1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
/*
* Copyright 2018 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*! \file
* \brief A caching and pooling memory resource adaptor which uses separate upstream resources for memory allocation
* and bookkeeping.
*/
#pragma once
#include <thrust/detail/config.h>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <thrust/detail/algorithm_wrapper.h>
#include <thrust/detail/config.h>
#include <thrust/host_vector.h>
#include <thrust/binary_search.h>
#include <thrust/detail/seq.h>
#include <thrust/mr/memory_resource.h>
#include <thrust/mr/allocator.h>
#include <thrust/mr/pool_options.h>
#include <cassert>
THRUST_NAMESPACE_BEGIN
namespace mr
{
/** \addtogroup memory_resources Memory Resources
* \ingroup memory_management
* \{
*/
/*! A memory resource adaptor allowing for pooling and caching allocations from \p Upstream, using \p Bookkeeper for
* management of that cached and pooled memory, allowing to cache portions of memory inaccessible from the host.
*
* On a typical memory resource, calls to \p allocate and \p deallocate actually allocate and deallocate memory. Pooling
* memory resources only allocate and deallocate memory from an external resource (the upstream memory resource) when
* there's no suitable memory currently cached; otherwise, they use memory they have acquired beforehand, to make
* memory allocation faster and more efficient.
*
* The disjoint version of the pool resources uses a separate upstream memory resource, \p Bookkeeper, to allocate memory
* necessary to manage the cached memory. There may be many reasons to do that; the canonical one is that \p Upstream
* allocates memory that is inaccessible to the code of the pool resource, which means that it cannot embed the necessary
* information in memory obtained from \p Upstream; for instance, \p Upstream can be a CUDA non-managed memory
* resource, or a CUDA managed memory resource whose memory we would prefer to not migrate back and forth between
* host and device when executing bookkeeping code.
*
* This is not the only case where it makes sense to use a disjoint pool resource, though. In a multi-core environment
* it may be beneficial to avoid stealing cache lines from other cores by writing over bookkeeping information
* embedded in an allocated block of memory. In such a case, one can imagine wanting to use a disjoint pool where
* both the upstream and the bookkeeper are of the same type, to allocate memory consistently, but separately for
* those two purposes.
*
* \tparam Upstream the type of memory resources that will be used for allocating memory blocks to be handed off to the user
* \tparam Bookkeeper the type of memory resources that will be used for allocating bookkeeping memory
*/
template<typename Upstream, typename Bookkeeper>
class disjoint_unsynchronized_pool_resource final
: public memory_resource<typename Upstream::pointer>,
private validator2<Upstream, Bookkeeper>
{
public:
/*! Get the default options for a disjoint pool. These are meant to be a sensible set of values for many use cases,
* and as such, may be tuned in the future. This function is exposed so that creating a set of options that are
* just a slight departure from the defaults is easy.
*/
static pool_options get_default_options()
{
pool_options ret;
ret.min_blocks_per_chunk = 16;
ret.min_bytes_per_chunk = 1024;
ret.max_blocks_per_chunk = static_cast<std::size_t>(1) << 20;
ret.max_bytes_per_chunk = static_cast<std::size_t>(1) << 30;
ret.smallest_block_size = THRUST_MR_DEFAULT_ALIGNMENT;
ret.largest_block_size = static_cast<std::size_t>(1) << 20;
ret.alignment = THRUST_MR_DEFAULT_ALIGNMENT;
ret.cache_oversized = true;
ret.cached_size_cutoff_factor = 16;
ret.cached_alignment_cutoff_factor = 16;
return ret;
}
/*! Constructor.
*
* \param upstream the upstream memory resource for allocations
* \param bookkeeper the upstream memory resource for bookkeeping
* \param options pool options to use
*/
disjoint_unsynchronized_pool_resource(Upstream * upstream, Bookkeeper * bookkeeper,
pool_options options = get_default_options())
: m_upstream(upstream),
m_bookkeeper(bookkeeper),
m_options(options),
m_smallest_block_log2(detail::log2_ri(m_options.smallest_block_size)),
m_pools(m_bookkeeper),
m_allocated(m_bookkeeper),
m_cached_oversized(m_bookkeeper),
m_oversized(m_bookkeeper)
{
assert(m_options.validate());
pointer_vector free(m_bookkeeper);
pool p(free);
m_pools.resize(detail::log2_ri(m_options.largest_block_size) - m_smallest_block_log2 + 1, p);
}
// TODO: C++11: use delegating constructors
/*! Constructor. Upstream and bookkeeping resources are obtained by calling \p get_global_resource for their types.
