1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
|
/*
* Copyright 1993-2017 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
/**
* CUDA Occupancy Calculator
*
* NAME
*
* cudaOccMaxActiveBlocksPerMultiprocessor,
* cudaOccMaxPotentialOccupancyBlockSize,
* cudaOccMaxPotentialOccupancyBlockSizeVariableSMem
* cudaOccAvailableDynamicSMemPerBlock
*
* DESCRIPTION
*
* The CUDA occupancy calculator provides a standalone, programmatical
* interface to compute the occupancy of a function on a device. It can also
* provide occupancy-oriented launch configuration suggestions.
*
* The function and device are defined by the user through
* cudaOccFuncAttributes, cudaOccDeviceProp, and cudaOccDeviceState
* structures. All APIs require all 3 of them.
*
* See the structure definition for more details about the device / function
* descriptors.
*
* See each API's prototype for API usage.
*
* COMPATIBILITY
*
* The occupancy calculator will be updated on each major CUDA toolkit
* release. It does not provide forward compatibility, i.e. new hardwares
* released after this implementation's release will not be supported.
*
* NOTE
*
* If there is access to CUDA runtime, and the sole intent is to calculate
* occupancy related values on one of the accessible CUDA devices, using CUDA
* runtime's occupancy calculation APIs is recommended.
*
*/
#ifndef __cuda_occupancy_h__
#define __cuda_occupancy_h__
#include <stddef.h>
#include <limits.h>
#include <string.h>
// __OCC_INLINE will be undefined at the end of this header
//
#ifdef __CUDACC__
#define __OCC_INLINE inline __host__ __device__
#elif defined _MSC_VER
#define __OCC_INLINE __inline
#else // GNUCC assumed
#define __OCC_INLINE inline
#endif
enum cudaOccError_enum {
CUDA_OCC_SUCCESS = 0, // no error encountered
CUDA_OCC_ERROR_INVALID_INPUT = 1, // input parameter is invalid
CUDA_OCC_ERROR_UNKNOWN_DEVICE = 2, // requested device is not supported in
// current implementation or device is
// invalid
};
typedef enum cudaOccError_enum cudaOccError;
typedef struct cudaOccResult cudaOccResult;
typedef struct cudaOccDeviceProp cudaOccDeviceProp;
typedef struct cudaOccFuncAttributes cudaOccFuncAttributes;
typedef struct cudaOccDeviceState cudaOccDeviceState;
/**
* The CUDA occupancy calculator computes the occupancy of the function
* described by attributes with the given block size (blockSize), static device
* properties (properties), dynamic device states (states) and per-block dynamic
* shared memory allocation (dynamicSMemSize) in bytes, and output it through
* result along with other useful information. The occupancy is computed in
* terms of the maximum number of active blocks per multiprocessor. The user can
* then convert it to other metrics, such as number of active warps.
*
* RETURN VALUE
*
* The occupancy and related information is returned through result.
*
* If result->activeBlocksPerMultiprocessor is 0, then the given parameter
* combination cannot run on the device.
*
* ERRORS
*
* CUDA_OCC_ERROR_INVALID_INPUT input parameter is invalid.
* CUDA_OCC_ERROR_UNKNOWN_DEVICE requested device is not supported in
* current implementation or device is invalid
*/
static __OCC_INLINE
cudaOccError cudaOccMaxActiveBlocksPerMultiprocessor(
cudaOccResult *result, // out
const cudaOccDeviceProp *properties, // in
const cudaOccFuncAttributes *attributes, // in
const cudaOccDeviceState *state, // in
int blockSize, // in
size_t dynamicSmemSize); // in
/**
* The CUDA launch configurator C API suggests a grid / block size pair (in
* minGridSize and blockSize) that achieves the best potential occupancy
* (i.e. maximum number of active warps with the smallest number of blocks) for
* the given function described by attributes, on a device described by
* properties with settings in state.
*
* If per-block dynamic shared memory allocation is not needed, the user should
* leave both blockSizeToDynamicSMemSize and dynamicSMemSize as 0.
*
* If per-block dynamic shared memory allocation is needed, then if the dynamic
* shared memory size is constant regardless of block size, the size should be
* passed through dynamicSMemSize, and blockSizeToDynamicSMemSize should be
* NULL.
*
* Otherwise, if the per-block dynamic shared memory size varies with different
* block sizes, the user needs to provide a pointer to an unary function through
* blockSizeToDynamicSMemSize that computes the dynamic shared memory needed by
* a block of the function for any given block size. dynamicSMemSize is
* ignored. An example signature is:
*
* // Take block size, returns dynamic shared memory needed
* size_t blockToSmem(int blockSize);
*
* RETURN VALUE
*
* The suggested block size and the minimum number of blocks needed to achieve
* the maximum occupancy are returned through blockSize and minGridSize.
