1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
/*
* Copyright 1993-2019 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#ifndef _CUDA_AWBARRIER_HELPERS_H_
#define _CUDA_AWBARRIER_HELPERS_H_
#define _CUDA_AWBARRIER_NAMESPACE nvcuda::experimental
#define _CUDA_AWBARRIER_BEGIN_NAMESPACE namespace nvcuda { namespace experimental {
#define _CUDA_AWBARRIER_END_NAMESPACE } }
#define _CUDA_AWBARRIER_INTERNAL_NAMESPACE _CUDA_AWBARRIER_NAMESPACE::__awbarrier_internal
#define _CUDA_AWBARRIER_BEGIN_INTERNAL_NAMESPACE _CUDA_AWBARRIER_BEGIN_NAMESPACE namespace __awbarrier_internal {
#define _CUDA_AWBARRIER_END_INTERNAL_NAMESPACE } _CUDA_AWBARRIER_END_NAMESPACE
# if !defined(_CUDA_AWBARRIER_QUALIFIER)
# define _CUDA_AWBARRIER_QUALIFIER inline __device__
# endif
# if !defined(_CUDA_AWBARRIER_STATIC_QUALIFIER)
# define _CUDA_AWBARRIER_STATIC_QUALIFIER static inline __device__
#endif
#if defined(__CUDA_ARCH__)
#if (__CUDA_ARCH__ >= 900)
# define _CUDA_AWBARRIER_SM_TARGET _CUDA_AWBARRIER_SM_90
#elif (__CUDA_ARCH__ >= 800)
# define _CUDA_AWBARRIER_SM_TARGET _CUDA_AWBARRIER_SM_80
#elif (__CUDA_ARCH__ >= 700)
# define _CUDA_AWBARRIER_SM_TARGET _CUDA_AWBARRIER_SM_70
#endif
#else
# define _CUDA_AWBARRIER_SM_TARGET _CUDA_AWBARRIER_SM_70
#endif
#define _CUDA_AWBARRIER_MAX_COUNT ((1 << 14) - 1)
#if defined(__cplusplus) && ((__cplusplus >= 201103L) || (defined(_MSC_VER) && (_MSC_VER >= 1900)))
# define _CUDA_AWBARRIER_CPLUSPLUS_11_OR_LATER
#endif
#if !defined(_CUDA_AWBARRIER_DEBUG)
# if defined(__CUDACC_DEBUG__)
# define _CUDA_AWBARRIER_DEBUG 1
# else
# define _CUDA_AWBARRIER_DEBUG 0
# endif
#endif
#if defined(_CUDA_AWBARRIER_DEBUG) && (_CUDA_AWBARRIER_DEBUG == 1) && !defined(NDEBUG)
# if !defined(__CUDACC_RTC__)
# include <cassert>
# endif
# define _CUDA_AWBARRIER_ASSERT(x) assert((x));
# define _CUDA_AWBARRIER_ABORT() assert(0);
#else
# define _CUDA_AWBARRIER_ASSERT(x)
# define _CUDA_AWBARRIER_ABORT() __trap();
#endif
#if defined(__CUDACC_RTC__)
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long uint64_t;
typedef uint64_t uintptr_t;
#else
# include <stdint.h>
#endif
// implicitly provided by NVRTC
#ifndef __CUDACC_RTC__
#include <nv/target>
#endif /* !defined(__CUDACC_RTC__) */
typedef uint64_t __mbarrier_t;
typedef uint64_t __mbarrier_token_t;
_CUDA_AWBARRIER_BEGIN_INTERNAL_NAMESPACE
extern "C" __device__ uint32_t __nvvm_get_smem_pointer(void *);
union AWBarrier {
struct {
uint32_t expected;
uint32_t pending;
} split;
uint64_t raw;
};
_CUDA_AWBARRIER_STATIC_QUALIFIER
void awbarrier_init(uint64_t* barrier, uint32_t expected_count) {
_CUDA_AWBARRIER_ASSERT(__isShared(barrier));
_CUDA_AWBARRIER_ASSERT(expected_count > 0 && expected_count < (1 << 29));
NV_IF_TARGET(NV_PROVIDES_SM_80,
asm volatile ("mbarrier.init.shared.b64 [%0], %1;"
