File: cuda_fp8.hpp

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (1750 lines) | stat: -rw-r--r-- 64,246 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
/*
 * Copyright 2022-2023 NVIDIA Corporation.  All rights reserved.
 *
 * NOTICE TO LICENSEE:
 *
 * This source code and/or documentation ("Licensed Deliverables") are
 * subject to NVIDIA intellectual property rights under U.S. and
 * international Copyright laws.
 *
 * These Licensed Deliverables contained herein is PROPRIETARY and
 * CONFIDENTIAL to NVIDIA and is being provided under the terms and
 * conditions of a form of NVIDIA software license agreement by and
 * between NVIDIA and Licensee ("License Agreement") or electronically
 * accepted by Licensee.  Notwithstanding any terms or conditions to
 * the contrary in the License Agreement, reproduction or disclosure
 * of the Licensed Deliverables to any third party without the express
 * written consent of NVIDIA is prohibited.
 *
 * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
 * LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
 * SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE.  IT IS
 * PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
 * NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
 * DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
 * NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
 * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
 * LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
 * SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
 * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
 * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 * OF THESE LICENSED DELIVERABLES.
 *
 * U.S. Government End Users.  These Licensed Deliverables are a
 * "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
 * 1995), consisting of "commercial computer software" and "commercial
 * computer software documentation" as such terms are used in 48
 * C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
 * only as a commercial end item.  Consistent with 48 C.F.R.12.212 and
 * 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
 * U.S. Government End Users acquire the Licensed Deliverables with
 * only those rights set forth herein.
 *
 * Any use of the Licensed Deliverables in individual and commercial
 * software must include, in the user documentation and internal
 * comments to the code, the above Disclaimer and U.S. Government End
 * Users Notice.
 */

#if !defined(__CUDA_FP8_HPP__)
#define __CUDA_FP8_HPP__

#if !defined(__CUDA_FP8_H__)
#error "Do not include this file directly. Instead, include cuda_fp8.h."
#endif

/* C++ header for std::memcpy (used for type punning in host-side
 * implementations). When compiling as a CUDA source file memcpy is provided
 * implicitly. !defined(__CUDACC__) implies !defined(__CUDACC_RTC__).
 */
#if defined(__cplusplus) && !defined(__CUDACC__)
#include <cstring>
#elif !defined(__cplusplus) && !defined(__CUDACC__)
#include <string.h>
#endif /* defined(__cplusplus) && !defined(__CUDACC__) */

/* Set up structure-alignment attribute */
#if !(defined __CUDA_ALIGN__)
#if defined(__CUDACC__)
#define __CUDA_ALIGN__(align) __align__(align)
#else
/* Define alignment macro based on compiler type (cannot assume C11 "_Alignas"
 * is available) */
#if __cplusplus >= 201103L
#define __CUDA_ALIGN__(n)                                                      \
    alignas(n) /* C++11 kindly gives us a keyword for this */
#else          /* !defined(__CPP_VERSION_AT_LEAST_11_FP8)*/
#if defined(__GNUC__)
#define __CUDA_ALIGN__(n) __attribute__((aligned(n)))
#elif defined(_MSC_VER)
#define __CUDA_ALIGN__(n) __declspec(align(n))
#else
#define __CUDA_ALIGN__(n)
#endif /* defined(__GNUC__) */
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */
#endif /* defined(__CUDACC__) */
#endif /* !(defined __CUDA_ALIGN__) */

#if !(defined __CPP_VERSION_AT_LEAST_11_FP8)
/* need c++11 for explicit operators */
#define __CUDA_NO_FP8_CONVERSION_OPERATORS__
#endif

__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8_storage_t
__nv_cvt_double_to_fp8(const double x, const __nv_saturation_t saturate,
                       const __nv_fp8_interpretation_t fp8_interpretation) {
    unsigned char res;
    unsigned long long int xbits;

#if defined(__CUDACC__) || (!defined __cplusplus)
    (void)memcpy(&xbits, &x, sizeof(x));
#else
    (void)std::memcpy(&xbits, &x, sizeof(x));
#endif
    unsigned char FP8_MAXNORM;
    unsigned char FP8_MANTISSA_MASK;
    unsigned short int FP8_EXP_BIAS;
    unsigned long long int FP8_SIGNIFICAND_BITS;
    const unsigned long long int DP_INF_BITS = 0x7FF0000000000000ULL;
    unsigned long long int FP8_MINDENORM_O2;
    unsigned long long int FP8_OVERFLOW_THRESHOLD;
    unsigned long long int FP8_MINNORM;

    if (fp8_interpretation == __NV_E4M3) {
        FP8_EXP_BIAS = 7U;
        FP8_SIGNIFICAND_BITS = 4ULL;
        FP8_MANTISSA_MASK = 0x7U;
        FP8_MINDENORM_O2 = 0x3F50000000000000ULL; // mindenorm/2 = 2^-10
        FP8_OVERFLOW_THRESHOLD =
            0x407D000000000000ULL; // maxnorm + 1/2ulp = 0x1.Cp+8 + 0x1p+4
        FP8_MAXNORM = 0x7EU;
        FP8_MINNORM = 0x3F90000000000000ULL; // minnorm = 2^-6
    } else {                                 //__NV_E5M2
        FP8_EXP_BIAS = 15U;
        FP8_SIGNIFICAND_BITS = 3ULL;
        FP8_MANTISSA_MASK = 0x3U;
        FP8_MINDENORM_O2 = 0x3EE0000000000000ULL; // mindenorm/2 = 2^-17
        FP8_OVERFLOW_THRESHOLD =
            0x40EE000000000000ULL -
            1ULL; // maxnorm + 1/2ulp = 0x1.Ep+15, and -1 to have common code
        FP8_MAXNORM = 0x7BU;
        FP8_MINNORM = 0x3F10000000000000ULL; // minnorm = 2^-14
    }