*
* If *blockSize is 0, then the given combination cannot run on the device.
*
* ERRORS
*
* CUDA_OCC_ERROR_INVALID_INPUT input parameter is invalid.
* CUDA_OCC_ERROR_UNKNOWN_DEVICE requested device is not supported in
* current implementation or device is invalid
*
*/
static __OCC_INLINE
cudaOccError cudaOccMaxPotentialOccupancyBlockSize(
int *minGridSize, // out
int *blockSize, // out
const cudaOccDeviceProp *properties, // in
const cudaOccFuncAttributes *attributes, // in
const cudaOccDeviceState *state, // in
size_t (*blockSizeToDynamicSMemSize)(int), // in
size_t dynamicSMemSize); // in
/**
* The CUDA launch configurator C++ API suggests a grid / block size pair (in
* minGridSize and blockSize) that achieves the best potential occupancy
* (i.e. the maximum number of active warps with the smallest number of blocks)
* for the given function described by attributes, on a device described by
* properties with settings in state.
*
* If per-block dynamic shared memory allocation is 0 or constant regardless of
* block size, the user can use cudaOccMaxPotentialOccupancyBlockSize to
* configure the launch. A constant dynamic shared memory allocation size in
* bytes can be passed through dynamicSMemSize.
*
* Otherwise, if the per-block dynamic shared memory size varies with different
* block sizes, the user needs to use
* cudaOccMaxPotentialOccupancyBlockSizeVariableSmem instead, and provide a
* functor / pointer to an unary function (blockSizeToDynamicSMemSize) that
* computes the dynamic shared memory needed by func for any given block
* size. An example signature is:
*
* // Take block size, returns per-block dynamic shared memory needed
* size_t blockToSmem(int blockSize);
*
* RETURN VALUE
*
* The suggested block size and the minimum number of blocks needed to achieve
* the maximum occupancy are returned through blockSize and minGridSize.
*
* If *blockSize is 0, then the given combination cannot run on the device.
*
* ERRORS
*
* CUDA_OCC_ERROR_INVALID_INPUT input parameter is invalid.
* CUDA_OCC_ERROR_UNKNOWN_DEVICE requested device is not supported in
* current implementation or device is invalid
*
*/
#if defined(__cplusplus)
namespace {
__OCC_INLINE
cudaOccError cudaOccMaxPotentialOccupancyBlockSize(
int *minGridSize, // out
int *blockSize, // out
const cudaOccDeviceProp *properties, // in
const cudaOccFuncAttributes *attributes, // in
const cudaOccDeviceState *state, // in
size_t dynamicSMemSize = 0); // in
template <typename UnaryFunction>
__OCC_INLINE
cudaOccError cudaOccMaxPotentialOccupancyBlockSizeVariableSMem(
int *minGridSize, // out
int *blockSize, // out
const cudaOccDeviceProp *properties, // in
const cudaOccFuncAttributes *attributes, // in
const cudaOccDeviceState *state, // in
UnaryFunction blockSizeToDynamicSMemSize); // in
} // namespace anonymous
#endif // defined(__cplusplus)
/**
*
* The CUDA dynamic shared memory calculator computes the maximum size of
* per-block dynamic shared memory if we want to place numBlocks blocks
* on an SM.
*
* RETURN VALUE
*
* Returns in *dynamicSmemSize the maximum size of dynamic shared memory to allow
* numBlocks blocks per SM.
*
* ERRORS
*
* CUDA_OCC_ERROR_INVALID_INPUT input parameter is invalid.
* CUDA_OCC_ERROR_UNKNOWN_DEVICE requested device is not supported in
* current implementation or device is invalid
*
*/
static __OCC_INLINE
cudaOccError cudaOccAvailableDynamicSMemPerBlock(
size_t *dynamicSmemSize,
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
const cudaOccDeviceState *state,
int numBlocks,
int blockSize);
/**
* Data structures
*
* These structures are subject to change for future architecture and CUDA
* releases. C users should initialize the structure as {0}.
*
*/
/**
* Device descriptor
*
* This structure describes a device.
*/
struct cudaOccDeviceProp {
int computeMajor; // Compute capability major version
int computeMinor; // Compute capability minor
// version. None supported minor version
// may cause error
int maxThreadsPerBlock; // Maximum number of threads per block
int maxThreadsPerMultiprocessor; // Maximum number of threads per SM
// i.e. (Max. number of warps) x (warp
// size)
int regsPerBlock; // Maximum number of registers per block
int regsPerMultiprocessor; // Maximum number of registers per SM
int warpSize; // Warp size
size_t sharedMemPerBlock; // Maximum shared memory size per block
size_t sharedMemPerMultiprocessor; // Maximum shared memory size per SM
int numSms; // Number of SMs available
size_t sharedMemPerBlockOptin; // Maximum optin shared memory size per block
size_t reservedSharedMemPerBlock; // Shared memory per block reserved by driver
#ifdef __cplusplus
// This structure can be converted from a cudaDeviceProp structure for users
// that use this header in their CUDA applications.
