1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
|
/*
* Copyright 2022-2023 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#if !defined(__CUDA_FP8_HPP__)
#define __CUDA_FP8_HPP__
#if !defined(__CUDA_FP8_H__)
#error "Do not include this file directly. Instead, include cuda_fp8.h."
#endif
/* C++ header for std::memcpy (used for type punning in host-side
* implementations). When compiling as a CUDA source file memcpy is provided
* implicitly. !defined(__CUDACC__) implies !defined(__CUDACC_RTC__).
*/
#if defined(__cplusplus) && !defined(__CUDACC__)
#include <cstring>
#elif !defined(__cplusplus) && !defined(__CUDACC__)
#include <string.h>
#endif /* defined(__cplusplus) && !defined(__CUDACC__) */
/* Set up structure-alignment attribute */
#if !(defined __CUDA_ALIGN__)
#if defined(__CUDACC__)
#define __CUDA_ALIGN__(align) __align__(align)
#else
/* Define alignment macro based on compiler type (cannot assume C11 "_Alignas"
* is available) */
#if __cplusplus >= 201103L
#define __CUDA_ALIGN__(n) \
alignas(n) /* C++11 kindly gives us a keyword for this */
#else /* !defined(__CPP_VERSION_AT_LEAST_11_FP8)*/
#if defined(__GNUC__)
#define __CUDA_ALIGN__(n) __attribute__((aligned(n)))
#elif defined(_MSC_VER)
#define __CUDA_ALIGN__(n) __declspec(align(n))
#else
#define __CUDA_ALIGN__(n)
#endif /* defined(__GNUC__) */
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */
#endif /* defined(__CUDACC__) */
#endif /* !(defined __CUDA_ALIGN__) */
#if !(defined __CPP_VERSION_AT_LEAST_11_FP8)
/* need c++11 for explicit operators */
#define __CUDA_NO_FP8_CONVERSION_OPERATORS__
#endif
__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8_storage_t
__nv_cvt_double_to_fp8(const double x, const __nv_saturation_t saturate,
const __nv_fp8_interpretation_t fp8_interpretation) {
unsigned char res;
unsigned long long int xbits;
#if defined(__CUDACC__) || (!defined __cplusplus)
(void)memcpy(&xbits, &x, sizeof(x));
#else
(void)std::memcpy(&xbits, &x, sizeof(x));
#endif
unsigned char FP8_MAXNORM;
unsigned char FP8_MANTISSA_MASK;
unsigned short int FP8_EXP_BIAS;
unsigned long long int FP8_SIGNIFICAND_BITS;
const unsigned long long int DP_INF_BITS = 0x7FF0000000000000ULL;
unsigned long long int FP8_MINDENORM_O2;
unsigned long long int FP8_OVERFLOW_THRESHOLD;
unsigned long long int FP8_MINNORM;
if (fp8_interpretation == __NV_E4M3) {
FP8_EXP_BIAS = 7U;
FP8_SIGNIFICAND_BITS = 4ULL;
FP8_MANTISSA_MASK = 0x7U;
FP8_MINDENORM_O2 = 0x3F50000000000000ULL; // mindenorm/2 = 2^-10
FP8_OVERFLOW_THRESHOLD =
0x407D000000000000ULL; // maxnorm + 1/2ulp = 0x1.Cp+8 + 0x1p+4
FP8_MAXNORM = 0x7EU;
FP8_MINNORM = 0x3F90000000000000ULL; // minnorm = 2^-6
} else { //__NV_E5M2
FP8_EXP_BIAS = 15U;
FP8_SIGNIFICAND_BITS = 3ULL;
FP8_MANTISSA_MASK = 0x3U;
FP8_MINDENORM_O2 = 0x3EE0000000000000ULL; // mindenorm/2 = 2^-17
FP8_OVERFLOW_THRESHOLD =
0x40EE000000000000ULL -
1ULL; // maxnorm + 1/2ulp = 0x1.Ep+15, and -1 to have common code
FP8_MAXNORM = 0x7BU;
FP8_MINNORM = 0x3F10000000000000ULL; // minnorm = 2^-14
}
// 1/2 LSB of the target format, positioned in double precision mantissa
// helpful in midpoints detection during round-to-nearest-even step
const unsigned long long int FP8_DP_HALF_ULP =
(unsigned long long int)1ULL << (53ULL - FP8_SIGNIFICAND_BITS - 1ULL);
// prepare sign bit in target format
unsigned char sign = (unsigned char)((xbits >> 63ULL) << 7U);
// prepare exponent field in target format
unsigned char exp =
(unsigned char)((((unsigned short int)(xbits >> 52ULL)) & 0x7FFU) -
1023U + FP8_EXP_BIAS);
// round mantissa to target format width, rounding towards zero
unsigned char mantissa =
(unsigned char)(xbits >> (53ULL - FP8_SIGNIFICAND_BITS)) &
FP8_MANTISSA_MASK;
unsigned long long int absx = xbits & 0x7FFFFFFFFFFFFFFFULL;
if (absx <= FP8_MINDENORM_O2) {
// zero or underflow
res = 0U;
} else if (absx > DP_INF_BITS) {
// NaN
if (fp8_interpretation == __NV_E4M3) {
res = 0x7FU;
} else {
// NaN --> QNaN
res = 0x7EU | mantissa;
}
} else if (absx > FP8_OVERFLOW_THRESHOLD) {
if (saturate == __NV_SATFINITE) {
res = FP8_MAXNORM;
} else {
// __NV_NOSAT
if (fp8_interpretation == __NV_E4M3) {
// no Inf in E4M3
res = 0x7FU; // NaN
} else {
res = 0x7CU; // Inf in E5M2
}
}
} else if (absx >= FP8_MINNORM) {
res = (unsigned char)((exp << (FP8_SIGNIFICAND_BITS - 1U)) | mantissa);
// rounded-off bits
unsigned long long int round =
xbits & ((FP8_DP_HALF_ULP << 1ULL) - 1ULL);
// round-to-nearest-even adjustment
if ((round > FP8_DP_HALF_ULP) ||
((round == FP8_DP_HALF_ULP) && (mantissa & 1U))) {
res = (unsigned char)(res + 1U);
}
} else // Denormal range
{
unsigned char shift = (unsigned char)(1U - exp);
// add implicit leading bit
mantissa |= (unsigned char)(1U << (FP8_SIGNIFICAND_BITS - 1U));
// additional round-off due to denormalization
res = (unsigned char)(mantissa >> shift);
// rounded-off bits, including implicit leading bit
unsigned long long int round =