    // 1/2 LSB of the target format, positioned in double precision mantissa
    // helpful in midpoints detection during round-to-nearest-even step
    const unsigned long long int FP8_DP_HALF_ULP =
        (unsigned long long int)1ULL << (53ULL - FP8_SIGNIFICAND_BITS - 1ULL);
    // prepare sign bit in target format
    unsigned char sign = (unsigned char)((xbits >> 63ULL) << 7U);
    // prepare exponent field in target format
    unsigned char exp =
        (unsigned char)((((unsigned short int)(xbits >> 52ULL)) & 0x7FFU) -
                        1023U + FP8_EXP_BIAS);
    // round mantissa to target format width, rounding towards zero
    unsigned char mantissa =
        (unsigned char)(xbits >> (53ULL - FP8_SIGNIFICAND_BITS)) &
        FP8_MANTISSA_MASK;
    unsigned long long int absx = xbits & 0x7FFFFFFFFFFFFFFFULL;

    if (absx <= FP8_MINDENORM_O2) {
        // zero or underflow
        res = 0U;
    } else if (absx > DP_INF_BITS) {
        // NaN
        if (fp8_interpretation == __NV_E4M3) {
            res = 0x7FU;
        } else {
            // NaN --> QNaN
            res = 0x7EU | mantissa;
        }
    } else if (absx > FP8_OVERFLOW_THRESHOLD) {
        if (saturate == __NV_SATFINITE) {
            res = FP8_MAXNORM;
        } else {
            // __NV_NOSAT
            if (fp8_interpretation == __NV_E4M3) {
                // no Inf in E4M3
                res = 0x7FU; // NaN
            } else {
                res = 0x7CU; // Inf in E5M2
            }
        }
    } else if (absx >= FP8_MINNORM) {
        res = (unsigned char)((exp << (FP8_SIGNIFICAND_BITS - 1U)) | mantissa);
        // rounded-off bits
        unsigned long long int round =
            xbits & ((FP8_DP_HALF_ULP << 1ULL) - 1ULL);
        // round-to-nearest-even adjustment
        if ((round > FP8_DP_HALF_ULP) ||
            ((round == FP8_DP_HALF_ULP) && (mantissa & 1U))) {
            res = (unsigned char)(res + 1U);
        }
    } else // Denormal range
    {
        unsigned char shift = (unsigned char)(1U - exp);
        // add implicit leading bit
        mantissa |= (unsigned char)(1U << (FP8_SIGNIFICAND_BITS - 1U));
        // additional round-off due to denormalization
        res = (unsigned char)(mantissa >> shift);

        // rounded-off bits, including implicit leading bit
        unsigned long long int round =
            (xbits | ((unsigned long long int)1ULL << (53ULL - 1ULL))) &
            ((FP8_DP_HALF_ULP << (shift + 1ULL)) - 1ULL);
        // round-to-nearest-even adjustment
        if ((round > (FP8_DP_HALF_ULP << shift)) ||
            ((round == (FP8_DP_HALF_ULP << shift)) && (res & 1U))) {
            res = (unsigned char)(res + 1U);
        }
    }

    res |= sign;

    return (__nv_fp8_storage_t)res;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8x2_storage_t
__nv_cvt_double2_to_fp8x2(const double2 x, const __nv_saturation_t saturate,
                          const __nv_fp8_interpretation_t fp8_interpretation) {
    __nv_fp8x2_storage_t storage = (__nv_fp8x2_storage_t)__nv_cvt_double_to_fp8(
        x.y, saturate, fp8_interpretation);
    storage = (__nv_fp8x2_storage_t)(storage << 8U);
    storage = (__nv_fp8x2_storage_t)(storage |
                                     __nv_cvt_double_to_fp8(
                                         x.x, saturate, fp8_interpretation));
    return storage;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8_storage_t
__nv_cvt_float_to_fp8(const float x, const __nv_saturation_t saturate,
                      const __nv_fp8_interpretation_t fp8_interpretation) {
    __nv_fp8_storage_t res = 0U;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
    if (saturate == __NV_SATFINITE) {
        __nv_fp8x2_storage_t storage;
        if (fp8_interpretation == __NV_E5M2) {
            asm("{cvt.rn.satfinite.e5m2x2.f32 %0, %2, %1;}\n"
                : "=h"(storage)
                : "f"(x), "f"(0.0f));
        } else {
            asm("{cvt.rn.satfinite.e4m3x2.f32 %0, %2, %1;}\n"
                : "=h"(storage)
                : "f"(x), "f"(0.0f));
        }
        res = (__nv_fp8_storage_t)storage;
    } else
#endif
    {
        unsigned int xbits;
#if defined(__CUDACC__) || (!defined __cplusplus)
        (void)memcpy(&xbits, &x, sizeof(x));
#else
        (void)std::memcpy(&xbits, &x, sizeof(x));
#endif

        // isnan
        if ((xbits & 0x7FFFFFFFU) > 0x7F800000U) {
            // Canonical NaN
            xbits = 0x7FFFFFFFU;
        }

        float fx;
#if defined(__CUDACC__) || (!defined __cplusplus)
        (void)memcpy(&fx, &xbits, sizeof(xbits));
#else
        (void)std::memcpy(&fx, &xbits, sizeof(xbits));
#endif

        const double dx = (double)fx;
        res = __nv_cvt_double_to_fp8(dx, saturate, fp8_interpretation);
    }
    return res;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8x2_storage_t
__nv_cvt_float2_to_fp8x2(const float2 x, const __nv_saturation_t saturate,
                         const __nv_fp8_interpretation_t fp8_interpretation) {
    __nv_fp8x2_storage_t storage;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
    if (saturate == __NV_SATFINITE) {
        if (fp8_interpretation == __NV_E5M2) {
            asm("{cvt.rn.satfinite.e5m2x2.f32 %0, %2, %1;}\n"
                : "=h"(storage)
                : "f"(x.x), "f"(x.y));
        } else {
            asm("{cvt.rn.satfinite.e4m3x2.f32 %0, %2, %1;}\n"
                : "=h"(storage)
                : "f"(x.x), "f"(x.y));
        }
    } else
#endif
    {
        storage = (__nv_fp8x2_storage_t)__nv_cvt_float_to_fp8(
            x.y, saturate, fp8_interpretation);
        storage = (__nv_fp8x2_storage_t)(storage << 8U);
        storage = (__nv_fp8x2_storage_t)(storage | __nv_cvt_float_to_fp8(
                                                       x.x, saturate,
                                                       fp8_interpretation));
    }
    return storage;
}