//
// If the application have access to the CUDA Runtime API, the application
// can obtain the device properties of a CUDA device through
// cudaGetDeviceProperties, and initialize a cudaOccDeviceProp with the
// cudaDeviceProp structure.
//
// Example:
/*
{
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, ...);
cudaOccDeviceProp occProp = prop;
...
cudaOccMaxPotentialOccupancyBlockSize(..., &occProp, ...);
}
*/
//
template<typename DeviceProp>
__OCC_INLINE
cudaOccDeviceProp(const DeviceProp &props)
: computeMajor (props.major),
computeMinor (props.minor),
maxThreadsPerBlock (props.maxThreadsPerBlock),
maxThreadsPerMultiprocessor (props.maxThreadsPerMultiProcessor),
regsPerBlock (props.regsPerBlock),
regsPerMultiprocessor (props.regsPerMultiprocessor),
warpSize (props.warpSize),
sharedMemPerBlock (props.sharedMemPerBlock),
sharedMemPerMultiprocessor (props.sharedMemPerMultiprocessor),
numSms (props.multiProcessorCount),
sharedMemPerBlockOptin (props.sharedMemPerBlockOptin),
reservedSharedMemPerBlock (props.reservedSharedMemPerBlock)
{}
__OCC_INLINE
cudaOccDeviceProp()
: computeMajor (0),
computeMinor (0),
maxThreadsPerBlock (0),
maxThreadsPerMultiprocessor (0),
regsPerBlock (0),
regsPerMultiprocessor (0),
warpSize (0),
sharedMemPerBlock (0),
sharedMemPerMultiprocessor (0),
numSms (0),
sharedMemPerBlockOptin (0),
reservedSharedMemPerBlock (0)
{}
#endif // __cplusplus
};
/**
* Partitioned global caching option
*/
typedef enum cudaOccPartitionedGCConfig_enum {
PARTITIONED_GC_OFF, // Disable partitioned global caching
PARTITIONED_GC_ON, // Prefer partitioned global caching
PARTITIONED_GC_ON_STRICT // Force partitioned global caching
} cudaOccPartitionedGCConfig;
/**
* Per function opt in maximum dynamic shared memory limit
*/
typedef enum cudaOccFuncShmemConfig_enum {
FUNC_SHMEM_LIMIT_DEFAULT, // Default shmem limit
FUNC_SHMEM_LIMIT_OPTIN, // Use the optin shmem limit
} cudaOccFuncShmemConfig;
/**
* Function descriptor
*
* This structure describes a CUDA function.
*/
struct cudaOccFuncAttributes {
int maxThreadsPerBlock; // Maximum block size the function can work with. If
// unlimited, use INT_MAX or any value greater than
// or equal to maxThreadsPerBlock of the device
int numRegs; // Number of registers used. When the function is
// launched on device, the register count may change
// due to internal tools requirements.
size_t sharedSizeBytes; // Number of static shared memory used
cudaOccPartitionedGCConfig partitionedGCConfig;
// Partitioned global caching is required to enable
// caching on certain chips, such as sm_52
// devices. Partitioned global caching can be
// automatically disabled if the occupancy
// requirement of the launch cannot support caching.
//
// To override this behavior with caching on and
// calculate occupancy strictly according to the
// preference, set partitionedGCConfig to
// PARTITIONED_GC_ON_STRICT. This is especially
// useful for experimenting and finding launch
// configurations (MaxPotentialOccupancyBlockSize)
// that allow global caching to take effect.
//
// This flag only affects the occupancy calculation.
cudaOccFuncShmemConfig shmemLimitConfig;
// Certain chips like sm_70 allow a user to opt into
// a higher per block limit of dynamic shared memory
// This optin is performed on a per function basis
// using the cuFuncSetAttribute function
size_t maxDynamicSharedSizeBytes;
// User set limit on maximum dynamic shared memory
// usable by the kernel
// This limit is set using the cuFuncSetAttribute
// function.
int numBlockBarriers; // Number of block barriers used (default to 1)
#ifdef __cplusplus
// This structure can be converted from a cudaFuncAttributes structure for
// users that use this header in their CUDA applications.
//
// If the application have access to the CUDA Runtime API, the application
// can obtain the function attributes of a CUDA kernel function through
// cudaFuncGetAttributes, and initialize a cudaOccFuncAttributes with the
// cudaFuncAttributes structure.
//
// Example:
/*
__global__ void foo() {...}
...
