File: disjoint_pool.h

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (499 lines) | stat: -rw-r--r-- 17,519 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/*
 *  Copyright 2018 NVIDIA Corporation
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

/*! \file
 *  \brief A caching and pooling memory resource adaptor which uses separate upstream resources for memory allocation
 *      and bookkeeping.
 */

#pragma once

#include <thrust/detail/config.h>

#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
#  pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
#  pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
#  pragma system_header
#endif // no system header

#include <thrust/detail/algorithm_wrapper.h>
#include <thrust/detail/config.h>

#include <thrust/host_vector.h>
#include <thrust/binary_search.h>
#include <thrust/detail/seq.h>

#include <thrust/mr/memory_resource.h>
#include <thrust/mr/allocator.h>
#include <thrust/mr/pool_options.h>

#include <cassert>

THRUST_NAMESPACE_BEGIN
namespace mr
{

/** \addtogroup memory_resources Memory Resources
 *  \ingroup memory_management
 *  \{
 */

/*! A memory resource adaptor allowing for pooling and caching allocations from \p Upstream, using \p Bookkeeper for
 *      management of that cached and pooled memory, allowing to cache portions of memory inaccessible from the host.
 *
 *  On a typical memory resource, calls to \p allocate and \p deallocate actually allocate and deallocate memory. Pooling
 *      memory resources only allocate and deallocate memory from an external resource (the upstream memory resource) when
 *      there's no suitable memory currently cached; otherwise, they use memory they have acquired beforehand, to make
 *      memory allocation faster and more efficient.
 *
 *  The disjoint version of the pool resources uses a separate upstream memory resource, \p Bookkeeper, to allocate memory
 *      necessary to manage the cached memory. There may be many reasons to do that; the canonical one is that \p Upstream
 *      allocates memory that is inaccessible to the code of the pool resource, which means that it cannot embed the necessary
 *      information in memory obtained from \p Upstream; for instance, \p Upstream can be a CUDA non-managed memory
 *      resource, or a CUDA managed memory resource whose memory we would prefer to not migrate back and forth between
 *      host and device when executing bookkeeping code.
 *
 *  This is not the only case where it makes sense to use a disjoint pool resource, though. In a multi-core environment
 *      it may be beneficial to avoid stealing cache lines from other cores by writing over bookkeeping information
 *      embedded in an allocated block of memory. In such a case, one can imagine wanting to use a disjoint pool where
 *      both the upstream and the bookkeeper are of the same type, to allocate memory consistently, but separately for
 *      those two purposes.
 *
 *  \tparam Upstream the type of memory resources that will be used for allocating memory blocks to be handed off to the user
 *  \tparam Bookkeeper the type of memory resources that will be used for allocating bookkeeping memory
 */
template<typename Upstream, typename Bookkeeper>
class disjoint_unsynchronized_pool_resource final
    : public memory_resource<typename Upstream::pointer>,
        private validator2<Upstream, Bookkeeper>
{
public:
    /*! Get the default options for a disjoint pool. These are meant to be a sensible set of values for many use cases,
     *      and as such, may be tuned in the future. This function is exposed so that creating a set of options that are
     *      just a slight departure from the defaults is easy.
     */
    static pool_options get_default_options()
    {
        pool_options ret;

        ret.min_blocks_per_chunk = 16;
        ret.min_bytes_per_chunk = 1024;
        ret.max_blocks_per_chunk = static_cast<std::size_t>(1) << 20;
        ret.max_bytes_per_chunk = static_cast<std::size_t>(1) << 30;

        ret.smallest_block_size = THRUST_MR_DEFAULT_ALIGNMENT;
        ret.largest_block_size = static_cast<std::size_t>(1) << 20;

        ret.alignment = THRUST_MR_DEFAULT_ALIGNMENT;

        ret.cache_oversized = true;

        ret.cached_size_cutoff_factor = 16;
        ret.cached_alignment_cutoff_factor = 16;

