1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/*
* Copyright 1993-2012 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#if !defined(CU_COMPLEX_H_)
#define CU_COMPLEX_H_
#if !defined(__CUDACC_RTC__)
#if defined(__GNUC__)
#if defined(__clang__) || (!defined(__PGIC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2)))
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#endif
#endif
/* When trying to include C header file in C++ Code extern "C" is required
* But the Standard QNX headers already have ifdef extern in them when compiling C++ Code
* extern "C" cannot be nested
* Hence keep the header out of extern "C" block
*/
#if !defined(__CUDACC__)
#include <math.h> /* import fabsf, sqrt */
#endif /* !defined(__CUDACC__) */
#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */
#include "vector_types.h"
typedef float2 cuFloatComplex;
__host__ __device__ static __inline__ float cuCrealf (cuFloatComplex x)
{
return x.x;
}
__host__ __device__ static __inline__ float cuCimagf (cuFloatComplex x)
{
return x.y;
}
__host__ __device__ static __inline__ cuFloatComplex make_cuFloatComplex
(float r, float i)
{
cuFloatComplex res;
res.x = r;
res.y = i;
return res;
}
__host__ __device__ static __inline__ cuFloatComplex cuConjf (cuFloatComplex x)
{
return make_cuFloatComplex (cuCrealf(x), -cuCimagf(x));
}
__host__ __device__ static __inline__ cuFloatComplex cuCaddf (cuFloatComplex x,
cuFloatComplex y)
{
return make_cuFloatComplex (cuCrealf(x) + cuCrealf(y),
cuCimagf(x) + cuCimagf(y));
}
__host__ __device__ static __inline__ cuFloatComplex cuCsubf (cuFloatComplex x,
cuFloatComplex y)
{
return make_cuFloatComplex (cuCrealf(x) - cuCrealf(y),
cuCimagf(x) - cuCimagf(y));
}
/* This implementation could suffer from intermediate overflow even though
* the final result would be in range. However, various implementations do
* not guard against this (presumably to avoid losing performance), so we
* don't do it either to stay competitive.
*/
__host__ __device__ static __inline__ cuFloatComplex cuCmulf (cuFloatComplex x,
cuFloatComplex y)
{
cuFloatComplex prod;
prod = make_cuFloatComplex ((cuCrealf(x) * cuCrealf(y)) -
(cuCimagf(x) * cuCimagf(y)),
(cuCrealf(x) * cuCimagf(y)) +
(cuCimagf(x) * cuCrealf(y)));
return prod;
}
/* This implementation guards against intermediate underflow and overflow
* by scaling. Such guarded implementations are usually the default for
* complex library implementations, with some also offering an unguarded,
* faster version.
*/
__host__ __device__ static __inline__ cuFloatComplex cuCdivf (cuFloatComplex x,
cuFloatComplex y)
{
cuFloatComplex quot;
float s = fabsf(cuCrealf(y)) + fabsf(cuCimagf(y));
float oos = 1.0f / s;
float ars = cuCrealf(x) * oos;
float ais = cuCimagf(x) * oos;
float brs = cuCrealf(y) * oos;
float bis = cuCimagf(y) * oos;
s = (brs * brs) + (bis * bis);
oos = 1.0f / s;
quot = make_cuFloatComplex (((ars * brs) + (ais * bis)) * oos,
((ais * brs) - (ars * bis)) * oos);
return quot;
}
/*
* We would like to call hypotf(), but it's not available on all platforms.
* This discrete implementation guards against intermediate underflow and
* overflow by scaling. Otherwise we would lose half the exponent range.
* There are various ways of doing guarded computation. For now chose the
* simplest and fastest solution, however this may suffer from inaccuracies
* if sqrt and division are not IEEE compliant.
*/
__host__ __device__ static __inline__ float cuCabsf (cuFloatComplex x)
{
float a = cuCrealf(x);
float b = cuCimagf(x);
float v, w, t;
a = fabsf(a);
b = fabsf(b);
if (a > b) {
v = a;
w = b;
} else {
v = b;
w = a;
}
t = w / v;
t = 1.0f + t * t;
t = v * sqrtf(t);
if ((v == 0.0f) || (v > 3.402823466e38f) || (w > 3.402823466e38f)) {
t = v + w;
}
return t;
}
/* Double precision */
typedef double2 cuDoubleComplex;
__host__ __device__ static __inline__ double cuCreal (cuDoubleComplex x)
{
return x.x;
}
__host__ __device__ static __inline__ double cuCimag (cuDoubleComplex x)
{
return x.y;
}
__host__ __device__ static __inline__ cuDoubleComplex make_cuDoubleComplex
(double r, double i)
{
cuDoubleComplex res;
res.x = r;
res.y = i;
return res;
}
__host__ __device__ static __inline__ cuDoubleComplex cuConj(cuDoubleComplex x)
{
return make_cuDoubleComplex (cuCreal(x), -cuCimag(x));
}
__host__ __device__ static __inline__ cuDoubleComplex cuCadd(cuDoubleComplex x,
cuDoubleComplex y)
{
return make_cuDoubleComplex (cuCreal(x) + cuCreal(y),
cuCimag(x) + cuCimag(y));
}
__host__ __device__ static __inline__ cuDoubleComplex cuCsub(cuDoubleComplex x,
cuDoubleComplex y)
{
return make_cuDoubleComplex (cuCreal(x) - cuCreal(y),
cuCimag(x) - cuCimag(y));
}
/* This implementation could suffer from intermediate overflow even though
* the final result would be in range. However, various implementations do
* not guard against this (presumably to avoid losing performance), so we
* don't do it either to stay competitive.