{
cudaFuncAttributes attr;
cudaFuncGetAttributes(&attr, foo);
cudaOccFuncAttributes occAttr = attr;
...
cudaOccMaxPotentialOccupancyBlockSize(..., &occAttr, ...);
}
*/
//
template<typename FuncAttributes>
__OCC_INLINE
cudaOccFuncAttributes(const FuncAttributes &attr)
: maxThreadsPerBlock (attr.maxThreadsPerBlock),
numRegs (attr.numRegs),
sharedSizeBytes (attr.sharedSizeBytes),
partitionedGCConfig (PARTITIONED_GC_OFF),
shmemLimitConfig (FUNC_SHMEM_LIMIT_OPTIN),
maxDynamicSharedSizeBytes (attr.maxDynamicSharedSizeBytes),
numBlockBarriers (1)
{}
__OCC_INLINE
cudaOccFuncAttributes()
: maxThreadsPerBlock (0),
numRegs (0),
sharedSizeBytes (0),
partitionedGCConfig (PARTITIONED_GC_OFF),
shmemLimitConfig (FUNC_SHMEM_LIMIT_DEFAULT),
maxDynamicSharedSizeBytes (0),
numBlockBarriers (0)
{}
#endif
};
typedef enum cudaOccCacheConfig_enum {
CACHE_PREFER_NONE = 0x00, // no preference for shared memory or L1 (default)
CACHE_PREFER_SHARED = 0x01, // prefer larger shared memory and smaller L1 cache
CACHE_PREFER_L1 = 0x02, // prefer larger L1 cache and smaller shared memory
CACHE_PREFER_EQUAL = 0x03 // prefer equal sized L1 cache and shared memory
} cudaOccCacheConfig;
typedef enum cudaOccCarveoutConfig_enum {
SHAREDMEM_CARVEOUT_DEFAULT = -1, // no preference for shared memory or L1 (default)
SHAREDMEM_CARVEOUT_MAX_SHARED = 100, // prefer maximum available shared memory, minimum L1 cache
SHAREDMEM_CARVEOUT_MAX_L1 = 0, // prefer maximum available L1 cache, minimum shared memory
SHAREDMEM_CARVEOUT_HALF = 50 // prefer half of maximum available shared memory, with the rest as L1 cache
} cudaOccCarveoutConfig;
/**
* Device state descriptor
*
* This structure describes device settings that affect occupancy calculation.
*/
struct cudaOccDeviceState
{
// Cache / shared memory split preference. Deprecated on Volta
cudaOccCacheConfig cacheConfig;
// Shared memory / L1 split preference. Supported on only Volta
int carveoutConfig;
#ifdef __cplusplus
__OCC_INLINE
cudaOccDeviceState()
: cacheConfig (CACHE_PREFER_NONE),
carveoutConfig (SHAREDMEM_CARVEOUT_DEFAULT)
{}
#endif
};
typedef enum cudaOccLimitingFactor_enum {
// Occupancy limited due to:
OCC_LIMIT_WARPS = 0x01, // - warps available
OCC_LIMIT_REGISTERS = 0x02, // - registers available
OCC_LIMIT_SHARED_MEMORY = 0x04, // - shared memory available
OCC_LIMIT_BLOCKS = 0x08, // - blocks available
OCC_LIMIT_BARRIERS = 0x10 // - barrier available
} cudaOccLimitingFactor;
/**
* Occupancy output
*
* This structure contains occupancy calculator's output.
*/
struct cudaOccResult {
int activeBlocksPerMultiprocessor; // Occupancy
unsigned int limitingFactors; // Factors that limited occupancy. A bit
// field that counts the limiting
// factors, see cudaOccLimitingFactor
int blockLimitRegs; // Occupancy due to register
// usage, INT_MAX if the kernel does not
// use any register.
int blockLimitSharedMem; // Occupancy due to shared memory
// usage, INT_MAX if the kernel does not
// use shared memory.
int blockLimitWarps; // Occupancy due to block size limit
int blockLimitBlocks; // Occupancy due to maximum number of blocks
// managable per SM
int blockLimitBarriers; // Occupancy due to block barrier usage
int allocatedRegistersPerBlock; // Actual number of registers allocated per
// block
size_t allocatedSharedMemPerBlock; // Actual size of shared memory allocated
// per block
cudaOccPartitionedGCConfig partitionedGCConfig;
// Report if partitioned global caching
// is actually enabled.