__CUDA_HOSTDEVICE_FP8_DECL__ float
__internal_halfraw_to_float(const __half_raw x) {
    float f;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 530)
    asm("{cvt.f32.f16 %0, %1;}\n" : "=f"(f) : "h"(x.x));
#else
    const unsigned int ux = (unsigned int)x.x;
    unsigned int sign = (ux >> 15U) & 1U;
    unsigned int exponent = (ux >> 10U) & 0x1fU;
    unsigned int mantissa = (ux & 0x3ffU) << 13U;
    if (exponent == 0x1fU) { /* NaN or Inf */
        /* discard sign of a NaN */
        sign = ((mantissa != 0U) ? (sign >> 1U) : sign);
        mantissa = ((mantissa != 0U) ? 0x7fffffU : 0U);
        exponent = 0xffU;
    } else if (exponent == 0U) { /* Denorm or Zero */
        if (mantissa != 0U) {
            unsigned int msb;
            exponent = 0x71U;
            do {
                msb = (mantissa & 0x400000U);
                mantissa <<= 1U; /* normalize */
                --exponent;
            } while (msb == 0U);
            mantissa &= 0x7fffffU; /* 1.mantissa is implicit */
        }
    } else {
        exponent += 0x70U;
    }
    const unsigned int u = ((sign << 31U) | (exponent << 23U) | mantissa);
#if defined(__CUDACC__) || (!defined __cplusplus)
    (void)memcpy(&f, &u, sizeof(u));
#else
    (void)std::memcpy(&f, &u, sizeof(u));
#endif
#endif /* (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) */
    return f;
}

__CUDA_HOSTDEVICE_FP8_DECL__ float2
__internal_halfraw2_to_float2(const __half2_raw x) {
    __half_raw raw;
    float2 res;
    raw.x = x.x;
    res.x = __internal_halfraw_to_float(raw);
    raw.x = x.y;
    res.y = __internal_halfraw_to_float(raw);
    return res;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8_storage_t
__nv_cvt_halfraw_to_fp8(const __half_raw x, const __nv_saturation_t saturate,
                        const __nv_fp8_interpretation_t fp8_interpretation) {
    __nv_fp8_storage_t res = 0U;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
    if (saturate == __NV_SATFINITE) {
        unsigned int half2_storage = (unsigned int)(x.x);
        __nv_fp8x2_storage_t tmp;
        if (fp8_interpretation == __NV_E5M2) {
            asm("{cvt.rn.satfinite.e5m2x2.f16x2 %0, %1;}\n"
                : "=h"(tmp)
                : "r"(half2_storage));
        } else {
            asm("{cvt.rn.satfinite.e4m3x2.f16x2 %0, %1;}\n"
                : "=h"(tmp)
                : "r"(half2_storage));
        }
        res = (__nv_fp8_storage_t)tmp;
    } else
#endif
    {
        float fx = __internal_halfraw_to_float(x);
        res = __nv_cvt_float_to_fp8(fx, saturate, fp8_interpretation);
    }
    return res;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8x2_storage_t __nv_cvt_halfraw2_to_fp8x2(
    const __half2_raw x, const __nv_saturation_t saturate,
    const __nv_fp8_interpretation_t fp8_interpretation) {
    __nv_fp8x2_storage_t tmp;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
    if (saturate == __NV_SATFINITE) {
        unsigned int half2_storage;
        (void)memcpy(&half2_storage, &x, sizeof(x));

        if (fp8_interpretation == __NV_E5M2) {
            asm("{cvt.rn.satfinite.e5m2x2.f16x2 %0, %1;}\n"
                : "=h"(tmp)
                : "r"(half2_storage));
        } else {
            asm("{cvt.rn.satfinite.e4m3x2.f16x2 %0, %1;}\n"
                : "=h"(tmp)
                : "r"(half2_storage));
        }
    } else
#endif
    {
        __half_raw raw;
        raw.x = x.x;
        __nv_fp8_storage_t lo =
            __nv_cvt_halfraw_to_fp8(raw, saturate, fp8_interpretation);
        raw.x = x.y;
        __nv_fp8_storage_t hi =
            __nv_cvt_halfraw_to_fp8(raw, saturate, fp8_interpretation);
        tmp = hi;
        tmp = (__nv_fp8x2_storage_t)(tmp << 8U);
        tmp = (__nv_fp8x2_storage_t)(tmp | lo);
    }
    return tmp;
}

__CUDA_HOSTDEVICE_FP8_DECL__ float
__internal_bf16raw_to_float(const __nv_bfloat16_raw x) {
    const unsigned int ux = ((unsigned int)x.x) << 16U;
    float fx;
#if defined(__CUDACC__) || (!defined __cplusplus)
    (void)memcpy(&fx, &ux, sizeof(ux));
#else
    (void)std::memcpy(&fx, &ux, sizeof(ux));
#endif
    return fx;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __nv_bfloat16_raw
__internal_float_to_bf16raw_rz(const float x) {
    unsigned int ux;
    __nv_bfloat16_raw r;
#if defined(__CUDACC__) || (!defined __cplusplus)
    (void)memcpy(&ux, &x, sizeof(x));
#else
    (void)std::memcpy(&ux, &x, sizeof(x));
#endif
    r.x = (unsigned short int)(ux >> 16U);
    return r;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8_storage_t __nv_cvt_bfloat16raw_to_fp8(
    const __nv_bfloat16_raw x, const __nv_saturation_t saturate,
    const __nv_fp8_interpretation_t fp8_interpretation) {
    const float fx = __internal_bf16raw_to_float(x);
    const __nv_fp8_storage_t res =
        __nv_cvt_float_to_fp8(fx, saturate, fp8_interpretation);
    return res;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8x2_storage_t
__nv_cvt_bfloat16raw2_to_fp8x2(
    const __nv_bfloat162_raw x, const __nv_saturation_t saturate,
    const __nv_fp8_interpretation_t fp8_interpretation) {
    __nv_bfloat16_raw raw;
    raw.x = x.y;
    __nv_fp8x2_storage_t storage =
        (__nv_fp8x2_storage_t)__nv_cvt_bfloat16raw_to_fp8(raw, saturate,
                                                          fp8_interpretation);
    storage = (__nv_fp8x2_storage_t)(storage << 8U);
    raw.x = x.x;
    storage = (__nv_fp8x2_storage_t)(storage |
                                     __nv_cvt_bfloat16raw_to_fp8(
                                         raw, saturate, fp8_interpretation));
    return storage;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __half2_raw
__nv_cvt_fp8x2_to_halfraw2(const __nv_fp8x2_storage_t x,
                           const __nv_fp8_interpretation_t fp8_interpretation);
__CUDA_HOSTDEVICE_FP8_DECL__ __half_raw
__nv_cvt_fp8_to_halfraw(const __nv_fp8_storage_t x,
                        const __nv_fp8_interpretation_t fp8_interpretation) {
    __half_raw res;
    res.x = 0U;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
    res.x =
        __nv_cvt_fp8x2_to_halfraw2((__nv_fp8x2_storage_t)x, fp8_interpretation)
            .x;
#else
    unsigned short int ur = (unsigned short int)x;
    ur = (unsigned short int)(ur << 8U);

