re The new real part of this \p complex.
*/
__host__ __device__
void real(T re) { data.x = re; }
/*! Sets the imaginary part of this \p complex.
*
* \param im The new imaginary part of this \p complex.
*/
__host__ __device__
void imag(T im) { data.y = im; }
/* --- Casting functions --- */
/*! Casts this \p complex to a <tt>std::complex</tt> of the same type.
*/
__host__
operator std::complex<T>() const { return std::complex<T>(real(), imag()); }
private:
typename detail::complex_storage<T, sizeof(T) * 2>::type data;
};
/* --- General Functions --- */
/*! Returns the magnitude (also known as absolute value) of a \p complex.
*
* \param z The \p complex from which to calculate the absolute value.
*/
template<typename T>
__host__ __device__
T abs(const complex<T>& z);
/*! Returns the phase angle (also known as argument) in radians of a \p complex.
*
* \param z The \p complex from which to calculate the phase angle.
*/
template <typename T>
__host__ __device__
T arg(const complex<T>& z);
/*! Returns the square of the magnitude of a \p complex.
*
* \param z The \p complex from which to calculate the norm.
*/
template <typename T>
__host__ __device__
T norm(const complex<T>& z);
/*! Returns the complex conjugate of a \p complex.
*
* \param z The \p complex from which to calculate the complex conjugate.
*/
template <typename T>
__host__ __device__
complex<T> conj(const complex<T>& z);
/*! Returns a \p complex with the specified magnitude and phase.
*
* \param m The magnitude of the returned \p complex.
* \param theta The phase of the returned \p complex in radians.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
polar(const T0& m, const T1& theta = T1());
/*! Returns the projection of a \p complex on the Riemann sphere.
* For all finite \p complex it returns the argument. For \p complexs
* with a non finite part returns (INFINITY,+/-0) where the sign of
* the zero matches the sign of the imaginary part of the argument.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> proj(const T& z);
/* --- Binary Arithmetic operators --- */
/*! Adds two \p complex numbers.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator+(const complex<T0>& x, const complex<T1>& y);
/*! Adds a scalar to a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The \p complex.
* \param y The scalar.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator+(const complex<T0>& x, const T1& y);
/*! Adds a \p complex number to a scalar.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The scalar.
* \param y The \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator+(const T0& x, const complex<T1>& y);
/*! Subtracts two \p complex numbers.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The first \p complex (minuend).
* \param y The second \p complex (subtrahend).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator-(const complex<T0>& x, const complex<T1>& y);
/*! Subtracts a scalar from a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The \p complex (minuend).
* \param y The scalar (subtrahend).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator-(const complex<T0>& x, const T1& y);
/*! Subtracts a \p complex number from a scalar.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The scalar (minuend).
* \param y The \p complex (subtrahend).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator-(const T0& x, const complex<T1>& y);
/*! Multiplies two \p complex numbers.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator*(const complex<T0>& x, const complex<T1>& y);
/*! Multiplies a \p complex number by a scalar.
*
* \param x The \p complex.
* \param y The scalar.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator*(const complex<T0>& x, const T1& y);
/*! Multiplies a scalar by a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The scalar.
* \param y The \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator*(const T0& x, const complex<T1>& y);
/*! Divides two \p complex numbers.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The numerator (dividend).
* \param y The denomimator (divisor).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator/(const complex<T0>& x, const complex<T1>& y);
/*! Divides a \p complex number by a scalar.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The complex numerator (dividend).
* \param y The scalar denomimator (divisor).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator/(const complex<T0>& x, const T1& y);
/*! Divides a scalar by a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The scalar numerator (dividend).
* \param y The complex denomimator (divisor).
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator/(const T0& x, const complex<T1>& y);
/* --- Unary Arithmetic operators --- */
/*! Unary plus, returns its \p complex argument.
*
* \param y The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T>
operator+(const complex<T>& y);
/*! Unary minus, returns the additive inverse (negation) of its \p complex
* argument.
*
* \param y The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T>
operator-(const complex<T>& y);
/* --- Exponential Functions --- */
/*! Returns the complex exponential of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> exp(const complex<T>& z);
/*! Returns the complex natural logarithm of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> log(const complex<T>& z);
/*! Returns the complex base 10 logarithm of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> log10(const complex<T>& z);
/* --- Power Functions --- */
/*! Returns a \p complex number raised to another.
*
* The value types of the two \p complex types should be compatible and the
* type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
pow(const complex<T0>& x, const complex<T1>& y);
/*! Returns a \p complex number raised to a scalar.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
pow(const complex<T0>& x, const T1& y);
/*! Returns a scalar raised to a \p complex number.
*
* The value type of the \p complex should be compatible with the scalar and
* the type of the returned \p complex is the promoted type of the two arguments.
*
* \param x The base.
* \param y The exponent.