:
: "r"(__nvvm_get_smem_pointer(barrier)), "r"(expected_count)
: "memory");
return;
)
NV_IF_TARGET(NV_PROVIDES_SM_70,
AWBarrier* awbarrier = reinterpret_cast<AWBarrier*>(barrier);
awbarrier->split.expected = 0x40000000 - expected_count;
awbarrier->split.pending = 0x80000000 - expected_count;
return;
)
}
_CUDA_AWBARRIER_STATIC_QUALIFIER
void awbarrier_inval(uint64_t* barrier) {
_CUDA_AWBARRIER_ASSERT(__isShared(barrier));
NV_IF_TARGET(NV_PROVIDES_SM_80,
asm volatile ("mbarrier.inval.shared.b64 [%0];"
:
: "r"(__nvvm_get_smem_pointer(barrier))
: "memory");
return;
)
return;
}
_CUDA_AWBARRIER_STATIC_QUALIFIER
uint32_t awbarrier_token_pending_count(uint64_t token) {
NV_IF_TARGET(NV_PROVIDES_SM_80,
uint32_t __pending_count;
asm ("mbarrier.pending_count.b64 %0, %1;"
: "=r"(__pending_count)
: "l"(token));
return __pending_count;
)
NV_IF_TARGET(NV_PROVIDES_SM_70,
const uint32_t pending = token >> 32;
return 0x80000000 - (pending & 0x7fffffff);
)
}
template<bool _Drop>
_CUDA_AWBARRIER_STATIC_QUALIFIER
uint64_t awbarrier_arrive_drop(uint64_t* barrier) {
_CUDA_AWBARRIER_ASSERT(__isShared(barrier));
NV_IF_TARGET(NV_PROVIDES_SM_80,
uint64_t token;
if (_Drop) {
asm volatile ("mbarrier.arrive_drop.shared.b64 %0, [%1];"
: "=l"(token)
: "r"(__nvvm_get_smem_pointer(barrier))
: "memory");
} else {
asm volatile ("mbarrier.arrive.shared.b64 %0, [%1];"
: "=l"(token)
: "r"(__nvvm_get_smem_pointer(barrier))
: "memory");
}
return token;
)
NV_IF_TARGET(NV_PROVIDES_SM_70,
AWBarrier* awbarrier = reinterpret_cast<AWBarrier*>(barrier);
while ((*reinterpret_cast<volatile uint32_t*>(&awbarrier->split.pending) & 0x7fffffff) == 0);
if (_Drop) {
(void)atomicAdd_block(&awbarrier->split.expected, 1);
}
__threadfence_block();
const uint32_t old_pending = atomicAdd_block(&awbarrier->split.pending, 1);
const uint32_t new_pending = old_pending + 1;
const bool reset = (old_pending ^ new_pending) & 0x80000000;
if (reset) {
__threadfence_block();
uint32_t new_expected = *reinterpret_cast<volatile uint32_t*>(&awbarrier->split.expected);
new_expected &= ~0x40000000;
if (new_expected & 0x20000000) {
new_expected |= 0x40000000;
}
atomicAdd_block(&awbarrier->split.pending, new_expected);
}
return static_cast<uint64_t>(old_pending) << 32;
)
}
template<bool _Drop>
_CUDA_AWBARRIER_STATIC_QUALIFIER
uint64_t awbarrier_arrive_drop_no_complete(uint64_t* barrier, uint32_t count) {
_CUDA_AWBARRIER_ASSERT(__isShared(barrier));
_CUDA_AWBARRIER_ASSERT(count > 0 && count < (1 << 29));
NV_IF_TARGET(NV_PROVIDES_SM_80,
uint64_t token;
if (_Drop) {
asm volatile ("mbarrier.arrive_drop.noComplete.shared.b64 %0, [%1], %2;"
: "=l"(token)
: "r"(__nvvm_get_smem_pointer(barrier)), "r"(count)
: "memory");
} else {
asm volatile ("mbarrier.arrive.noComplete.shared.b64 %0, [%1], %2;"
: "=l"(token)