};
/**
* Partitioned global caching support
*
* See cudaOccPartitionedGlobalCachingModeSupport
*/
typedef enum cudaOccPartitionedGCSupport_enum {
PARTITIONED_GC_NOT_SUPPORTED, // Partitioned global caching is not supported
PARTITIONED_GC_SUPPORTED, // Partitioned global caching is supported
} cudaOccPartitionedGCSupport;
/**
* Implementation
*/
/**
* Max compute capability supported
*/
#define __CUDA_OCC_MAJOR__ 9
#define __CUDA_OCC_MINOR__ 0
//////////////////////////////////////////
// Mathematical Helper Functions //
//////////////////////////////////////////
static __OCC_INLINE int __occMin(int lhs, int rhs)
{
return rhs < lhs ? rhs : lhs;
}
static __OCC_INLINE int __occDivideRoundUp(int x, int y)
{
return (x + (y - 1)) / y;
}
static __OCC_INLINE int __occRoundUp(int x, int y)
{
return y * __occDivideRoundUp(x, y);
}
//////////////////////////////////////////
// Architectural Properties //
//////////////////////////////////////////
/**
* Granularity of shared memory allocation
*/
static __OCC_INLINE cudaOccError cudaOccSMemAllocationGranularity(int *limit, const cudaOccDeviceProp *properties)
{
int value;
switch(properties->computeMajor) {
case 3:
case 5:
case 6:
case 7:
value = 256;
break;
case 8:
case 9:
value = 128;
break;
default:
return CUDA_OCC_ERROR_UNKNOWN_DEVICE;
}
*limit = value;
return CUDA_OCC_SUCCESS;
}
/**
* Maximum number of registers per thread
*/
static __OCC_INLINE cudaOccError cudaOccRegAllocationMaxPerThread(int *limit, const cudaOccDeviceProp *properties)
{
int value;
switch(properties->computeMajor) {
case 3:
case 5:
case 6:
value = 255;
break;
case 7:
case 8:
case 9:
value = 256;
break;
default:
return CUDA_OCC_ERROR_UNKNOWN_DEVICE;
}
*limit = value;
return CUDA_OCC_SUCCESS;
}
/**
* Granularity of register allocation
*/
static __OCC_INLINE cudaOccError cudaOccRegAllocationGranularity(int *limit, const cudaOccDeviceProp *properties)
{
int value;
switch(properties->computeMajor) {
case 3:
case 5:
case 6:
case 7:
case 8:
case 9:
value = 256;
break;
default:
return CUDA_OCC_ERROR_UNKNOWN_DEVICE;
}
*limit = value;
return CUDA_OCC_SUCCESS;
}
/**
* Number of sub-partitions
*/
static __OCC_INLINE cudaOccError cudaOccSubPartitionsPerMultiprocessor(int *limit, const cudaOccDeviceProp *properties)
{
int value;
switch(properties->computeMajor) {
case 3:
case 5:
case 7:
case 8:
case 9:
value = 4;
break;
case 6:
value = properties->computeMinor ? 4 : 2;
break;
default:
return CUDA_OCC_ERROR_UNKNOWN_DEVICE;
}
*limit = value;
return CUDA_OCC_SUCCESS;
}
/**
* Maximum number of blocks that can run simultaneously on a multiprocessor
*/
static __OCC_INLINE cudaOccError cudaOccMaxBlocksPerMultiprocessor(int* limit, const cudaOccDeviceProp *properties)
{
int value;
switch(properties->computeMajor) {
case 3:
value = 16;
break;
case 5:
case 6:
value = 32;
break;
case 7: {
int isTuring = properties->computeMinor == 5;
value = (isTuring) ? 16 : 32;
break;
}
case 8:
if (properties->computeMinor == 0) {
value = 32;
}
else if (properties->computeMinor == 9) {
value = 24;
}
else {
value = 16;
}
break;
case 9:
value = 32;
break;
default:
return CUDA_OCC_ERROR_UNKNOWN_DEVICE;
}
*limit = value;
return CUDA_OCC_SUCCESS;
}
/**
* Align up shared memory based on compute major configurations
*/
static __OCC_INLINE cudaOccError cudaOccAlignUpShmemSizeVoltaPlus(size_t *shMemSize, const cudaOccDeviceProp *properties)
{
// Volta and Turing have shared L1 cache / shared memory, and support cache
// configuration to trade one for the other. These values are needed to
// map carveout config ratio to the next available architecture size
size_t size = *shMemSize;
switch (properties->computeMajor) {
case 7: {
// Turing supports 32KB and 64KB shared mem.
int isTuring = properties->computeMinor == 5;
if (isTuring) {
if (size <= 32 * 1024) {
*shMemSize = 32 * 1024;
}
else if (size <= 64 * 1024) {
*shMemSize = 64 * 1024;
}
else {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
}
// Volta supports 0KB, 8KB, 16KB, 32KB, 64KB, and 96KB shared mem.