        return ret;
    }

    /*! Constructor.
     *
     *  \param upstream the upstream memory resource for allocations
     *  \param bookkeeper the upstream memory resource for bookkeeping
     *  \param options pool options to use
     */
    disjoint_unsynchronized_pool_resource(Upstream * upstream, Bookkeeper * bookkeeper,
        pool_options options = get_default_options())
        : m_upstream(upstream),
        m_bookkeeper(bookkeeper),
        m_options(options),
        m_smallest_block_log2(detail::log2_ri(m_options.smallest_block_size)),
        m_pools(m_bookkeeper),
        m_allocated(m_bookkeeper),
        m_cached_oversized(m_bookkeeper),
        m_oversized(m_bookkeeper)
    {
        assert(m_options.validate());

        pointer_vector free(m_bookkeeper);
        pool p(free);
        m_pools.resize(detail::log2_ri(m_options.largest_block_size) - m_smallest_block_log2 + 1, p);
    }

    // TODO: C++11: use delegating constructors

    /*! Constructor. Upstream and bookkeeping resources are obtained by calling \p get_global_resource for their types.
     *
     *  \param options pool options to use
     */
    disjoint_unsynchronized_pool_resource(pool_options options = get_default_options())
        : m_upstream(get_global_resource<Upstream>()),
        m_bookkeeper(get_global_resource<Bookkeeper>()),
        m_options(options),
        m_smallest_block_log2(detail::log2_ri(m_options.smallest_block_size)),
        m_pools(m_bookkeeper),
        m_allocated(m_bookkeeper),
        m_cached_oversized(m_bookkeeper),
        m_oversized(m_bookkeeper)
    {
        assert(m_options.validate());

        pointer_vector free(m_bookkeeper);
        pool p(free);
        m_pools.resize(detail::log2_ri(m_options.largest_block_size) - m_smallest_block_log2 + 1, p);
    }

    /*! Destructor. Releases all held memory to upstream.
     */
    ~disjoint_unsynchronized_pool_resource()
    {
        release();
    }

private:
    typedef typename Upstream::pointer void_ptr;
    typedef typename thrust::detail::pointer_traits<void_ptr>::template rebind<char>::other char_ptr;

    struct chunk_descriptor
    {
        std::size_t size;
        void_ptr pointer;
    };

    typedef thrust::host_vector<
        chunk_descriptor,
        allocator<chunk_descriptor, Bookkeeper>
    > chunk_vector;

    struct oversized_block_descriptor
    {
        std::size_t size;
        std::size_t alignment;
        void_ptr pointer;

        __host__ __device__
        bool operator==(const oversized_block_descriptor & other) const
        {
            return size == other.size && alignment == other.alignment && pointer == other.pointer;
        }

        __host__ __device__
        bool operator<(const oversized_block_descriptor & other) const
        {
            return size < other.size || (size == other.size && alignment < other.alignment);
        }
    };

    struct equal_pointers
    {
    public:
        __host__ __device__
        equal_pointers(void_ptr p) : p(p)
        {
        }

        __host__ __device__
        bool operator()(const oversized_block_descriptor & desc) const
        {
            return desc.pointer == p;
        }

    private:
        void_ptr p;
    };

    struct matching_alignment
    {
    public:
        __host__ __device__
        matching_alignment(std::size_t requested) : requested(requested)
        {
        }

        __host__ __device__
        bool operator()(const oversized_block_descriptor & desc) const
        {
            return desc.alignment >= requested;
        }

    private:
        std::size_t requested;
    };

    typedef thrust::host_vector<
        oversized_block_descriptor,
        allocator<oversized_block_descriptor, Bookkeeper>
    > oversized_block_vector;

    typedef thrust::host_vector<
        void_ptr,
        allocator<void_ptr, Bookkeeper>
    > pointer_vector;

    struct pool
    {
        __host__
        pool(const pointer_vector & free)
            : free_blocks(free),
            previous_allocated_count(0)
        {
        }