: "r"(__nvvm_get_smem_pointer(barrier)), "r"(count)
: "memory");
}
return token;
)
NV_IF_TARGET(NV_PROVIDES_SM_70,
AWBarrier* awbarrier = reinterpret_cast<AWBarrier*>(barrier);
while ((*reinterpret_cast<volatile uint32_t*>(&awbarrier->split.pending) & 0x7fffffff) == 0);
if (_Drop) {
(void)atomicAdd_block(&awbarrier->split.expected, count);
}
return static_cast<uint64_t>(atomicAdd_block(&awbarrier->split.pending, count)) << 32;
)
}
_CUDA_AWBARRIER_STATIC_QUALIFIER
bool awbarrier_test_wait(uint64_t* barrier, uint64_t token) {
_CUDA_AWBARRIER_ASSERT(__isShared(barrier));
NV_IF_TARGET(NV_PROVIDES_SM_80,
uint32_t __wait_complete;
asm volatile ("{"
" .reg .pred %%p;"
" mbarrier.test_wait.shared.b64 %%p, [%1], %2;"
" selp.b32 %0, 1, 0, %%p;"
"}"
: "=r"(__wait_complete)
: "r"(__nvvm_get_smem_pointer(barrier)), "l"(token)
: "memory");
return bool(__wait_complete);
)
NV_IF_TARGET(NV_PROVIDES_SM_70,
volatile AWBarrier* awbarrier = reinterpret_cast<volatile AWBarrier*>(barrier);
return ((token >> 32) ^ awbarrier->split.pending) & 0x80000000;
)
}
_CUDA_AWBARRIER_STATIC_QUALIFIER
bool awbarrier_test_wait_parity(uint64_t* barrier, bool phase_parity) {
_CUDA_AWBARRIER_ASSERT(__isShared(barrier));
NV_IF_TARGET(NV_PROVIDES_SM_90,
uint32_t __wait_complete = 0;
asm volatile ("{"
".reg .pred %%p;"
"mbarrier.test_wait.parity.shared.b64 %%p, [%1], %2;"
"selp.b32 %0, 1, 0, %%p;"
"}"
: "=r"(__wait_complete)
: "r"(__nvvm_get_smem_pointer(barrier)), "r"(static_cast<uint32_t>(phase_parity))
: "memory");
return __wait_complete;
)
_CUDA_AWBARRIER_ABORT()
return false;
}
_CUDA_AWBARRIER_STATIC_QUALIFIER
bool awbarrier_try_wait(uint64_t* barrier, uint64_t token, uint32_t max_sleep_nanosec) {
_CUDA_AWBARRIER_ASSERT(__isShared(barrier));
NV_IF_TARGET(NV_PROVIDES_SM_90,
uint32_t __wait_complete = 0;
asm volatile ("{\n\t"
".reg .pred p;\n\t"
"mbarrier.try_wait.shared.b64 p, [%1], %2, %3;\n\t"
"selp.b32 %0, 1, 0, p;\n\t"
"}"
: "=r"(__wait_complete)
: "r"(__nvvm_get_smem_pointer(barrier)), "l"(token), "r"(max_sleep_nanosec)
: "memory");
return __wait_complete;
)
_CUDA_AWBARRIER_ABORT()
return false;
}
_CUDA_AWBARRIER_STATIC_QUALIFIER
bool awbarrier_try_wait_parity(uint64_t* barrier, bool phase_parity, uint32_t max_sleep_nanosec) {
_CUDA_AWBARRIER_ASSERT(__isShared(barrier));
NV_IF_TARGET(NV_PROVIDES_SM_90,
uint32_t __wait_complete = 0;
asm volatile ("{\n\t"
".reg .pred p;\n\t"
"mbarrier.try_wait.parity.shared.b64 p, [%1], %2, %3;\n\t"
"selp.b32 %0, 1, 0, p;\n\t"
"}"
: "=r"(__wait_complete)
: "r"(__nvvm_get_smem_pointer(barrier)), "r"(static_cast<uint32_t>(phase_parity)), "r"(max_sleep_nanosec)
: "memory");
return __wait_complete;
)
_CUDA_AWBARRIER_ABORT()
return false;
}
_CUDA_AWBARRIER_END_INTERNAL_NAMESPACE
#endif /* !_CUDA_AWBARRIER_HELPERS_H_ */
|