    if (fp8_interpretation == __NV_E5M2) {
        if ((ur & 0x7FFFU) > 0x7C00U) {
            /* If NaN, return canonical NaN */
            ur = 0x7FFFU;
        }
    } else { // __NV_E4M3
        unsigned short int sign = ur & 0x8000U;
        unsigned short int exponent =
            (unsigned short int)(((ur & 0x7800U) >> 1U) + 0x2000U);
        unsigned short int mantissa = (ur & 0x0700U) >> 1U;
        unsigned char absx = 0x7FU & (unsigned char)x;

        if (absx == 0x7FU) // NaN
        {
            ur = 0x7FFFU; // fp16 canonical NaN, discard sign
        } else if (exponent == 0x2000U) {
            // zero or denormal
            if (mantissa != 0U) {
                // normalize
                mantissa = (unsigned short int)(mantissa << 1U);
                while ((mantissa & 0x0400U) == 0U) {
                    mantissa = (unsigned short int)(mantissa << 1U);
                    exponent = (unsigned short int)(exponent - 0x0400U);
                }
                // discard implicit leading bit
                mantissa &= 0x03FFU;
            } else { // Zero
                exponent = 0U;
            }

            ur = (sign | exponent) | mantissa;
        } else {
            ur = (sign | exponent) | mantissa;
        }
    }
    res.x = ur;
#endif
    return res;
}

__CUDA_HOSTDEVICE_FP8_DECL__ __half2_raw
__nv_cvt_fp8x2_to_halfraw2(const __nv_fp8x2_storage_t x,
                           const __nv_fp8_interpretation_t fp8_interpretation) {
    __half2_raw res;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
    unsigned int half2_storage;
    if (fp8_interpretation == __NV_E5M2) {
        asm("{cvt.rn.f16x2.e5m2x2 %0, %1;}\n" : "=r"(half2_storage) : "h"(x));
    } else {
        asm("{cvt.rn.f16x2.e4m3x2 %0, %1;}\n" : "=r"(half2_storage) : "h"(x));
    }
    (void)memcpy(&res, &half2_storage, sizeof(half2_storage));
#else
    res.x =
        __nv_cvt_fp8_to_halfraw((__nv_fp8_storage_t)x, fp8_interpretation).x;
    res.y = __nv_cvt_fp8_to_halfraw((__nv_fp8_storage_t)(x >> 8U),
                                    fp8_interpretation)
                .x;
#endif
    return res;
}

/* All other definitions in this file are only visible to C++ compilers */
#if defined(__cplusplus)

/**
 * \defgroup CUDA_MATH_FP8_E5M2_STRUCT C++ struct for handling fp8 data type of e5m2 kind.
 * \ingroup CUDA_MATH_INTRINSIC_FP8
 */

/**
 * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
 * \brief __nv_fp8_e5m2 datatype
 *
 * \details This structure implements the datatype for handling
 * \p fp8 floating-point numbers of \p e5m2 kind:
 * with 1 sign, 5 exponent, 1 implicit and 2 explicit mantissa bits.
 *
 * The structure implements converting constructors and operators.
 */
struct __CUDA_ALIGN__(1) __nv_fp8_e5m2 {
  public:
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Storage variable contains the \p fp8 floating-point data.
     */
    __nv_fp8_storage_t __x;

    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor by default.
     */
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
    __nv_fp8_e5m2() = default;
#else
    __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */

#if !defined(__CUDA_NO_FP8_CONVERSIONS__)

    /* Construct from wider FP types */
    /* Note we do avoid constructor init-list because of special host/device
     * compilation rules */

    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p __half data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const __half f) {
        __x = __nv_cvt_halfraw_to_fp8(static_cast<__half_raw>(f),
                                      __NV_SATFINITE, __NV_E5M2);
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p __nv_bfloat16 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const __nv_bfloat16 f) {
        __x = __nv_cvt_bfloat16raw_to_fp8(static_cast<__nv_bfloat16_raw>(f),
                                          __NV_SATFINITE, __NV_E5M2);
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p float data type, relies on \p __NV_SATFINITE behavior
     * for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const float f) {
        __x = __nv_cvt_float_to_fp8(f, __NV_SATFINITE, __NV_E5M2);
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p double data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const double f) {
        __x = __nv_cvt_double_to_fp8(f, __NV_SATFINITE, __NV_E5M2);
    }

    /* Converts from integral */

    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p unsigned \p short \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__
    __nv_fp8_e5m2(const unsigned short int val) {
        __x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p unsigned \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const unsigned int val) {
        __x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p unsigned \p long \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const unsigned long int val) {
        __x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p unsigned \p long \p long \p int data type, relies on
     * \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__
    __nv_fp8_e5m2(const unsigned long long int val) {
        __x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
    }

    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p short \p int data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const short int val) {
        __x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p int data type, relies on \p __NV_SATFINITE behavior
     * for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const int val) {
        __x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p long \p int data type, relies on \p __NV_SATFINITE behavior
     * for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const long int val) {
        __x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Constructor from \p long \p long \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const long long int val) {
        __x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
    }

#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
    /* Widening FP converts */
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p __half data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator __half() const {
        return static_cast<__half>(__nv_cvt_fp8_to_halfraw(__x, __NV_E5M2));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p float data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator float() const {
        return __internal_halfraw_to_float(
            __nv_cvt_fp8_to_halfraw(__x, __NV_E5M2));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p __nv_bfloat16 data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator __nv_bfloat16() const {
        return static_cast<__nv_bfloat16>(
            __internal_float_to_bf16raw_rz(float(*this)));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p double data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator double() const {
        return static_cast<double>(float(*this));
    }