else {
if (size == 0) {
*shMemSize = 0;
}
else if (size <= 8 * 1024) {
*shMemSize = 8 * 1024;
}
else if (size <= 16 * 1024) {
*shMemSize = 16 * 1024;
}
else if (size <= 32 * 1024) {
*shMemSize = 32 * 1024;
}
else if (size <= 64 * 1024) {
*shMemSize = 64 * 1024;
}
else if (size <= 96 * 1024) {
*shMemSize = 96 * 1024;
}
else {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
}
break;
}
case 8:
if (properties->computeMinor == 0 || properties->computeMinor == 7) {
if (size == 0) {
*shMemSize = 0;
}
else if (size <= 8 * 1024) {
*shMemSize = 8 * 1024;
}
else if (size <= 16 * 1024) {
*shMemSize = 16 * 1024;
}
else if (size <= 32 * 1024) {
*shMemSize = 32 * 1024;
}
else if (size <= 64 * 1024) {
*shMemSize = 64 * 1024;
}
else if (size <= 100 * 1024) {
*shMemSize = 100 * 1024;
}
else if (size <= 132 * 1024) {
*shMemSize = 132 * 1024;
}
else if (size <= 164 * 1024) {
*shMemSize = 164 * 1024;
}
else {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
}
else {
if (size == 0) {
*shMemSize = 0;
}
else if (size <= 8 * 1024) {
*shMemSize = 8 * 1024;
}
else if (size <= 16 * 1024) {
*shMemSize = 16 * 1024;
}
else if (size <= 32 * 1024) {
*shMemSize = 32 * 1024;
}
else if (size <= 64 * 1024) {
*shMemSize = 64 * 1024;
}
else if (size <= 100 * 1024) {
*shMemSize = 100 * 1024;
}
else {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
}
break;
case 9: {
if (size == 0) {
*shMemSize = 0;
}
else if (size <= 8 * 1024) {
*shMemSize = 8 * 1024;
}
else if (size <= 16 * 1024) {
*shMemSize = 16 * 1024;
}
else if (size <= 32 * 1024) {
*shMemSize = 32 * 1024;
}
else if (size <= 64 * 1024) {
*shMemSize = 64 * 1024;
}
else if (size <= 100 * 1024) {
*shMemSize = 100 * 1024;
}
else if (size <= 132 * 1024) {
*shMemSize = 132 * 1024;
}
else if (size <= 164 * 1024) {
*shMemSize = 164 * 1024;
}
else if (size <= 196 * 1024) {
*shMemSize = 196 * 1024;
}
else if (size <= 228 * 1024) {
*shMemSize = 228 * 1024;
}
else {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
break;
}
default:
return CUDA_OCC_ERROR_UNKNOWN_DEVICE;
}
return CUDA_OCC_SUCCESS;
}
/**
* Shared memory based on the new carveoutConfig API introduced with Volta
*/
static __OCC_INLINE cudaOccError cudaOccSMemPreferenceVoltaPlus(size_t *limit, const cudaOccDeviceProp *properties, const cudaOccDeviceState *state)
{
cudaOccError status = CUDA_OCC_SUCCESS;
size_t preferenceShmemSize;
// CUDA 9.0 introduces a new API to set shared memory - L1 configuration on supported
// devices. This preference will take precedence over the older cacheConfig setting.
// Map cacheConfig to its effective preference value.
int effectivePreference = state->carveoutConfig;
if ((effectivePreference < SHAREDMEM_CARVEOUT_DEFAULT) || (effectivePreference > SHAREDMEM_CARVEOUT_MAX_SHARED)) {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
if (effectivePreference == SHAREDMEM_CARVEOUT_DEFAULT) {
switch (state->cacheConfig)
{
case CACHE_PREFER_L1:
effectivePreference = SHAREDMEM_CARVEOUT_MAX_L1;
break;
case CACHE_PREFER_SHARED:
effectivePreference = SHAREDMEM_CARVEOUT_MAX_SHARED;
break;
case CACHE_PREFER_EQUAL:
effectivePreference = SHAREDMEM_CARVEOUT_HALF;
break;
default:
effectivePreference = SHAREDMEM_CARVEOUT_DEFAULT;
break;
}
}
if (effectivePreference == SHAREDMEM_CARVEOUT_DEFAULT) {
preferenceShmemSize = properties->sharedMemPerMultiprocessor;
}
else {
preferenceShmemSize = (size_t) (effectivePreference * properties->sharedMemPerMultiprocessor) / 100;
}
status = cudaOccAlignUpShmemSizeVoltaPlus(&preferenceShmemSize, properties);
*limit = preferenceShmemSize;
return status;
}
/**
* Shared memory based on the cacheConfig
*/
static __OCC_INLINE cudaOccError cudaOccSMemPreference(size_t *limit, const cudaOccDeviceProp *properties, const cudaOccDeviceState *state)
{
size_t bytes = 0;
size_t sharedMemPerMultiprocessorHigh = properties->sharedMemPerMultiprocessor;
cudaOccCacheConfig cacheConfig = state->cacheConfig;
// Kepler has shared L1 cache / shared memory, and support cache
// configuration to trade one for the other. These values are needed to
// calculate the correct shared memory size for user requested cache
// configuration.