(xbits | ((unsigned long long int)1ULL << (53ULL - 1ULL))) &
((FP8_DP_HALF_ULP << (shift + 1ULL)) - 1ULL);
// round-to-nearest-even adjustment
if ((round > (FP8_DP_HALF_ULP << shift)) ||
((round == (FP8_DP_HALF_ULP << shift)) && (res & 1U))) {
res = (unsigned char)(res + 1U);
}
}
res |= sign;
return (__nv_fp8_storage_t)res;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8x2_storage_t
__nv_cvt_double2_to_fp8x2(const double2 x, const __nv_saturation_t saturate,
const __nv_fp8_interpretation_t fp8_interpretation) {
__nv_fp8x2_storage_t storage = (__nv_fp8x2_storage_t)__nv_cvt_double_to_fp8(
x.y, saturate, fp8_interpretation);
storage = (__nv_fp8x2_storage_t)(storage << 8U);
storage = (__nv_fp8x2_storage_t)(storage |
__nv_cvt_double_to_fp8(
x.x, saturate, fp8_interpretation));
return storage;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8_storage_t
__nv_cvt_float_to_fp8(const float x, const __nv_saturation_t saturate,
const __nv_fp8_interpretation_t fp8_interpretation) {
__nv_fp8_storage_t res = 0U;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
if (saturate == __NV_SATFINITE) {
__nv_fp8x2_storage_t storage;
if (fp8_interpretation == __NV_E5M2) {
asm("{cvt.rn.satfinite.e5m2x2.f32 %0, %2, %1;}\n"
: "=h"(storage)
: "f"(x), "f"(0.0f));
} else {
asm("{cvt.rn.satfinite.e4m3x2.f32 %0, %2, %1;}\n"
: "=h"(storage)
: "f"(x), "f"(0.0f));
}
res = (__nv_fp8_storage_t)storage;
} else
#endif
{
unsigned int xbits;
#if defined(__CUDACC__) || (!defined __cplusplus)
(void)memcpy(&xbits, &x, sizeof(x));
#else
(void)std::memcpy(&xbits, &x, sizeof(x));
#endif
// isnan
if ((xbits & 0x7FFFFFFFU) > 0x7F800000U) {
// Canonical NaN
xbits = 0x7FFFFFFFU;
}
float fx;
#if defined(__CUDACC__) || (!defined __cplusplus)
(void)memcpy(&fx, &xbits, sizeof(xbits));
#else
(void)std::memcpy(&fx, &xbits, sizeof(xbits));
#endif
const double dx = (double)fx;
res = __nv_cvt_double_to_fp8(dx, saturate, fp8_interpretation);
}
return res;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8x2_storage_t
__nv_cvt_float2_to_fp8x2(const float2 x, const __nv_saturation_t saturate,
const __nv_fp8_interpretation_t fp8_interpretation) {
__nv_fp8x2_storage_t storage;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
if (saturate == __NV_SATFINITE) {
if (fp8_interpretation == __NV_E5M2) {
asm("{cvt.rn.satfinite.e5m2x2.f32 %0, %2, %1;}\n"
: "=h"(storage)
: "f"(x.x), "f"(x.y));
} else {
asm("{cvt.rn.satfinite.e4m3x2.f32 %0, %2, %1;}\n"
: "=h"(storage)
: "f"(x.x), "f"(x.y));
}
} else
#endif
{
storage = (__nv_fp8x2_storage_t)__nv_cvt_float_to_fp8(
x.y, saturate, fp8_interpretation);
storage = (__nv_fp8x2_storage_t)(storage << 8U);
storage = (__nv_fp8x2_storage_t)(storage | __nv_cvt_float_to_fp8(
x.x, saturate,
fp8_interpretation));
}
return storage;
}
__CUDA_HOSTDEVICE_FP8_DECL__ float
__internal_halfraw_to_float(const __half_raw x) {
float f;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 530)
asm("{cvt.f32.f16 %0, %1;}\n" : "=f"(f) : "h"(x.x));
#else
const unsigned int ux = (unsigned int)x.x;
unsigned int sign = (ux >> 15U) & 1U;
unsigned int exponent = (ux >> 10U) & 0x1fU;
unsigned int mantissa = (ux & 0x3ffU) << 13U;
if (exponent == 0x1fU) { /* NaN or Inf */
/* discard sign of a NaN */
sign = ((mantissa != 0U) ? (sign >> 1U) : sign);
mantissa = ((mantissa != 0U) ? 0x7fffffU : 0U);
exponent = 0xffU;
} else if (exponent == 0U) { /* Denorm or Zero */
if (mantissa != 0U) {
unsigned int msb;
exponent = 0x71U;
do {
msb = (mantissa & 0x400000U);
mantissa <<= 1U; /* normalize */
--exponent;
} while (msb == 0U);
mantissa &= 0x7fffffU; /* 1.mantissa is implicit */
}
} else {
exponent += 0x70U;
}
const unsigned int u = ((sign << 31U) | (exponent << 23U) | mantissa);
#if defined(__CUDACC__) || (!defined __cplusplus)
(void)memcpy(&f, &u, sizeof(u));
#else
(void)std::memcpy(&f, &u, sizeof(u));
#endif
#endif /* (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) */
return f;
}
__CUDA_HOSTDEVICE_FP8_DECL__ float2
__internal_halfraw2_to_float2(const __half2_raw x) {
__half_raw raw;
float2 res;
raw.x = x.x;
res.x = __internal_halfraw_to_float(raw);
raw.x = x.y;
res.y = __internal_halfraw_to_float(raw);
return res;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8_storage_t
__nv_cvt_halfraw_to_fp8(const __half_raw x, const __nv_saturation_t saturate,
const __nv_fp8_interpretation_t fp8_interpretation) {
__nv_fp8_storage_t res = 0U;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
if (saturate == __NV_SATFINITE) {
unsigned int half2_storage = (unsigned int)(x.x);
__nv_fp8x2_storage_t tmp;
if (fp8_interpretation == __NV_E5M2) {
asm("{cvt.rn.satfinite.e5m2x2.f16x2 %0, %1;}\n"
: "=h"(tmp)
: "r"(half2_storage));
} else {
asm("{cvt.rn.satfinite.e4m3x2.f16x2 %0, %1;}\n"
: "=h"(tmp)
: "r"(half2_storage));
}
res = (__nv_fp8_storage_t)tmp;
} else
#endif
{
float fx = __internal_halfraw_to_float(x);
res = __nv_cvt_float_to_fp8(fx, saturate, fp8_interpretation);
}