    /* Convert to integral */

    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p unsigned \p char data type.
     * Clamps negative and too large inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned char() const {
        unsigned char i;
        const float f = float(*this);
        const unsigned char max_val = 0xFFU;
        const unsigned char min_val = 0U;
        const unsigned char bits = (*this).__x;
        // saturation fixup
        if ((bits & 0x7FU) > 0x7CU) {
            // NaN
            i = 0;
        } else if (f > static_cast<float>(max_val)) {
            // saturate maximum
            i = max_val;
        } else if (f < static_cast<float>(min_val)) {
            // saturate minimum
            i = min_val;
        } else {
            // normal value
            i = static_cast<unsigned char>(f);
        }
        return i;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p unsigned \p short \p int data type.
     * Clamps negative and too large inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned short int() const {
        return __half2ushort_rz(__half(*this));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p unsigned \p int data type.
     * Clamps negative and too large inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned int() const {
        return __half2uint_rz(__half(*this));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p unsigned \p long \p int data type.
     * Clamps negative and too large inputs to the output range.
     * \p NaN inputs convert to \p zero if output type is 32-bit.
     * \p NaN inputs convert to \p 0x8000000000000000ULL if output type is 64-bit.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned long int() const {
        unsigned long retval;
        /* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        if (sizeof(unsigned long) == sizeof(unsigned long long))
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        {
            retval = static_cast<unsigned long>(__half2ull_rz(__half(*this)));
        }
        else
        {
            retval = static_cast<unsigned long>(__half2uint_rz(__half(*this)));
        }
        return retval;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p unsigned \p long \p long \p int data type.
     * Clamps negative and too large inputs to the output range.
     * \p NaN inputs convert to \p 0x8000000000000000ULL.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned long long int() const {
        return __half2ull_rz(__half(*this));
    }

    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p signed \p char data type.
     * Clamps too large inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator signed char() const {
        signed char i;
        const float f = float(*this);
        const signed char max_val = (signed char)0x7FU;
        const signed char min_val = (signed char)0x80U;
        const unsigned char bits = (*this).__x;
        // saturation fixup
        if ((bits & 0x7FU) > 0x7CU) {
            // NaN
            i = 0;
        } else if (f > static_cast<float>(max_val)) {
            // saturate maximum
            i = max_val;
        } else if (f < static_cast<float>(min_val)) {
            // saturate minimum
            i = min_val;
        } else {
            // normal value
            i = static_cast<signed char>(f);
        }
        return i;
    }

    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to an implementation defined \p char data type.
     * 
     * Detects signedness of the \p char type and proceeds accordingly, see
     * further details in signed and unsigned char operators.

     * Clamps inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator char() const {
        char value;
        /* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        if (((char)-1) < (char)0)
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        {
            value = static_cast<char>(static_cast<signed char>(*this));
        }
        else
        {
            value = static_cast<char>(static_cast<unsigned char>(*this));
        }
        return value;
    }

    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p short \p int data type.
     * Clamps too large inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator short int() const {
        return __half2short_rz(__half(*this));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p int data type.
     * Clamps too large inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator int() const {
        return __half2int_rz(__half(*this));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p long \p int data type.
     * Clamps too large inputs to the output range.
     * \p NaN inputs convert to \p zero if output type is 32-bit.
     * \p NaN inputs convert to \p 0x8000000000000000ULL if output type is 64-bit.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator long int() const {
        long retval;
        /* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        if (sizeof(long) == sizeof(long long))
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        {
            retval = static_cast<long>(__half2ll_rz(__half(*this)));
        }
        else
        {
            retval = static_cast<long>(__half2int_rz(__half(*this)));
        }
        return retval;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p long \p long \p int data type.
     * Clamps too large inputs to the output range.
     * \p NaN inputs convert to \p 0x8000000000000000LL.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator long long int() const {
        return __half2ll_rz(__half(*this));
    }

    /**
     * \ingroup CUDA_MATH_FP8_E5M2_STRUCT
     * Conversion operator to \p bool data type.
     * +0 and -0 inputs convert to \p false.
     * Non-zero inputs convert to \p true.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator bool() const {
        return (__x & 0x7FU) != 0U;
    }
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};

/**
 * \defgroup CUDA_MATH_FP8X2_E5M2_STRUCT C++ struct for handling vector type of two fp8 values of e5m2 kind.
 * \ingroup CUDA_MATH_INTRINSIC_FP8
 */

/**
 * \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
 * \brief __nv_fp8x2_e5m2 datatype
 *
 * \details This structure implements the datatype for handling two
 * \p fp8 floating-point numbers of \p e5m2 kind each:
 * with 1 sign, 5 exponent, 1 implicit and 2 explicit mantissa bits.
 *
 * The structure implements converting constructors and operators.
 */
struct __CUDA_ALIGN__(2) __nv_fp8x2_e5m2 {
  public:
    /**
     * \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
     * Storage variable contains the vector of two \p fp8 floating-point data
     * values.
     */
    __nv_fp8x2_storage_t __x;

    /**
     * \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
     * Constructor by default.
     */
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
    __nv_fp8x2_e5m2() = default;
#else
    __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */

#if !defined(__CUDA_NO_FP8_CONVERSIONS__)

    /* Construct from wider types */

    /**
     * \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
     * Constructor from \p __half2 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2(const __half2 f) {
        __x = __nv_cvt_halfraw2_to_fp8x2(static_cast<__half2_raw>(f),
                                         __NV_SATFINITE, __NV_E5M2);
    }
    /**
     * \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
     * Constructor from \p __nv_bfloat162 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2(const __nv_bfloat162 f) {
        __x = __nv_cvt_bfloat16raw2_to_fp8x2(static_cast<__nv_bfloat162_raw>(f),
                                             __NV_SATFINITE, __NV_E5M2);
    }
    /**
     * \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
     * Constructor from \p float2 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2(const float2 f) {
        __x = __nv_cvt_float2_to_fp8x2(f, __NV_SATFINITE, __NV_E5M2);
    }
    /**
     * \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
     * Constructor from \p double2 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2(const double2 f) {
        __x = __nv_cvt_double2_to_fp8x2(f, __NV_SATFINITE, __NV_E5M2);
    }

#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
    /* Widening converts */
    /**
     * \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
     * Conversion operator to \p __half2 data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator __half2() const {
        return static_cast<__half2>(__nv_cvt_fp8x2_to_halfraw2(__x, __NV_E5M2));
    }
    /**
     * \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
     * Conversion operator to \p float2 data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator float2() const {
        return __internal_halfraw2_to_float2(
            __nv_cvt_fp8x2_to_halfraw2(__x, __NV_E5M2));
    }
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};

__CUDA_HOSTDEVICE_FP8_DECL__ unsigned int
__internal_pack_u16x2_to_u32(const unsigned short int src_lo,
                             const unsigned short int src_hi) {
    unsigned int dst;
#if (defined __CUDACC__) && (defined __CUDA_ARCH__)
    asm("{  mov.b32 %0, {%1,%2};}\n" : "=r"(dst) : "h"(src_lo), "h"(src_hi));
#else
    dst = (static_cast<unsigned int>(src_hi) << 16U) |
          static_cast<unsigned int>(src_lo);
#endif
    return dst;
}