//
size_t minCacheSize = 16384;
size_t maxCacheSize = 49152;
size_t cacheAndSharedTotal = sharedMemPerMultiprocessorHigh + minCacheSize;
size_t sharedMemPerMultiprocessorLow = cacheAndSharedTotal - maxCacheSize;
switch (properties->computeMajor) {
case 3:
// Kepler supports 16KB, 32KB, or 48KB partitions for L1. The rest
// is shared memory.
//
switch (cacheConfig) {
default :
case CACHE_PREFER_NONE:
case CACHE_PREFER_SHARED:
bytes = sharedMemPerMultiprocessorHigh;
break;
case CACHE_PREFER_L1:
bytes = sharedMemPerMultiprocessorLow;
break;
case CACHE_PREFER_EQUAL:
// Equal is the mid-point between high and low. It should be
// equivalent to low + 16KB.
//
bytes = (sharedMemPerMultiprocessorHigh + sharedMemPerMultiprocessorLow) / 2;
break;
}
break;
case 5:
case 6:
// Maxwell and Pascal have dedicated shared memory.
//
bytes = sharedMemPerMultiprocessorHigh;
break;
default:
return CUDA_OCC_ERROR_UNKNOWN_DEVICE;
}
*limit = bytes;
return CUDA_OCC_SUCCESS;
}
/**
* Shared memory based on config requested by User
*/
static __OCC_INLINE cudaOccError cudaOccSMemPerMultiprocessor(size_t *limit, const cudaOccDeviceProp *properties, const cudaOccDeviceState *state)
{
// Volta introduces a new API that allows for shared memory carveout preference. Because it is a shared memory preference,
// it is handled separately from the cache config preference.
if (properties->computeMajor >= 7) {
return cudaOccSMemPreferenceVoltaPlus(limit, properties, state);
}
return cudaOccSMemPreference(limit, properties, state);
}
/**
* Return the per block shared memory limit based on function config
*/
static __OCC_INLINE cudaOccError cudaOccSMemPerBlock(size_t *limit, const cudaOccDeviceProp *properties, cudaOccFuncShmemConfig shmemLimitConfig, size_t smemPerCta)
{
switch (properties->computeMajor) {
case 2:
case 3:
case 4:
case 5:
case 6:
*limit = properties->sharedMemPerBlock;
break;
case 7:
case 8:
case 9:
switch (shmemLimitConfig) {
default:
case FUNC_SHMEM_LIMIT_DEFAULT:
*limit = properties->sharedMemPerBlock;
break;
case FUNC_SHMEM_LIMIT_OPTIN:
if (smemPerCta > properties->sharedMemPerBlock) {
*limit = properties->sharedMemPerBlockOptin;
}
else {
*limit = properties->sharedMemPerBlock;
}
break;
}
break;
default:
return CUDA_OCC_ERROR_UNKNOWN_DEVICE;
}
// Starting Ampere, CUDA driver reserves additional shared memory per block
if (properties->computeMajor >= 8) {
*limit += properties->reservedSharedMemPerBlock;
}
return CUDA_OCC_SUCCESS;
}
/**
* Partitioned global caching mode support
*/
static __OCC_INLINE cudaOccError cudaOccPartitionedGlobalCachingModeSupport(cudaOccPartitionedGCSupport *limit, const cudaOccDeviceProp *properties)
{
*limit = PARTITIONED_GC_NOT_SUPPORTED;
if ((properties->computeMajor == 5 && (properties->computeMinor == 2 || properties->computeMinor == 3)) ||
properties->computeMajor == 6) {
*limit = PARTITIONED_GC_SUPPORTED;
}
if (properties->computeMajor == 6 && properties->computeMinor == 0) {
*limit = PARTITIONED_GC_NOT_SUPPORTED;
}
return CUDA_OCC_SUCCESS;
}
///////////////////////////////////////////////
// User Input Sanity //
///////////////////////////////////////////////
static __OCC_INLINE cudaOccError cudaOccDevicePropCheck(const cudaOccDeviceProp *properties)
{
// Verify device properties
//
// Each of these limits must be a positive number.