return res;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8x2_storage_t __nv_cvt_halfraw2_to_fp8x2(
const __half2_raw x, const __nv_saturation_t saturate,
const __nv_fp8_interpretation_t fp8_interpretation) {
__nv_fp8x2_storage_t tmp;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
if (saturate == __NV_SATFINITE) {
unsigned int half2_storage;
(void)memcpy(&half2_storage, &x, sizeof(x));
if (fp8_interpretation == __NV_E5M2) {
asm("{cvt.rn.satfinite.e5m2x2.f16x2 %0, %1;}\n"
: "=h"(tmp)
: "r"(half2_storage));
} else {
asm("{cvt.rn.satfinite.e4m3x2.f16x2 %0, %1;}\n"
: "=h"(tmp)
: "r"(half2_storage));
}
} else
#endif
{
__half_raw raw;
raw.x = x.x;
__nv_fp8_storage_t lo =
__nv_cvt_halfraw_to_fp8(raw, saturate, fp8_interpretation);
raw.x = x.y;
__nv_fp8_storage_t hi =
__nv_cvt_halfraw_to_fp8(raw, saturate, fp8_interpretation);
tmp = hi;
tmp = (__nv_fp8x2_storage_t)(tmp << 8U);
tmp = (__nv_fp8x2_storage_t)(tmp | lo);
}
return tmp;
}
__CUDA_HOSTDEVICE_FP8_DECL__ float
__internal_bf16raw_to_float(const __nv_bfloat16_raw x) {
const unsigned int ux = ((unsigned int)x.x) << 16U;
float fx;
#if defined(__CUDACC__) || (!defined __cplusplus)
(void)memcpy(&fx, &ux, sizeof(ux));
#else
(void)std::memcpy(&fx, &ux, sizeof(ux));
#endif
return fx;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __nv_bfloat16_raw
__internal_float_to_bf16raw_rz(const float x) {
unsigned int ux;
__nv_bfloat16_raw r;
#if defined(__CUDACC__) || (!defined __cplusplus)
(void)memcpy(&ux, &x, sizeof(x));
#else
(void)std::memcpy(&ux, &x, sizeof(x));
#endif
r.x = (unsigned short int)(ux >> 16U);
return r;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8_storage_t __nv_cvt_bfloat16raw_to_fp8(
const __nv_bfloat16_raw x, const __nv_saturation_t saturate,
const __nv_fp8_interpretation_t fp8_interpretation) {
const float fx = __internal_bf16raw_to_float(x);
const __nv_fp8_storage_t res =
__nv_cvt_float_to_fp8(fx, saturate, fp8_interpretation);
return res;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __nv_fp8x2_storage_t
__nv_cvt_bfloat16raw2_to_fp8x2(
const __nv_bfloat162_raw x, const __nv_saturation_t saturate,
const __nv_fp8_interpretation_t fp8_interpretation) {
__nv_bfloat16_raw raw;
raw.x = x.y;
__nv_fp8x2_storage_t storage =
(__nv_fp8x2_storage_t)__nv_cvt_bfloat16raw_to_fp8(raw, saturate,
fp8_interpretation);
storage = (__nv_fp8x2_storage_t)(storage << 8U);
raw.x = x.x;
storage = (__nv_fp8x2_storage_t)(storage |
__nv_cvt_bfloat16raw_to_fp8(
raw, saturate, fp8_interpretation));
return storage;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __half2_raw
__nv_cvt_fp8x2_to_halfraw2(const __nv_fp8x2_storage_t x,
const __nv_fp8_interpretation_t fp8_interpretation);
__CUDA_HOSTDEVICE_FP8_DECL__ __half_raw
__nv_cvt_fp8_to_halfraw(const __nv_fp8_storage_t x,
const __nv_fp8_interpretation_t fp8_interpretation) {
__half_raw res;
res.x = 0U;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
res.x =
__nv_cvt_fp8x2_to_halfraw2((__nv_fp8x2_storage_t)x, fp8_interpretation)
.x;
#else
unsigned short int ur = (unsigned short int)x;
ur = (unsigned short int)(ur << 8U);
if (fp8_interpretation == __NV_E5M2) {
if ((ur & 0x7FFFU) > 0x7C00U) {
/* If NaN, return canonical NaN */
ur = 0x7FFFU;
}
} else { // __NV_E4M3
unsigned short int sign = ur & 0x8000U;
unsigned short int exponent =
(unsigned short int)(((ur & 0x7800U) >> 1U) + 0x2000U);
unsigned short int mantissa = (ur & 0x0700U) >> 1U;
unsigned char absx = 0x7FU & (unsigned char)x;
if (absx == 0x7FU) // NaN
{
ur = 0x7FFFU; // fp16 canonical NaN, discard sign
} else if (exponent == 0x2000U) {
// zero or denormal
if (mantissa != 0U) {
// normalize
mantissa = (unsigned short int)(mantissa << 1U);
while ((mantissa & 0x0400U) == 0U) {
mantissa = (unsigned short int)(mantissa << 1U);
exponent = (unsigned short int)(exponent - 0x0400U);
}
// discard implicit leading bit
mantissa &= 0x03FFU;
} else { // Zero
exponent = 0U;
}
ur = (sign | exponent) | mantissa;
} else {
ur = (sign | exponent) | mantissa;
}
}
res.x = ur;
#endif
return res;
}
__CUDA_HOSTDEVICE_FP8_DECL__ __half2_raw
__nv_cvt_fp8x2_to_halfraw2(const __nv_fp8x2_storage_t x,
const __nv_fp8_interpretation_t fp8_interpretation) {
__half2_raw res;
#if (defined __CUDA_ARCH__) && (__CUDA_ARCH__ >= 890)
unsigned int half2_storage;
if (fp8_interpretation == __NV_E5M2) {
asm("{cvt.rn.f16x2.e5m2x2 %0, %1;}\n" : "=r"(half2_storage) : "h"(x));
} else {
asm("{cvt.rn.f16x2.e4m3x2 %0, %1;}\n" : "=r"(half2_storage) : "h"(x));
}
(void)memcpy(&res, &half2_storage, sizeof(half2_storage));
#else
res.x =
__nv_cvt_fp8_to_halfraw((__nv_fp8_storage_t)x, fp8_interpretation).x;
res.y = __nv_cvt_fp8_to_halfraw((__nv_fp8_storage_t)(x >> 8U),
fp8_interpretation)
.x;
#endif
return res;
}
/* All other definitions in this file are only visible to C++ compilers */
#if defined(__cplusplus)
/**
* \defgroup CUDA_MATH_FP8_E5M2_STRUCT C++ struct for handling fp8 data type of e5m2 kind.