/**
 * \defgroup CUDA_MATH_FP8X4_E5M2_STRUCT C++ struct for handling vector type of four fp8 values of e5m2 kind.
 * \ingroup CUDA_MATH_INTRINSIC_FP8
 */

/**
 * \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
 * \brief __nv_fp8x4_e5m2 datatype
 *
 * \details This structure implements the datatype for handling four
 * \p fp8 floating-point numbers of \p e5m2 kind each:
 * with 1 sign, 5 exponent, 1 implicit and 2 explicit mantissa bits.
 *
 * The structure implements converting constructors and operators.
 */
struct __CUDA_ALIGN__(4) __nv_fp8x4_e5m2 {
  public:
    /**
     * \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
     * Storage variable contains the vector of four \p fp8 floating-point data
     * values.
     */
    __nv_fp8x4_storage_t __x;

    /**
     * \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
     * Constructor by default.
     */
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
    __nv_fp8x4_e5m2() = default;
#else
    __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */

#if !defined(__CUDA_NO_FP8_CONVERSIONS__)

    /* Construct from wider types */

    /**
     * \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
     * Constructor from a pair of \p __half2 data type values,
     * relies on \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2(const __half2 flo,
                                                     const __half2 fhi) {
        const __nv_fp8x2_storage_t rlo = __nv_cvt_halfraw2_to_fp8x2(
            static_cast<__half2_raw>(flo), __NV_SATFINITE, __NV_E5M2);
        const __nv_fp8x2_storage_t rhi = __nv_cvt_halfraw2_to_fp8x2(
            static_cast<__half2_raw>(fhi), __NV_SATFINITE, __NV_E5M2);
        __x = __internal_pack_u16x2_to_u32(rlo, rhi);
    }
    /**
     * \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
     * Constructor from a pair of \p __nv_bfloat162 data type values,
     * relies on \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2(const __nv_bfloat162 flo,
                                                     const __nv_bfloat162 fhi) {
        const __nv_fp8x2_storage_t rlo = __nv_cvt_bfloat16raw2_to_fp8x2(
            static_cast<__nv_bfloat162_raw>(flo), __NV_SATFINITE, __NV_E5M2);
        const __nv_fp8x2_storage_t rhi = __nv_cvt_bfloat16raw2_to_fp8x2(
            static_cast<__nv_bfloat162_raw>(fhi), __NV_SATFINITE, __NV_E5M2);
        __x = __internal_pack_u16x2_to_u32(rlo, rhi);
    }
    /**
     * \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
     * Constructor from \p float4 vector data type,
     * relies on \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2(const float4 f) {
        const float2 flo = {f.x, f.y};
        const float2 fhi = {f.z, f.w};
        const __nv_fp8x2_storage_t rlo =
            __nv_cvt_float2_to_fp8x2(flo, __NV_SATFINITE, __NV_E5M2);
        const __nv_fp8x2_storage_t rhi =
            __nv_cvt_float2_to_fp8x2(fhi, __NV_SATFINITE, __NV_E5M2);
        __x = __internal_pack_u16x2_to_u32(rlo, rhi);
    }
    /**
     * \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
     * Constructor from \p double4 vector data type,
     * relies on \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2(const double4 f) {
        const double2 flo = {f.x, f.y};
        const double2 fhi = {f.z, f.w};
        const __nv_fp8x2_storage_t rlo =
            __nv_cvt_double2_to_fp8x2(flo, __NV_SATFINITE, __NV_E5M2);
        const __nv_fp8x2_storage_t rhi =
            __nv_cvt_double2_to_fp8x2(fhi, __NV_SATFINITE, __NV_E5M2);
        __x = __internal_pack_u16x2_to_u32(rlo, rhi);
    }

#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
    /* Widening converts */

    /**
     * \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
     * Conversion operator to \p float4 vector data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator float4() const {
        const __nv_fp8x2_storage_t slo = static_cast<__nv_fp8x2_storage_t>(__x);
        const __nv_fp8x2_storage_t shi =
            static_cast<__nv_fp8x2_storage_t>(__x >> 16U);
        float2 rlo = __internal_halfraw2_to_float2(
            __nv_cvt_fp8x2_to_halfraw2(slo, __NV_E5M2));
        float2 rhi = __internal_halfraw2_to_float2(
            __nv_cvt_fp8x2_to_halfraw2(shi, __NV_E5M2));
        float4 res = {rlo.x, rlo.y, rhi.x, rhi.y};
        return res;
    }
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};

/**
 * \defgroup CUDA_MATH_FP8_E4M3_STRUCT C++ struct for handling fp8 data type of e4m3 kind.
 * \ingroup CUDA_MATH_INTRINSIC_FP8
 */

/**
 * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
 * \brief __nv_fp8_e4m3 datatype
 *
 * \details This structure implements the datatype for storing
 * \p fp8 floating-point numbers of \p e4m3 kind:
 * with 1 sign, 4 exponent, 1 implicit and 3 explicit mantissa bits.
 * The encoding doesn't support Infinity.
 * NaNs are limited to 0x7F and 0xFF values.
 *
 * The structure implements converting constructors and operators.
 */
struct __CUDA_ALIGN__(1) __nv_fp8_e4m3 {
  public:
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Storage variable contains the \p fp8 floating-point data.
     */
    __nv_fp8_storage_t __x;

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor by default.
     */
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
    __nv_fp8_e4m3() = default;
#else
    __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */

#if !defined(__CUDA_NO_FP8_CONVERSIONS__)

    /* Construct from wider FP types */
    /* Note we do avoid constructor init-list because of special host/device
     * compilation rules */

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p __half data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const __half f) {
        __x = __nv_cvt_halfraw_to_fp8(static_cast<__half_raw>(f),
                                      __NV_SATFINITE, __NV_E4M3);
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p __nv_bfloat16 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const __nv_bfloat16 f) {
        __x = __nv_cvt_bfloat16raw_to_fp8(static_cast<__nv_bfloat16_raw>(f),
                                          __NV_SATFINITE, __NV_E4M3);
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p float data type, relies on \p __NV_SATFINITE behavior
     * for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const float f) {
        __x = __nv_cvt_float_to_fp8(f, __NV_SATFINITE, __NV_E4M3);
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p double data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const double f) {
        __x = __nv_cvt_double_to_fp8(f, __NV_SATFINITE, __NV_E4M3);
    }