*/
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
pow(const T0& x, const complex<T1>& y);
/*! Returns the complex square root of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> sqrt(const complex<T>& z);
/* --- Trigonometric Functions --- */
/*! Returns the complex cosine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> cos(const complex<T>& z);
/*! Returns the complex sine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> sin(const complex<T>& z);
/*! Returns the complex tangent of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> tan(const complex<T>& z);
/* --- Hyperbolic Functions --- */
/*! Returns the complex hyperbolic cosine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> cosh(const complex<T>& z);
/*! Returns the complex hyperbolic sine of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> sinh(const complex<T>& z);
/*! Returns the complex hyperbolic tangent of a \p complex number.
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> tanh(const complex<T>& z);
/* --- Inverse Trigonometric Functions --- */
/*! Returns the complex arc cosine of a \p complex number.
*
* The range of the real part of the result is [0, Pi] and
* the range of the imaginary part is [-inf, +inf]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> acos(const complex<T>& z);
/*! Returns the complex arc sine of a \p complex number.
*
* The range of the real part of the result is [-Pi/2, Pi/2] and
* the range of the imaginary part is [-inf, +inf]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> asin(const complex<T>& z);
/*! Returns the complex arc tangent of a \p complex number.
*
* The range of the real part of the result is [-Pi/2, Pi/2] and
* the range of the imaginary part is [-inf, +inf]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> atan(const complex<T>& z);
/* --- Inverse Hyperbolic Functions --- */
/*! Returns the complex inverse hyperbolic cosine of a \p complex number.
*
* The range of the real part of the result is [0, +inf] and
* the range of the imaginary part is [-Pi, Pi]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> acosh(const complex<T>& z);
/*! Returns the complex inverse hyperbolic sine of a \p complex number.
*
* The range of the real part of the result is [-inf, +inf] and
* the range of the imaginary part is [-Pi/2, Pi/2]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> asinh(const complex<T>& z);
/*! Returns the complex inverse hyperbolic tangent of a \p complex number.
*
* The range of the real part of the result is [-inf, +inf] and
* the range of the imaginary part is [-Pi/2, Pi/2]
*
* \param z The \p complex argument.
*/
template <typename T>
__host__ __device__
complex<T> atanh(const complex<T>& z);
/* --- Stream Operators --- */
/*! Writes to an output stream a \p complex number in the form (real, imaginary).
*
* \param os The output stream.
* \param z The \p complex number to output.
*/
template <typename T, typename CharT, typename Traits>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os, const complex<T>& z);
/*! Reads a \p complex number from an input stream.
*
* The recognized formats are:
* - real
* - (real)
* - (real, imaginary)
*
* The values read must be convertible to the \p complex's \c value_type
*
* \param is The input stream.
* \param z The \p complex number to set.
*/
template <typename T, typename CharT, typename Traits>
__host__
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is, complex<T>& z);
/* --- Equality Operators --- */
/*! Returns true if two \p complex numbers are equal and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator==(const complex<T0>& x, const complex<T1>& y);
/*! Returns true if two \p complex numbers are equal and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ THRUST_STD_COMPLEX_DEVICE
bool operator==(const complex<T0>& x, const std::complex<T1>& y);
/*! Returns true if two \p complex numbers are equal and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ THRUST_STD_COMPLEX_DEVICE
bool operator==(const std::complex<T0>& x, const complex<T1>& y);
/*! Returns true if the imaginary part of the \p complex number is zero and
* the real part is equal to the scalar. Returns false otherwise.
*
* \param x The scalar.
* \param y The \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator==(const T0& x, const complex<T1>& y);
/*! Returns true if the imaginary part of the \p complex number is zero and
* the real part is equal to the scalar. Returns false otherwise.
*
* \param x The \p complex.
* \param y The scalar.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator==(const complex<T0>& x, const T1& y);
/*! Returns true if two \p complex numbers are different and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator!=(const complex<T0>& x, const complex<T1>& y);
/*! Returns true if two \p complex numbers are different and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ THRUST_STD_COMPLEX_DEVICE
bool operator!=(const complex<T0>& x, const std::complex<T1>& y);
/*! Returns true if two \p complex numbers are different and false otherwise.
*
* \param x The first \p complex.
* \param y The second \p complex.
*/
template <typename T0, typename T1>
__host__ THRUST_STD_COMPLEX_DEVICE
bool operator!=(const std::complex<T0>& x, const complex<T1>& y);
/*! Returns true if the imaginary part of the \p complex number is not zero or
* the real part is different from the scalar. Returns false otherwise.
*
* \param x The scalar.
* \param y The \p complex.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator!=(const T0& x, const complex<T1>& y);
/*! Returns true if the imaginary part of the \p complex number is not zero or
* the real part is different from the scalar. Returns false otherwise.
*
* \param x The \p complex.
* \param y The scalar.
*/
template <typename T0, typename T1>
__host__ __device__
bool operator!=(const complex<T0>& x, const T1& y);
THRUST_NAMESPACE_END
#include <thrust/detail/complex/complex.inl>
#undef THRUST_STD_COMPLEX_REAL
#undef THRUST_STD_COMPLEX_IMAG
#undef THRUST_STD_COMPLEX_DEVICE
/*! \} // complex_numbers
*/
/*! \} // numerics
*/
|