* \ingroup CUDA_MATH_INTRINSIC_FP8
*/
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* \brief __nv_fp8_e5m2 datatype
*
* \details This structure implements the datatype for handling
* \p fp8 floating-point numbers of \p e5m2 kind:
* with 1 sign, 5 exponent, 1 implicit and 2 explicit mantissa bits.
*
* The structure implements converting constructors and operators.
*/
struct __CUDA_ALIGN__(1) __nv_fp8_e5m2 {
public:
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Storage variable contains the \p fp8 floating-point data.
*/
__nv_fp8_storage_t __x;
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor by default.
*/
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
__nv_fp8_e5m2() = default;
#else
__CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */
#if !defined(__CUDA_NO_FP8_CONVERSIONS__)
/* Construct from wider FP types */
/* Note we do avoid constructor init-list because of special host/device
* compilation rules */
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p __half data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const __half f) {
__x = __nv_cvt_halfraw_to_fp8(static_cast<__half_raw>(f),
__NV_SATFINITE, __NV_E5M2);
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p __nv_bfloat16 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const __nv_bfloat16 f) {
__x = __nv_cvt_bfloat16raw_to_fp8(static_cast<__nv_bfloat16_raw>(f),
__NV_SATFINITE, __NV_E5M2);
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p float data type, relies on \p __NV_SATFINITE behavior
* for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const float f) {
__x = __nv_cvt_float_to_fp8(f, __NV_SATFINITE, __NV_E5M2);
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p double data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const double f) {
__x = __nv_cvt_double_to_fp8(f, __NV_SATFINITE, __NV_E5M2);
}
/* Converts from integral */
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p unsigned \p short \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__
__nv_fp8_e5m2(const unsigned short int val) {
__x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p unsigned \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const unsigned int val) {
__x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p unsigned \p long \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const unsigned long int val) {
__x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p unsigned \p long \p long \p int data type, relies on
* \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__
__nv_fp8_e5m2(const unsigned long long int val) {
__x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p short \p int data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const short int val) {
__x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p int data type, relies on \p __NV_SATFINITE behavior
* for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const int val) {
__x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p long \p int data type, relies on \p __NV_SATFINITE behavior
* for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const long int val) {
__x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Constructor from \p long \p long \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e5m2(const long long int val) {
__x = static_cast<__nv_fp8_e5m2>(static_cast<float>(val)).__x;
}
#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
/* Widening FP converts */
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p __half data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator __half() const {
return static_cast<__half>(__nv_cvt_fp8_to_halfraw(__x, __NV_E5M2));
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p float data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator float() const {
return __internal_halfraw_to_float(
__nv_cvt_fp8_to_halfraw(__x, __NV_E5M2));
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p __nv_bfloat16 data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator __nv_bfloat16() const {
return static_cast<__nv_bfloat16>(
__internal_float_to_bf16raw_rz(float(*this)));
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p double data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator double() const {
return static_cast<double>(float(*this));
}
/* Convert to integral */
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p unsigned \p char data type.
* Clamps negative and too large inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned char() const {
unsigned char i;
const float f = float(*this);
const unsigned char max_val = 0xFFU;
const unsigned char min_val = 0U;
const unsigned char bits = (*this).__x;
// saturation fixup
if ((bits & 0x7FU) > 0x7CU) {
// NaN
i = 0;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value
i = static_cast<unsigned char>(f);
}
return i;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p unsigned \p short \p int data type.
* Clamps negative and too large inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned short int() const {
return __half2ushort_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p unsigned \p int data type.
* Clamps negative and too large inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned int() const {
return __half2uint_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p unsigned \p long \p int data type.
* Clamps negative and too large inputs to the output range.
* \p NaN inputs convert to \p zero if output type is 32-bit.
* \p NaN inputs convert to \p 0x8000000000000000ULL if output type is 64-bit.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned long int() const {
unsigned long retval;
/* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
if (sizeof(unsigned long) == sizeof(unsigned long long))
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
{
retval = static_cast<unsigned long>(__half2ull_rz(__half(*this)));
}
else
{
retval = static_cast<unsigned long>(__half2uint_rz(__half(*this)));
}
return retval;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p unsigned \p long \p long \p int data type.