    /* Converts from integral */

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p unsigned \p short \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__
    __nv_fp8_e4m3(const unsigned short int val) {
        __x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p unsigned \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const unsigned int val) {
        __x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p unsigned \p long \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const unsigned long int val) {
        __x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p unsigned \p long \p long \p int data type, relies on
     * \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__
    __nv_fp8_e4m3(const unsigned long long int val) {
        __x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
    }

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p short \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const short int val) {
        __x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p int data type, relies on \p __NV_SATFINITE behavior
     * for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const int val) {
        __x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p long \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const long int val) {
        __x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Constructor from \p long \p long \p int data type, relies on \p
     * __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const long long int val) {
        __x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
    }

#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
    /* Widening FP converts */
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p __half data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator __half() const {
        return static_cast<__half>(__nv_cvt_fp8_to_halfraw(__x, __NV_E4M3));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p float data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator float() const {
        return __internal_halfraw_to_float(
            __nv_cvt_fp8_to_halfraw(__x, __NV_E4M3));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p __nv_bfloat16 data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator __nv_bfloat16() const {
        return static_cast<__nv_bfloat16>(
            __internal_float_to_bf16raw_rz(float(*this)));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p double data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator double() const {
        return static_cast<double>(float(*this));
    }

    /* Convert to integral */

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p unsigned \p char data type.
     * Clamps negative and too large inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned char() const {
        unsigned char i;
        const float f = float(*this);
        const unsigned char max_val = 0xFFU;
        const unsigned char min_val = 0U;
        const unsigned char bits = (*this).__x;
        // saturation fixup
        if ((bits & 0x7FU) == 0x7FU) {
            // NaN
            i = 0;
        } else if (f > static_cast<float>(max_val)) {
            // saturate maximum
            i = max_val;
        } else if (f < static_cast<float>(min_val)) {
            // saturate minimum
            i = min_val;
        } else {
            // normal value
            i = static_cast<unsigned char>(f);
        }
        return i;
    }

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p unsigned \p short \p int data type.
     * Clamps negative inputs to zero.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned short int() const {
        return __half2ushort_rz(__half(*this));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p unsigned \p int data type.
     * Clamps negative inputs to zero.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned int() const {
        return __half2uint_rz(__half(*this));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p unsigned \p long \p int data type.
     * Clamps negative and too large inputs to the output range.
     * \p NaN inputs convert to \p zero if output type is 32-bit.
     * \p NaN inputs convert to \p 0x8000000000000000ULL if output type is 64-bit.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned long int() const {
        unsigned long retval;
        /* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        if (sizeof(unsigned long) == sizeof(unsigned long long))
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        {
            retval = static_cast<unsigned long>(__half2ull_rz(__half(*this)));
        }
        else
        {
            retval = static_cast<unsigned long>(__half2uint_rz(__half(*this)));
        }
        return retval;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p unsigned \p long \p long \p int data type.
     * Clamps negative inputs to zero.
     * \p NaN inputs convert to \p 0x8000000000000000ULL.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned long long int() const {
        return __half2ull_rz(__half(*this));
    }

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p signed \p char data type.
     * Clamps too large inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator signed char() const {
        signed char i;
        const float f = float(*this);
        const signed char max_val = (signed char)0x7FU;
        const signed char min_val = (signed char)0x80U;
        const unsigned char bits = (*this).__x;
        // saturation fixup
        if ((bits & 0x7FU) == 0x7FU) {
            // NaN
            i = 0;
        } else if (f > static_cast<float>(max_val)) {
            // saturate maximum
            i = max_val;
        } else if (f < static_cast<float>(min_val)) {
            // saturate minimum
            i = min_val;
        } else {
            // normal value
            i = static_cast<signed char>(f);
        }
        return i;
    }

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to an implementation defined \p char data type.
     * 
     * Detects signedness of the \p char type and proceeds accordingly, see
     * further details in signed and unsigned char operators.

     * Clamps inputs to the output range.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator char() const {
        char value;
        /* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        if (((char)-1) < (char)0)
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        {
            value = static_cast<char>(static_cast<signed char>(*this));
        }
        else
        {
            value = static_cast<char>(static_cast<unsigned char>(*this));
        }
        return value;
    }

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p short \p int data type.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator short int() const {
        return __half2short_rz(__half(*this));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p int data type.
     * \p NaN inputs convert to \p zero.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator int() const {
        return __half2int_rz(__half(*this));
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p long \p int data type.
     * Clamps too large inputs to the output range.
     * \p NaN inputs convert to \p zero if output type is 32-bit.
     * \p NaN inputs convert to \p 0x8000000000000000ULL if output type is 64-bit.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator long int() const {
        long retval;
        /* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        if (sizeof(long) == sizeof(long long))
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
        {
            retval = static_cast<long>(__half2ll_rz(__half(*this)));
        }
        else
        {
            retval = static_cast<long>(__half2int_rz(__half(*this)));
        }
        return retval;
    }
    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p long \p long \p int data type.
     * \p NaN inputs convert to \p 0x8000000000000000LL.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator long long int() const {
        return __half2ll_rz(__half(*this));
    }

    /**
     * \ingroup CUDA_MATH_FP8_E4M3_STRUCT
     * Conversion operator to \p bool data type.
     * +0 and -0 inputs convert to \p false.
     * Non-zero inputs convert to \p true.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator bool() const {
        return (__x & 0x7FU) != 0U;
    }
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};

/**
 * \defgroup CUDA_MATH_FP8X2_E4M3_STRUCT C++ struct for handling vector type of two fp8 values of e4m3 kind.
 * \ingroup CUDA_MATH_INTRINSIC_FP8
 */

/**
 * \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
 * \brief __nv_fp8x2_e4m3 datatype
 *
 * \details This structure implements the datatype for storage
 * and operations on the vector of two \p fp8 values of \p e4m3 kind each:
 * with 1 sign, 4 exponent, 1 implicit and 3 explicit mantissa bits.
 * The encoding doesn't support Infinity.
 * NaNs are limited to 0x7F and 0xFF values.
 */
struct __CUDA_ALIGN__(2) __nv_fp8x2_e4m3 {
  public:
    /**
     * \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
     * Storage variable contains the vector of two \p fp8 floating-point data
     * values.
     */
    __nv_fp8x2_storage_t __x;