*/
__host__ __device__ static __inline__ cuDoubleComplex cuCmul(cuDoubleComplex x,
cuDoubleComplex y)
{
cuDoubleComplex prod;
prod = make_cuDoubleComplex ((cuCreal(x) * cuCreal(y)) -
(cuCimag(x) * cuCimag(y)),
(cuCreal(x) * cuCimag(y)) +
(cuCimag(x) * cuCreal(y)));
return prod;
}
/* This implementation guards against intermediate underflow and overflow
* by scaling. Such guarded implementations are usually the default for
* complex library implementations, with some also offering an unguarded,
* faster version.
*/
__host__ __device__ static __inline__ cuDoubleComplex cuCdiv(cuDoubleComplex x,
cuDoubleComplex y)
{
cuDoubleComplex quot;
double s = (fabs(cuCreal(y))) + (fabs(cuCimag(y)));
double oos = 1.0 / s;
double ars = cuCreal(x) * oos;
double ais = cuCimag(x) * oos;
double brs = cuCreal(y) * oos;
double bis = cuCimag(y) * oos;
s = (brs * brs) + (bis * bis);
oos = 1.0 / s;
quot = make_cuDoubleComplex (((ars * brs) + (ais * bis)) * oos,
((ais * brs) - (ars * bis)) * oos);
return quot;
}
/* This implementation guards against intermediate underflow and overflow
* by scaling. Otherwise we would lose half the exponent range. There are
* various ways of doing guarded computation. For now chose the simplest
* and fastest solution, however this may suffer from inaccuracies if sqrt
* and division are not IEEE compliant.
*/
__host__ __device__ static __inline__ double cuCabs (cuDoubleComplex x)
{
double a = cuCreal(x);
double b = cuCimag(x);
double v, w, t;
a = fabs(a);
b = fabs(b);
if (a > b) {
v = a;
w = b;
} else {
v = b;
w = a;
}
t = w / v;
t = 1.0 + t * t;
t = v * sqrt(t);
if ((v == 0.0) ||
(v > 1.79769313486231570e+308) || (w > 1.79769313486231570e+308)) {
t = v + w;
}
return t;
}
#if defined(__cplusplus)
}
#endif /* __cplusplus */
/* aliases */
typedef cuFloatComplex cuComplex;
__host__ __device__ static __inline__ cuComplex make_cuComplex (float x,
float y)
{
return make_cuFloatComplex (x, y);
}
/* float-to-double promotion */
__host__ __device__ static __inline__ cuDoubleComplex cuComplexFloatToDouble
(cuFloatComplex c)
{
return make_cuDoubleComplex ((double)cuCrealf(c), (double)cuCimagf(c));
}
__host__ __device__ static __inline__ cuFloatComplex cuComplexDoubleToFloat
(cuDoubleComplex c)
{
return make_cuFloatComplex ((float)cuCreal(c), (float)cuCimag(c));
}
__host__ __device__ static __inline__ cuComplex cuCfmaf( cuComplex x, cuComplex y, cuComplex d)
{
float real_res;
float imag_res;
real_res = (cuCrealf(x) * cuCrealf(y)) + cuCrealf(d);
imag_res = (cuCrealf(x) * cuCimagf(y)) + cuCimagf(d);
real_res = -(cuCimagf(x) * cuCimagf(y)) + real_res;
imag_res = (cuCimagf(x) * cuCrealf(y)) + imag_res;
return make_cuComplex(real_res, imag_res);
}
__host__ __device__ static __inline__ cuDoubleComplex cuCfma( cuDoubleComplex x, cuDoubleComplex y, cuDoubleComplex d)
{
double real_res;
double imag_res;
real_res = (cuCreal(x) * cuCreal(y)) + cuCreal(d);
imag_res = (cuCreal(x) * cuCimag(y)) + cuCimag(d);
real_res = -(cuCimag(x) * cuCimag(y)) + real_res;
imag_res = (cuCimag(x) * cuCreal(y)) + imag_res;
return make_cuDoubleComplex(real_res, imag_res);
}
#endif /* !defined(CU_COMPLEX_H_) */
|