* Clamps negative and too large inputs to the output range.
* \p NaN inputs convert to \p 0x8000000000000000ULL.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned long long int() const {
return __half2ull_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p signed \p char data type.
* Clamps too large inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator signed char() const {
signed char i;
const float f = float(*this);
const signed char max_val = (signed char)0x7FU;
const signed char min_val = (signed char)0x80U;
const unsigned char bits = (*this).__x;
// saturation fixup
if ((bits & 0x7FU) > 0x7CU) {
// NaN
i = 0;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value
i = static_cast<signed char>(f);
}
return i;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to an implementation defined \p char data type.
*
* Detects signedness of the \p char type and proceeds accordingly, see
* further details in signed and unsigned char operators.
* Clamps inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator char() const {
char value;
/* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
if (((char)-1) < (char)0)
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
{
value = static_cast<char>(static_cast<signed char>(*this));
}
else
{
value = static_cast<char>(static_cast<unsigned char>(*this));
}
return value;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p short \p int data type.
* Clamps too large inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator short int() const {
return __half2short_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p int data type.
* Clamps too large inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator int() const {
return __half2int_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p long \p int data type.
* Clamps too large inputs to the output range.
* \p NaN inputs convert to \p zero if output type is 32-bit.
* \p NaN inputs convert to \p 0x8000000000000000ULL if output type is 64-bit.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator long int() const {
long retval;
/* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
if (sizeof(long) == sizeof(long long))
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
{
retval = static_cast<long>(__half2ll_rz(__half(*this)));
}
else
{
retval = static_cast<long>(__half2int_rz(__half(*this)));
}
return retval;
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p long \p long \p int data type.
* Clamps too large inputs to the output range.
* \p NaN inputs convert to \p 0x8000000000000000LL.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator long long int() const {
return __half2ll_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E5M2_STRUCT
* Conversion operator to \p bool data type.
* +0 and -0 inputs convert to \p false.
* Non-zero inputs convert to \p true.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator bool() const {
return (__x & 0x7FU) != 0U;
}
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};
/**
* \defgroup CUDA_MATH_FP8X2_E5M2_STRUCT C++ struct for handling vector type of two fp8 values of e5m2 kind.
* \ingroup CUDA_MATH_INTRINSIC_FP8
*/
/**
* \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
* \brief __nv_fp8x2_e5m2 datatype
*
* \details This structure implements the datatype for handling two
* \p fp8 floating-point numbers of \p e5m2 kind each:
* with 1 sign, 5 exponent, 1 implicit and 2 explicit mantissa bits.
*
* The structure implements converting constructors and operators.
*/
struct __CUDA_ALIGN__(2) __nv_fp8x2_e5m2 {
public:
/**
* \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
* Storage variable contains the vector of two \p fp8 floating-point data
* values.
*/
__nv_fp8x2_storage_t __x;
/**
* \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
* Constructor by default.
*/
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
__nv_fp8x2_e5m2() = default;
#else
__CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */
#if !defined(__CUDA_NO_FP8_CONVERSIONS__)
/* Construct from wider types */
/**
* \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
* Constructor from \p __half2 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2(const __half2 f) {
__x = __nv_cvt_halfraw2_to_fp8x2(static_cast<__half2_raw>(f),
__NV_SATFINITE, __NV_E5M2);
}
/**
* \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
* Constructor from \p __nv_bfloat162 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2(const __nv_bfloat162 f) {
__x = __nv_cvt_bfloat16raw2_to_fp8x2(static_cast<__nv_bfloat162_raw>(f),
__NV_SATFINITE, __NV_E5M2);
}
/**
* \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
* Constructor from \p float2 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2(const float2 f) {
__x = __nv_cvt_float2_to_fp8x2(f, __NV_SATFINITE, __NV_E5M2);
}
/**
* \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
* Constructor from \p double2 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e5m2(const double2 f) {
__x = __nv_cvt_double2_to_fp8x2(f, __NV_SATFINITE, __NV_E5M2);
}
#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
/* Widening converts */
/**
* \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
* Conversion operator to \p __half2 data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator __half2() const {
return static_cast<__half2>(__nv_cvt_fp8x2_to_halfraw2(__x, __NV_E5M2));
}
/**
* \ingroup CUDA_MATH_FP8X2_E5M2_STRUCT
* Conversion operator to \p float2 data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator float2() const {
return __internal_halfraw2_to_float2(
__nv_cvt_fp8x2_to_halfraw2(__x, __NV_E5M2));
}
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};
__CUDA_HOSTDEVICE_FP8_DECL__ unsigned int
__internal_pack_u16x2_to_u32(const unsigned short int src_lo,
const unsigned short int src_hi) {
unsigned int dst;
#if (defined __CUDACC__) && (defined __CUDA_ARCH__)
asm("{ mov.b32 %0, {%1,%2};}\n" : "=r"(dst) : "h"(src_lo), "h"(src_hi));
#else
dst = (static_cast<unsigned int>(src_hi) << 16U) |
static_cast<unsigned int>(src_lo);
#endif
return dst;
}
/**
* \defgroup CUDA_MATH_FP8X4_E5M2_STRUCT C++ struct for handling vector type of four fp8 values of e5m2 kind.
* \ingroup CUDA_MATH_INTRINSIC_FP8
*/
/**
* \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
* \brief __nv_fp8x4_e5m2 datatype
*
* \details This structure implements the datatype for handling four
* \p fp8 floating-point numbers of \p e5m2 kind each:
* with 1 sign, 5 exponent, 1 implicit and 2 explicit mantissa bits.
*
* The structure implements converting constructors and operators.
*/
struct __CUDA_ALIGN__(4) __nv_fp8x4_e5m2 {
public:
/**
* \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
* Storage variable contains the vector of four \p fp8 floating-point data
* values.
*/
__nv_fp8x4_storage_t __x;
/**
* \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
* Constructor by default.