    /**
     * \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
     * Constructor by default.
     */
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
    __nv_fp8x2_e4m3() = default;
#else
    __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */

#if !defined(__CUDA_NO_FP8_CONVERSIONS__)

    /* Construct from wider types */

    /**
     * \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
     * Constructor from \p __half2 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3(const __half2 f) {
        __x = __nv_cvt_halfraw2_to_fp8x2(static_cast<__half2_raw>(f),
                                         __NV_SATFINITE, __NV_E4M3);
    }
    /**
     * \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
     * Constructor from \p __nv_bfloat162 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3(const __nv_bfloat162 f) {
        __x = __nv_cvt_bfloat16raw2_to_fp8x2(static_cast<__nv_bfloat162_raw>(f),
                                             __NV_SATFINITE, __NV_E4M3);
    }
    /**
     * \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
     * Constructor from \p float2 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3(const float2 f) {
        __x = __nv_cvt_float2_to_fp8x2(f, __NV_SATFINITE, __NV_E4M3);
    }
    /**
     * \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
     * Constructor from \p double2 data type, relies on \p __NV_SATFINITE
     * behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3(const double2 f) {
        __x = __nv_cvt_double2_to_fp8x2(f, __NV_SATFINITE, __NV_E4M3);
    }

#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
    /* Widening converts */
    /**
     * \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
     * Conversion operator to \p __half2 data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator __half2() const {
        return static_cast<__half2>(__nv_cvt_fp8x2_to_halfraw2(__x, __NV_E4M3));
    }
    /**
     * \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
     * Conversion operator to \p float2 data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator float2() const {
        return __internal_halfraw2_to_float2(
            __nv_cvt_fp8x2_to_halfraw2(__x, __NV_E4M3));
    }
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};

/**
 * \defgroup CUDA_MATH_FP8X4_E4M3_STRUCT C++ struct for handling vector type of four fp8 values of e4m3 kind.
 * \ingroup CUDA_MATH_INTRINSIC_FP8
 */

/**
 * \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
 * \brief __nv_fp8x4_e4m3 datatype
 *
 * \details This structure implements the datatype for storage
 * and operations on the vector of four \p fp8 values of \p e4m3 kind each:
 * with 1 sign, 4 exponent, 1 implicit and 3 explicit mantissa bits.
 * The encoding doesn't support Infinity.
 * NaNs are limited to 0x7F and 0xFF values.
 */
struct __CUDA_ALIGN__(4) __nv_fp8x4_e4m3 {
  public:
    /**
     * \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
     * Storage variable contains the vector of four \p fp8 floating-point data
     * values.
     */
    __nv_fp8x4_storage_t __x;

    /**
     * \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
     * Constructor by default.
     */
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
    __nv_fp8x4_e4m3() = default;
#else
    __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */

#if !defined(__CUDA_NO_FP8_CONVERSIONS__)

    /* Construct from wider types */

    /**
     * \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
     * Constructor from a pair of \p __half2 data type values,
     * relies on \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3(const __half2 flo,
                                                     const __half2 fhi) {
        const __nv_fp8x2_storage_t rlo = __nv_cvt_halfraw2_to_fp8x2(
            static_cast<__half2_raw>(flo), __NV_SATFINITE, __NV_E4M3);
        const __nv_fp8x2_storage_t rhi = __nv_cvt_halfraw2_to_fp8x2(
            static_cast<__half2_raw>(fhi), __NV_SATFINITE, __NV_E4M3);
        __x = __internal_pack_u16x2_to_u32(rlo, rhi);
    }
    /**
     * \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
     * Constructor from a pair of \p __nv_bfloat162 data type values,
     * relies on \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3(const __nv_bfloat162 flo,
                                                     const __nv_bfloat162 fhi) {
        const __nv_fp8x2_storage_t rlo = __nv_cvt_bfloat16raw2_to_fp8x2(
            static_cast<__nv_bfloat162_raw>(flo), __NV_SATFINITE, __NV_E4M3);
        const __nv_fp8x2_storage_t rhi = __nv_cvt_bfloat16raw2_to_fp8x2(
            static_cast<__nv_bfloat162_raw>(fhi), __NV_SATFINITE, __NV_E4M3);
        __x = __internal_pack_u16x2_to_u32(rlo, rhi);
    }
    /**
     * \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
     * Constructor from \p float4 vector data type,
     * relies on \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3(const float4 f) {
        const float2 flo = {f.x, f.y};
        const float2 fhi = {f.z, f.w};
        const __nv_fp8x2_storage_t rlo =
            __nv_cvt_float2_to_fp8x2(flo, __NV_SATFINITE, __NV_E4M3);
        const __nv_fp8x2_storage_t rhi =
            __nv_cvt_float2_to_fp8x2(fhi, __NV_SATFINITE, __NV_E4M3);
        __x = __internal_pack_u16x2_to_u32(rlo, rhi);
    }
    /**
     * \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
     * Constructor from \p double4 vector data type,
     * relies on \p __NV_SATFINITE behavior for out-of-range values.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3(const double4 f) {
        const double2 flo = {f.x, f.y};
        const double2 fhi = {f.z, f.w};
        const __nv_fp8x2_storage_t rlo =
            __nv_cvt_double2_to_fp8x2(flo, __NV_SATFINITE, __NV_E4M3);
        const __nv_fp8x2_storage_t rhi =
            __nv_cvt_double2_to_fp8x2(fhi, __NV_SATFINITE, __NV_E4M3);
        __x = __internal_pack_u16x2_to_u32(rlo, rhi);
    }

#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
    /* Widening converts */

    /**
     * \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
     * Conversion operator to \p float4 vector data type.
     */
    explicit __CUDA_HOSTDEVICE_FP8__ operator float4() const {
        const __nv_fp8x2_storage_t slo = static_cast<__nv_fp8x2_storage_t>(__x);
        const __nv_fp8x2_storage_t shi =
            static_cast<__nv_fp8x2_storage_t>(__x >> 16U);
        float2 rlo = __internal_halfraw2_to_float2(
            __nv_cvt_fp8x2_to_halfraw2(slo, __NV_E4M3));
        float2 rhi = __internal_halfraw2_to_float2(
            __nv_cvt_fp8x2_to_halfraw2(shi, __NV_E4M3));
        float4 res = {rlo.x, rlo.y, rhi.x, rhi.y};
        return res;
    }
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};

#endif /* defined(__cplusplus) */

#endif /* end of include guard: __CUDA_FP8_HPP__ */