*
* \param options pool options to use
*/
disjoint_unsynchronized_pool_resource(pool_options options = get_default_options())
: m_upstream(get_global_resource<Upstream>()),
m_bookkeeper(get_global_resource<Bookkeeper>()),
m_options(options),
m_smallest_block_log2(detail::log2_ri(m_options.smallest_block_size)),
m_pools(m_bookkeeper),
m_allocated(m_bookkeeper),
m_cached_oversized(m_bookkeeper),
m_oversized(m_bookkeeper)
{
assert(m_options.validate());
pointer_vector free(m_bookkeeper);
pool p(free);
m_pools.resize(detail::log2_ri(m_options.largest_block_size) - m_smallest_block_log2 + 1, p);
}
/*! Destructor. Releases all held memory to upstream.
*/
~disjoint_unsynchronized_pool_resource()
{
release();
}
private:
typedef typename Upstream::pointer void_ptr;
typedef typename thrust::detail::pointer_traits<void_ptr>::template rebind<char>::other char_ptr;
struct chunk_descriptor
{
std::size_t size;
void_ptr pointer;
};
typedef thrust::host_vector<
chunk_descriptor,
allocator<chunk_descriptor, Bookkeeper>
> chunk_vector;
struct oversized_block_descriptor
{
std::size_t size;
std::size_t alignment;
void_ptr pointer;
__host__ __device__
bool operator==(const oversized_block_descriptor & other) const
{
return size == other.size && alignment == other.alignment && pointer == other.pointer;
}
__host__ __device__
bool operator<(const oversized_block_descriptor & other) const
{
return size < other.size || (size == other.size && alignment < other.alignment);
}
};
struct equal_pointers
{
public:
__host__ __device__
equal_pointers(void_ptr p) : p(p)
{
}
__host__ __device__
bool operator()(const oversized_block_descriptor & desc) const
{
return desc.pointer == p;
}
private:
void_ptr p;
};
struct matching_alignment
{
public:
__host__ __device__
matching_alignment(std::size_t requested) : requested(requested)
{
}
__host__ __device__
bool operator()(const oversized_block_descriptor & desc) const
{
return desc.alignment >= requested;
}
private:
std::size_t requested;
};
typedef thrust::host_vector<
oversized_block_descriptor,
allocator<oversized_block_descriptor, Bookkeeper>
> oversized_block_vector;
typedef thrust::host_vector<
void_ptr,
allocator<void_ptr, Bookkeeper>
> pointer_vector;
struct pool
{
__host__
pool(const pointer_vector & free)
: free_blocks(free),
previous_allocated_count(0)
{
}
__host__
pool(const pool & other)
: free_blocks(other.free_blocks),
previous_allocated_count(other.previous_allocated_count)
{
}
#if THRUST_CPP_DIALECT >= 2011
pool & operator=(const pool &) = default;
#endif
__host__
~pool() {}
pointer_vector free_blocks;
std::size_t previous_allocated_count;
};
typedef thrust::host_vector<
pool,
allocator<pool, Bookkeeper>
> pool_vector;
Upstream * m_upstream;
Bookkeeper * m_bookkeeper;
pool_options m_options;
std::size_t m_smallest_block_log2;
// buckets containing free lists for each pooled size
pool_vector m_pools;
// list of all allocations from upstream for the above
chunk_vector m_allocated;
// list of all cached oversized/overaligned blocks that have been returned to the pool to cache
oversized_block_vector m_cached_oversized;
// list of all oversized/overaligned allocations from upstream
oversized_block_vector m_oversized;
public:
/*! Releases all held memory to upstream.
*/
void release()
{
// reset the buckets
for (std::size_t i = 0; i < m_pools.size(); ++i)
{
m_pools[i].free_blocks.clear();
m_pools[i].previous_allocated_count = 0;
}
// deallocate memory allocated for the buckets
for (std::size_t i = 0; i < m_allocated.size(); ++i)
{
m_upstream->do_deallocate(
m_allocated[i].pointer,
m_allocated[i].size,
m_options.alignment);
}
// deallocate cached oversized/overaligned memory
for (std::size_t i = 0; i < m_oversized.size(); ++i)
{
m_upstream->do_deallocate(
m_oversized[i].pointer,
m_oversized[i].size,
m_oversized[i].alignment);
}
m_allocated.clear();
m_oversized.clear();
m_cached_oversized.clear();
}
THRUST_NODISCARD virtual void_ptr do_allocate(std::size_t bytes, std::size_t alignment = THRUST_MR_DEFAULT_ALIGNMENT) override
{
bytes = (std::max)(bytes, m_options.smallest_block_size);
assert(detail::is_power_of_2(alignment));
// an oversized and/or overaligned allocation requested; needs to be allocated separately
if (bytes > m_options.largest_block_size || alignment > m_options.alignment)
{
oversized_block_descriptor oversized;
oversized.size = bytes;