*/
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
__nv_fp8x4_e5m2() = default;
#else
__CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */
#if !defined(__CUDA_NO_FP8_CONVERSIONS__)
/* Construct from wider types */
/**
* \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
* Constructor from a pair of \p __half2 data type values,
* relies on \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2(const __half2 flo,
const __half2 fhi) {
const __nv_fp8x2_storage_t rlo = __nv_cvt_halfraw2_to_fp8x2(
static_cast<__half2_raw>(flo), __NV_SATFINITE, __NV_E5M2);
const __nv_fp8x2_storage_t rhi = __nv_cvt_halfraw2_to_fp8x2(
static_cast<__half2_raw>(fhi), __NV_SATFINITE, __NV_E5M2);
__x = __internal_pack_u16x2_to_u32(rlo, rhi);
}
/**
* \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
* Constructor from a pair of \p __nv_bfloat162 data type values,
* relies on \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2(const __nv_bfloat162 flo,
const __nv_bfloat162 fhi) {
const __nv_fp8x2_storage_t rlo = __nv_cvt_bfloat16raw2_to_fp8x2(
static_cast<__nv_bfloat162_raw>(flo), __NV_SATFINITE, __NV_E5M2);
const __nv_fp8x2_storage_t rhi = __nv_cvt_bfloat16raw2_to_fp8x2(
static_cast<__nv_bfloat162_raw>(fhi), __NV_SATFINITE, __NV_E5M2);
__x = __internal_pack_u16x2_to_u32(rlo, rhi);
}
/**
* \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
* Constructor from \p float4 vector data type,
* relies on \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2(const float4 f) {
const float2 flo = {f.x, f.y};
const float2 fhi = {f.z, f.w};
const __nv_fp8x2_storage_t rlo =
__nv_cvt_float2_to_fp8x2(flo, __NV_SATFINITE, __NV_E5M2);
const __nv_fp8x2_storage_t rhi =
__nv_cvt_float2_to_fp8x2(fhi, __NV_SATFINITE, __NV_E5M2);
__x = __internal_pack_u16x2_to_u32(rlo, rhi);
}
/**
* \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
* Constructor from \p double4 vector data type,
* relies on \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e5m2(const double4 f) {
const double2 flo = {f.x, f.y};
const double2 fhi = {f.z, f.w};
const __nv_fp8x2_storage_t rlo =
__nv_cvt_double2_to_fp8x2(flo, __NV_SATFINITE, __NV_E5M2);
const __nv_fp8x2_storage_t rhi =
__nv_cvt_double2_to_fp8x2(fhi, __NV_SATFINITE, __NV_E5M2);
__x = __internal_pack_u16x2_to_u32(rlo, rhi);
}
#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
/* Widening converts */
/**
* \ingroup CUDA_MATH_FP8X4_E5M2_STRUCT
* Conversion operator to \p float4 vector data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator float4() const {
const __nv_fp8x2_storage_t slo = static_cast<__nv_fp8x2_storage_t>(__x);
const __nv_fp8x2_storage_t shi =
static_cast<__nv_fp8x2_storage_t>(__x >> 16U);
float2 rlo = __internal_halfraw2_to_float2(
__nv_cvt_fp8x2_to_halfraw2(slo, __NV_E5M2));
float2 rhi = __internal_halfraw2_to_float2(
__nv_cvt_fp8x2_to_halfraw2(shi, __NV_E5M2));
float4 res = {rlo.x, rlo.y, rhi.x, rhi.y};
return res;
}
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};
/**
* \defgroup CUDA_MATH_FP8_E4M3_STRUCT C++ struct for handling fp8 data type of e4m3 kind.
* \ingroup CUDA_MATH_INTRINSIC_FP8
*/
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* \brief __nv_fp8_e4m3 datatype
*
* \details This structure implements the datatype for storing
* \p fp8 floating-point numbers of \p e4m3 kind:
* with 1 sign, 4 exponent, 1 implicit and 3 explicit mantissa bits.
* The encoding doesn't support Infinity.
* NaNs are limited to 0x7F and 0xFF values.
*
* The structure implements converting constructors and operators.
*/
struct __CUDA_ALIGN__(1) __nv_fp8_e4m3 {
public:
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Storage variable contains the \p fp8 floating-point data.
*/
__nv_fp8_storage_t __x;
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor by default.
*/
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
__nv_fp8_e4m3() = default;
#else
__CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */
#if !defined(__CUDA_NO_FP8_CONVERSIONS__)
/* Construct from wider FP types */
/* Note we do avoid constructor init-list because of special host/device
* compilation rules */
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p __half data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const __half f) {
__x = __nv_cvt_halfraw_to_fp8(static_cast<__half_raw>(f),
__NV_SATFINITE, __NV_E4M3);
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p __nv_bfloat16 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const __nv_bfloat16 f) {
__x = __nv_cvt_bfloat16raw_to_fp8(static_cast<__nv_bfloat16_raw>(f),
__NV_SATFINITE, __NV_E4M3);
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p float data type, relies on \p __NV_SATFINITE behavior
* for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const float f) {
__x = __nv_cvt_float_to_fp8(f, __NV_SATFINITE, __NV_E4M3);
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p double data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const double f) {
__x = __nv_cvt_double_to_fp8(f, __NV_SATFINITE, __NV_E4M3);
}
/* Converts from integral */
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p unsigned \p short \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__
__nv_fp8_e4m3(const unsigned short int val) {
__x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p unsigned \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const unsigned int val) {
__x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p unsigned \p long \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const unsigned long int val) {
__x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p unsigned \p long \p long \p int data type, relies on
* \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__
__nv_fp8_e4m3(const unsigned long long int val) {
__x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p short \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const short int val) {
__x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p int data type, relies on \p __NV_SATFINITE behavior
* for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const int val) {
__x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p long \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const long int val) {
__x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Constructor from \p long \p long \p int data type, relies on \p
* __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8_e4m3(const long long int val) {
__x = static_cast<__nv_fp8_e4m3>(static_cast<float>(val)).__x;
}
#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
/* Widening FP converts */
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p __half data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator __half() const {
return static_cast<__half>(__nv_cvt_fp8_to_halfraw(__x, __NV_E4M3));
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p float data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator float() const {
return __internal_halfraw_to_float(
__nv_cvt_fp8_to_halfraw(__x, __NV_E4M3));
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p __nv_bfloat16 data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator __nv_bfloat16() const {
return static_cast<__nv_bfloat16>(
__internal_float_to_bf16raw_rz(float(*this)));
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p double data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator double() const {
return static_cast<double>(float(*this));
}
/* Convert to integral */
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p unsigned \p char data type.