        __host__
        pool(const pool & other)
            : free_blocks(other.free_blocks),
            previous_allocated_count(other.previous_allocated_count)
        {
        }

#if THRUST_CPP_DIALECT >= 2011
        pool & operator=(const pool &) = default;
#endif

        __host__
        ~pool() {}

        pointer_vector free_blocks;
        std::size_t previous_allocated_count;
    };

    typedef thrust::host_vector<
        pool,
        allocator<pool, Bookkeeper>
    > pool_vector;

    Upstream * m_upstream;
    Bookkeeper * m_bookkeeper;

    pool_options m_options;
    std::size_t m_smallest_block_log2;

    // buckets containing free lists for each pooled size
    pool_vector m_pools;
    // list of all allocations from upstream for the above
    chunk_vector m_allocated;
    // list of all cached oversized/overaligned blocks that have been returned to the pool to cache
    oversized_block_vector m_cached_oversized;
    // list of all oversized/overaligned allocations from upstream
    oversized_block_vector m_oversized;

public:
    /*! Releases all held memory to upstream.
     */
    void release()
    {
        // reset the buckets
        for (std::size_t i = 0; i < m_pools.size(); ++i)
        {
            m_pools[i].free_blocks.clear();
            m_pools[i].previous_allocated_count = 0;
        }

        // deallocate memory allocated for the buckets
        for (std::size_t i = 0; i < m_allocated.size(); ++i)
        {
            m_upstream->do_deallocate(
                m_allocated[i].pointer,
                m_allocated[i].size,
                m_options.alignment);
        }

        // deallocate cached oversized/overaligned memory
        for (std::size_t i = 0; i < m_oversized.size(); ++i)
        {
            m_upstream->do_deallocate(
                m_oversized[i].pointer,
                m_oversized[i].size,
                m_oversized[i].alignment);
        }

        m_allocated.clear();
        m_oversized.clear();
        m_cached_oversized.clear();
    }

    THRUST_NODISCARD virtual void_ptr do_allocate(std::size_t bytes, std::size_t alignment = THRUST_MR_DEFAULT_ALIGNMENT) override
    {
        bytes = (std::max)(bytes, m_options.smallest_block_size);
        assert(detail::is_power_of_2(alignment));

        // an oversized and/or overaligned allocation requested; needs to be allocated separately
        if (bytes > m_options.largest_block_size || alignment > m_options.alignment)
        {
            oversized_block_descriptor oversized;
            oversized.size = bytes;
            oversized.alignment = alignment;

            if (m_options.cache_oversized && !m_cached_oversized.empty())
            {
                typename oversized_block_vector::iterator it = thrust::lower_bound(
                    thrust::seq,
                    m_cached_oversized.begin(),
                    m_cached_oversized.end(),
                    oversized);

                // if the size is bigger than the requested size by a factor
                // bigger than or equal to the specified cutoff for size,
                // allocate a new block
                if (it != m_cached_oversized.end())
                {
                    std::size_t size_factor = (*it).size / bytes;
                    if (size_factor >= m_options.cached_size_cutoff_factor)
                    {
                        it = m_cached_oversized.end();
                    }
                }

                if (it != m_cached_oversized.end() && (*it).alignment < alignment)
                {
                    it = find_if(it + 1, m_cached_oversized.end(), matching_alignment(alignment));
                }

                // if the alignment is bigger than the requested one by a factor
                // bigger than or equal to the specified cutoff for alignment,
                // allocate a new block
                if (it != m_cached_oversized.end())
                {
                    std::size_t alignment_factor = (*it).alignment / alignment;
                    if (alignment_factor >= m_options.cached_alignment_cutoff_factor)
                    {
                        it = m_cached_oversized.end();
                    }
                }

                if (it != m_cached_oversized.end())
                {
                    oversized.pointer = (*it).pointer;
                    m_cached_oversized.erase(it);
                    return oversized.pointer;
                }
            }