oversized.alignment = alignment;
if (m_options.cache_oversized && !m_cached_oversized.empty())
{
typename oversized_block_vector::iterator it = thrust::lower_bound(
thrust::seq,
m_cached_oversized.begin(),
m_cached_oversized.end(),
oversized);
// if the size is bigger than the requested size by a factor
// bigger than or equal to the specified cutoff for size,
// allocate a new block
if (it != m_cached_oversized.end())
{
std::size_t size_factor = (*it).size / bytes;
if (size_factor >= m_options.cached_size_cutoff_factor)
{
it = m_cached_oversized.end();
}
}
if (it != m_cached_oversized.end() && (*it).alignment < alignment)
{
it = find_if(it + 1, m_cached_oversized.end(), matching_alignment(alignment));
}
// if the alignment is bigger than the requested one by a factor
// bigger than or equal to the specified cutoff for alignment,
// allocate a new block
if (it != m_cached_oversized.end())
{
std::size_t alignment_factor = (*it).alignment / alignment;
if (alignment_factor >= m_options.cached_alignment_cutoff_factor)
{
it = m_cached_oversized.end();
}
}
if (it != m_cached_oversized.end())
{
oversized.pointer = (*it).pointer;
m_cached_oversized.erase(it);
return oversized.pointer;
}
}
// no fitting cached block found; allocate a new one that's just up to the specs
oversized.pointer = m_upstream->do_allocate(bytes, alignment);
m_oversized.push_back(oversized);
return oversized.pointer;
}
// the request is NOT for oversized and/or overaligned memory
// allocate a block from an appropriate bucket
std::size_t bytes_log2 = thrust::detail::log2_ri(bytes);
std::size_t bucket_idx = bytes_log2 - m_smallest_block_log2;
pool & bucket = m_pools[bucket_idx];
// if the free list of the bucket has no elements, allocate a new chunk
// and split it into blocks pushed to the free list
if (bucket.free_blocks.empty())
{
std::size_t bucket_size = static_cast<std::size_t>(1) << bytes_log2;
std::size_t n = bucket.previous_allocated_count;
if (n == 0)
{
n = m_options.min_blocks_per_chunk;
if (n < (m_options.min_bytes_per_chunk >> bytes_log2))
{
n = m_options.min_bytes_per_chunk >> bytes_log2;
}
}
else
{
n = n * 3 / 2;
if (n > (m_options.max_bytes_per_chunk >> bytes_log2))
{
n = m_options.max_bytes_per_chunk >> bytes_log2;
}
if (n > m_options.max_blocks_per_chunk)
{
n = m_options.max_blocks_per_chunk;
}
}
bytes = n << bytes_log2;
assert(n >= m_options.min_blocks_per_chunk);
assert(n <= m_options.max_blocks_per_chunk);
assert(bytes >= m_options.min_bytes_per_chunk);
assert(bytes <= m_options.max_bytes_per_chunk);
chunk_descriptor allocated;
allocated.size = bytes;
allocated.pointer = m_upstream->do_allocate(bytes, m_options.alignment);
m_allocated.push_back(allocated);
bucket.previous_allocated_count = n;
for (std::size_t i = 0; i < n; ++i)
{
bucket.free_blocks.push_back(
static_cast<void_ptr>(
static_cast<char_ptr>(allocated.pointer) + i * bucket_size
)
);
}
}
// allocate a block from the front of the bucket's free list
void_ptr ret = bucket.free_blocks.back();
bucket.free_blocks.pop_back();
return ret;
}
virtual void do_deallocate(void_ptr p, std::size_t n, std::size_t alignment = THRUST_MR_DEFAULT_ALIGNMENT) override
{
n = (std::max)(n, m_options.smallest_block_size);
assert(detail::is_power_of_2(alignment));
// verify that the pointer is at least as aligned as claimed
assert(reinterpret_cast<detail::intmax_t>(detail::pointer_traits<void_ptr>::get(p)) % alignment == 0);
// the deallocated block is oversized and/or overaligned
if (n > m_options.largest_block_size || alignment > m_options.alignment)
{
typename oversized_block_vector::iterator it = find_if(m_oversized.begin(), m_oversized.end(), equal_pointers(p));
assert(it != m_oversized.end());
oversized_block_descriptor oversized = *it;
if (m_options.cache_oversized)
{
typename oversized_block_vector::iterator position = lower_bound(m_cached_oversized.begin(), m_cached_oversized.end(), oversized);
m_cached_oversized.insert(position, oversized);
return;
}
m_oversized.erase(it);
m_upstream->do_deallocate(p, oversized.size, oversized.alignment);
return;
}
// push the block to the front of the appropriate bucket's free list
std::size_t n_log2 = thrust::detail::log2_ri(n);
std::size_t bucket_idx = n_log2 - m_smallest_block_log2;
pool & bucket = m_pools[bucket_idx];
bucket.free_blocks.push_back(p);
}
};
/*! \} // memory_resource
*/
} // end mr
THRUST_NAMESPACE_END
|