* Clamps negative and too large inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned char() const {
unsigned char i;
const float f = float(*this);
const unsigned char max_val = 0xFFU;
const unsigned char min_val = 0U;
const unsigned char bits = (*this).__x;
// saturation fixup
if ((bits & 0x7FU) == 0x7FU) {
// NaN
i = 0;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value
i = static_cast<unsigned char>(f);
}
return i;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p unsigned \p short \p int data type.
* Clamps negative inputs to zero.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned short int() const {
return __half2ushort_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p unsigned \p int data type.
* Clamps negative inputs to zero.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned int() const {
return __half2uint_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p unsigned \p long \p int data type.
* Clamps negative and too large inputs to the output range.
* \p NaN inputs convert to \p zero if output type is 32-bit.
* \p NaN inputs convert to \p 0x8000000000000000ULL if output type is 64-bit.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned long int() const {
unsigned long retval;
/* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
if (sizeof(unsigned long) == sizeof(unsigned long long))
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
{
retval = static_cast<unsigned long>(__half2ull_rz(__half(*this)));
}
else
{
retval = static_cast<unsigned long>(__half2uint_rz(__half(*this)));
}
return retval;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p unsigned \p long \p long \p int data type.
* Clamps negative inputs to zero.
* \p NaN inputs convert to \p 0x8000000000000000ULL.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator unsigned long long int() const {
return __half2ull_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p signed \p char data type.
* Clamps too large inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator signed char() const {
signed char i;
const float f = float(*this);
const signed char max_val = (signed char)0x7FU;
const signed char min_val = (signed char)0x80U;
const unsigned char bits = (*this).__x;
// saturation fixup
if ((bits & 0x7FU) == 0x7FU) {
// NaN
i = 0;
} else if (f > static_cast<float>(max_val)) {
// saturate maximum
i = max_val;
} else if (f < static_cast<float>(min_val)) {
// saturate minimum
i = min_val;
} else {
// normal value
i = static_cast<signed char>(f);
}
return i;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to an implementation defined \p char data type.
*
* Detects signedness of the \p char type and proceeds accordingly, see
* further details in signed and unsigned char operators.
* Clamps inputs to the output range.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator char() const {
char value;
/* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
if (((char)-1) < (char)0)
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
{
value = static_cast<char>(static_cast<signed char>(*this));
}
else
{
value = static_cast<char>(static_cast<unsigned char>(*this));
}
return value;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p short \p int data type.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator short int() const {
return __half2short_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p int data type.
* \p NaN inputs convert to \p zero.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator int() const {
return __half2int_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p long \p int data type.
* Clamps too large inputs to the output range.
* \p NaN inputs convert to \p zero if output type is 32-bit.
* \p NaN inputs convert to \p 0x8000000000000000ULL if output type is 64-bit.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator long int() const {
long retval;
/* Suppress VS warning: warning C4127: conditional expression is constant */
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (push)
#pragma warning (disable: 4127)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
if (sizeof(long) == sizeof(long long))
#if defined(_MSC_VER) && !defined(__CUDA_ARCH__)
#pragma warning (pop)
#endif /* _MSC_VER && !defined(__CUDA_ARCH__) */
{
retval = static_cast<long>(__half2ll_rz(__half(*this)));
}
else
{
retval = static_cast<long>(__half2int_rz(__half(*this)));
}
return retval;
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p long \p long \p int data type.
* \p NaN inputs convert to \p 0x8000000000000000LL.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator long long int() const {
return __half2ll_rz(__half(*this));
}
/**
* \ingroup CUDA_MATH_FP8_E4M3_STRUCT
* Conversion operator to \p bool data type.
* +0 and -0 inputs convert to \p false.
* Non-zero inputs convert to \p true.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator bool() const {
return (__x & 0x7FU) != 0U;
}
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};
/**
* \defgroup CUDA_MATH_FP8X2_E4M3_STRUCT C++ struct for handling vector type of two fp8 values of e4m3 kind.
* \ingroup CUDA_MATH_INTRINSIC_FP8
*/
/**
* \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
* \brief __nv_fp8x2_e4m3 datatype
*
* \details This structure implements the datatype for storage
* and operations on the vector of two \p fp8 values of \p e4m3 kind each:
* with 1 sign, 4 exponent, 1 implicit and 3 explicit mantissa bits.
* The encoding doesn't support Infinity.
* NaNs are limited to 0x7F and 0xFF values.
*/
struct __CUDA_ALIGN__(2) __nv_fp8x2_e4m3 {
public:
/**
* \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
* Storage variable contains the vector of two \p fp8 floating-point data
* values.
*/
__nv_fp8x2_storage_t __x;
/**
* \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
* Constructor by default.