            // no fitting cached block found; allocate a new one that's just up to the specs
            oversized.pointer = m_upstream->do_allocate(bytes, alignment);
            m_oversized.push_back(oversized);

            return oversized.pointer;
        }

        // the request is NOT for oversized and/or overaligned memory
        // allocate a block from an appropriate bucket
        std::size_t bytes_log2 = thrust::detail::log2_ri(bytes);
        std::size_t bucket_idx = bytes_log2 - m_smallest_block_log2;
        pool & bucket = m_pools[bucket_idx];

        // if the free list of the bucket has no elements, allocate a new chunk
        // and split it into blocks pushed to the free list
        if (bucket.free_blocks.empty())
        {
            std::size_t bucket_size = static_cast<std::size_t>(1) << bytes_log2;

            std::size_t n = bucket.previous_allocated_count;
            if (n == 0)
            {
                n = m_options.min_blocks_per_chunk;
                if (n < (m_options.min_bytes_per_chunk >> bytes_log2))
                {
                    n = m_options.min_bytes_per_chunk >> bytes_log2;
                }
            }
            else
            {
                n = n * 3 / 2;
                if (n > (m_options.max_bytes_per_chunk >> bytes_log2))
                {
                    n = m_options.max_bytes_per_chunk >> bytes_log2;
                }
                if (n > m_options.max_blocks_per_chunk)
                {
                    n = m_options.max_blocks_per_chunk;
                }
            }

            bytes = n << bytes_log2;

            assert(n >= m_options.min_blocks_per_chunk);
            assert(n <= m_options.max_blocks_per_chunk);
            assert(bytes >= m_options.min_bytes_per_chunk);
            assert(bytes <= m_options.max_bytes_per_chunk);

            chunk_descriptor allocated;
            allocated.size = bytes;
            allocated.pointer = m_upstream->do_allocate(bytes, m_options.alignment);
            m_allocated.push_back(allocated);
            bucket.previous_allocated_count = n;

            for (std::size_t i = 0; i < n; ++i)
            {
                bucket.free_blocks.push_back(
                    static_cast<void_ptr>(
                        static_cast<char_ptr>(allocated.pointer) + i * bucket_size
                    )
                );
            }
        }

        // allocate a block from the front of the bucket's free list
        void_ptr ret = bucket.free_blocks.back();
        bucket.free_blocks.pop_back();
        return ret;
    }

    virtual void do_deallocate(void_ptr p, std::size_t n, std::size_t alignment = THRUST_MR_DEFAULT_ALIGNMENT) override
    {
        n = (std::max)(n, m_options.smallest_block_size);
        assert(detail::is_power_of_2(alignment));

        // verify that the pointer is at least as aligned as claimed
        assert(reinterpret_cast<detail::intmax_t>(detail::pointer_traits<void_ptr>::get(p)) % alignment == 0);

        // the deallocated block is oversized and/or overaligned
        if (n > m_options.largest_block_size || alignment > m_options.alignment)
        {
            typename oversized_block_vector::iterator it = find_if(m_oversized.begin(), m_oversized.end(), equal_pointers(p));
            assert(it != m_oversized.end());

            oversized_block_descriptor oversized = *it;

            if (m_options.cache_oversized)
            {
                typename oversized_block_vector::iterator position = lower_bound(m_cached_oversized.begin(), m_cached_oversized.end(), oversized);
                m_cached_oversized.insert(position, oversized);
                return;
            }

            m_oversized.erase(it);

            m_upstream->do_deallocate(p, oversized.size, oversized.alignment);

            return;
        }

        // push the block to the front of the appropriate bucket's free list
        std::size_t n_log2 = thrust::detail::log2_ri(n);
        std::size_t bucket_idx = n_log2 - m_smallest_block_log2;
        pool & bucket = m_pools[bucket_idx];

        bucket.free_blocks.push_back(p);
    }
};

/*! \} // memory_resource
 */

} // end mr
THRUST_NAMESPACE_END