*/
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
__nv_fp8x2_e4m3() = default;
#else
__CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */
#if !defined(__CUDA_NO_FP8_CONVERSIONS__)
/* Construct from wider types */
/**
* \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
* Constructor from \p __half2 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3(const __half2 f) {
__x = __nv_cvt_halfraw2_to_fp8x2(static_cast<__half2_raw>(f),
__NV_SATFINITE, __NV_E4M3);
}
/**
* \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
* Constructor from \p __nv_bfloat162 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3(const __nv_bfloat162 f) {
__x = __nv_cvt_bfloat16raw2_to_fp8x2(static_cast<__nv_bfloat162_raw>(f),
__NV_SATFINITE, __NV_E4M3);
}
/**
* \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
* Constructor from \p float2 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3(const float2 f) {
__x = __nv_cvt_float2_to_fp8x2(f, __NV_SATFINITE, __NV_E4M3);
}
/**
* \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
* Constructor from \p double2 data type, relies on \p __NV_SATFINITE
* behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x2_e4m3(const double2 f) {
__x = __nv_cvt_double2_to_fp8x2(f, __NV_SATFINITE, __NV_E4M3);
}
#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
/* Widening converts */
/**
* \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
* Conversion operator to \p __half2 data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator __half2() const {
return static_cast<__half2>(__nv_cvt_fp8x2_to_halfraw2(__x, __NV_E4M3));
}
/**
* \ingroup CUDA_MATH_FP8X2_E4M3_STRUCT
* Conversion operator to \p float2 data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator float2() const {
return __internal_halfraw2_to_float2(
__nv_cvt_fp8x2_to_halfraw2(__x, __NV_E4M3));
}
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};
/**
* \defgroup CUDA_MATH_FP8X4_E4M3_STRUCT C++ struct for handling vector type of four fp8 values of e4m3 kind.
* \ingroup CUDA_MATH_INTRINSIC_FP8
*/
/**
* \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
* \brief __nv_fp8x4_e4m3 datatype
*
* \details This structure implements the datatype for storage
* and operations on the vector of four \p fp8 values of \p e4m3 kind each:
* with 1 sign, 4 exponent, 1 implicit and 3 explicit mantissa bits.
* The encoding doesn't support Infinity.
* NaNs are limited to 0x7F and 0xFF values.
*/
struct __CUDA_ALIGN__(4) __nv_fp8x4_e4m3 {
public:
/**
* \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
* Storage variable contains the vector of four \p fp8 floating-point data
* values.
*/
__nv_fp8x4_storage_t __x;
/**
* \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
* Constructor by default.
*/
#if defined(__CPP_VERSION_AT_LEAST_11_FP8)
__nv_fp8x4_e4m3() = default;
#else
__CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3() {}
#endif /* defined(__CPP_VERSION_AT_LEAST_11_FP8) */
#if !defined(__CUDA_NO_FP8_CONVERSIONS__)
/* Construct from wider types */
/**
* \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
* Constructor from a pair of \p __half2 data type values,
* relies on \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3(const __half2 flo,
const __half2 fhi) {
const __nv_fp8x2_storage_t rlo = __nv_cvt_halfraw2_to_fp8x2(
static_cast<__half2_raw>(flo), __NV_SATFINITE, __NV_E4M3);
const __nv_fp8x2_storage_t rhi = __nv_cvt_halfraw2_to_fp8x2(
static_cast<__half2_raw>(fhi), __NV_SATFINITE, __NV_E4M3);
__x = __internal_pack_u16x2_to_u32(rlo, rhi);
}
/**
* \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
* Constructor from a pair of \p __nv_bfloat162 data type values,
* relies on \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3(const __nv_bfloat162 flo,
const __nv_bfloat162 fhi) {
const __nv_fp8x2_storage_t rlo = __nv_cvt_bfloat16raw2_to_fp8x2(
static_cast<__nv_bfloat162_raw>(flo), __NV_SATFINITE, __NV_E4M3);
const __nv_fp8x2_storage_t rhi = __nv_cvt_bfloat16raw2_to_fp8x2(
static_cast<__nv_bfloat162_raw>(fhi), __NV_SATFINITE, __NV_E4M3);
__x = __internal_pack_u16x2_to_u32(rlo, rhi);
}
/**
* \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
* Constructor from \p float4 vector data type,
* relies on \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3(const float4 f) {
const float2 flo = {f.x, f.y};
const float2 fhi = {f.z, f.w};
const __nv_fp8x2_storage_t rlo =
__nv_cvt_float2_to_fp8x2(flo, __NV_SATFINITE, __NV_E4M3);
const __nv_fp8x2_storage_t rhi =
__nv_cvt_float2_to_fp8x2(fhi, __NV_SATFINITE, __NV_E4M3);
__x = __internal_pack_u16x2_to_u32(rlo, rhi);
}
/**
* \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
* Constructor from \p double4 vector data type,
* relies on \p __NV_SATFINITE behavior for out-of-range values.
*/
explicit __CUDA_HOSTDEVICE_FP8__ __nv_fp8x4_e4m3(const double4 f) {
const double2 flo = {f.x, f.y};
const double2 fhi = {f.z, f.w};
const __nv_fp8x2_storage_t rlo =
__nv_cvt_double2_to_fp8x2(flo, __NV_SATFINITE, __NV_E4M3);
const __nv_fp8x2_storage_t rhi =
__nv_cvt_double2_to_fp8x2(fhi, __NV_SATFINITE, __NV_E4M3);
__x = __internal_pack_u16x2_to_u32(rlo, rhi);
}
#if !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__)
/* Widening converts */
/**
* \ingroup CUDA_MATH_FP8X4_E4M3_STRUCT
* Conversion operator to \p float4 vector data type.
*/
explicit __CUDA_HOSTDEVICE_FP8__ operator float4() const {
const __nv_fp8x2_storage_t slo = static_cast<__nv_fp8x2_storage_t>(__x);
const __nv_fp8x2_storage_t shi =
static_cast<__nv_fp8x2_storage_t>(__x >> 16U);
float2 rlo = __internal_halfraw2_to_float2(
__nv_cvt_fp8x2_to_halfraw2(slo, __NV_E4M3));
float2 rhi = __internal_halfraw2_to_float2(
__nv_cvt_fp8x2_to_halfraw2(shi, __NV_E4M3));
float4 res = {rlo.x, rlo.y, rhi.x, rhi.y};
return res;
}
#endif /* !defined(__CUDA_NO_FP8_CONVERSION_OPERATORS__) */
#endif /* !defined(__CUDA_NO_FP8_CONVERSIONS__) */
};
#endif /* defined(__cplusplus) */
#endif /* end of include guard: __CUDA_FP8_HPP__ */
|