//
// Compute capacity is checked during the occupancy calculation
//
if (properties->maxThreadsPerBlock <= 0 ||
properties->maxThreadsPerMultiprocessor <= 0 ||
properties->regsPerBlock <= 0 ||
properties->regsPerMultiprocessor <= 0 ||
properties->warpSize <= 0 ||
properties->sharedMemPerBlock <= 0 ||
properties->sharedMemPerMultiprocessor <= 0 ||
properties->numSms <= 0) {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
return CUDA_OCC_SUCCESS;
}
static __OCC_INLINE cudaOccError cudaOccFuncAttributesCheck(const cudaOccFuncAttributes *attributes)
{
// Verify function attributes
//
if (attributes->maxThreadsPerBlock <= 0 ||
attributes->numRegs < 0) { // Compiler may choose not to use
// any register (empty kernels,
// etc.)
return CUDA_OCC_ERROR_INVALID_INPUT;
}
return CUDA_OCC_SUCCESS;
}
static __OCC_INLINE cudaOccError cudaOccDeviceStateCheck(const cudaOccDeviceState *state)
{
(void)state; // silence unused-variable warning
// Placeholder
//
return CUDA_OCC_SUCCESS;
}
static __OCC_INLINE cudaOccError cudaOccInputCheck(
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
const cudaOccDeviceState *state)
{
cudaOccError status = CUDA_OCC_SUCCESS;
status = cudaOccDevicePropCheck(properties);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
status = cudaOccFuncAttributesCheck(attributes);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
status = cudaOccDeviceStateCheck(state);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
return status;
}
///////////////////////////////////////////////
// Occupancy calculation Functions //
///////////////////////////////////////////////
static __OCC_INLINE cudaOccPartitionedGCConfig cudaOccPartitionedGCExpected(
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes)
{
cudaOccPartitionedGCSupport gcSupport;
cudaOccPartitionedGCConfig gcConfig;
cudaOccPartitionedGlobalCachingModeSupport(&gcSupport, properties);
gcConfig = attributes->partitionedGCConfig;
if (gcSupport == PARTITIONED_GC_NOT_SUPPORTED) {
gcConfig = PARTITIONED_GC_OFF;
}
return gcConfig;
}
// Warp limit
//
static __OCC_INLINE cudaOccError cudaOccMaxBlocksPerSMWarpsLimit(
int *limit,
cudaOccPartitionedGCConfig gcConfig,
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
int blockSize)
{
cudaOccError status = CUDA_OCC_SUCCESS;
int maxWarpsPerSm;
int warpsAllocatedPerCTA;
int maxBlocks;
(void)attributes; // silence unused-variable warning
if (blockSize > properties->maxThreadsPerBlock) {
maxBlocks = 0;
}
else {
maxWarpsPerSm = properties->maxThreadsPerMultiprocessor / properties->warpSize;
warpsAllocatedPerCTA = __occDivideRoundUp(blockSize, properties->warpSize);
maxBlocks = 0;
if (gcConfig != PARTITIONED_GC_OFF) {
int maxBlocksPerSmPartition;
int maxWarpsPerSmPartition;
// If partitioned global caching is on, then a CTA can only use a SM
// partition (a half SM), and thus a half of the warp slots
// available per SM
//
maxWarpsPerSmPartition = maxWarpsPerSm / 2;
maxBlocksPerSmPartition = maxWarpsPerSmPartition / warpsAllocatedPerCTA;
maxBlocks = maxBlocksPerSmPartition * 2;
}
// On hardware that supports partitioned global caching, each half SM is
// guaranteed to support at least 32 warps (maximum number of warps of a
// CTA), so caching will not cause 0 occupancy due to insufficient warp
// allocation slots.
//
else {
maxBlocks = maxWarpsPerSm / warpsAllocatedPerCTA;
}
}
*limit = maxBlocks;
return status;
}
// Shared memory limit
//
static __OCC_INLINE cudaOccError cudaOccMaxBlocksPerSMSmemLimit(
int *limit,
cudaOccResult *result,
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
const cudaOccDeviceState *state,
int blockSize,
size_t dynamicSmemSize)
{
cudaOccError status = CUDA_OCC_SUCCESS;
int allocationGranularity;
size_t userSmemPreference = 0;
size_t totalSmemUsagePerCTA;
size_t maxSmemUsagePerCTA;
size_t smemAllocatedPerCTA;
size_t staticSmemSize;
size_t sharedMemPerMultiprocessor;
size_t smemLimitPerCTA;
int maxBlocks;
int dynamicSmemSizeExceeded = 0;
int totalSmemSizeExceeded = 0;
(void)blockSize; // silence unused-variable warning
status = cudaOccSMemAllocationGranularity(&allocationGranularity, properties);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
// Obtain the user preferred shared memory size. This setting is ignored if
// user requests more shared memory than preferred.
//
status = cudaOccSMemPerMultiprocessor(&userSmemPreference, properties, state);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
staticSmemSize = attributes->sharedSizeBytes + properties->reservedSharedMemPerBlock;
totalSmemUsagePerCTA = staticSmemSize + dynamicSmemSize;
smemAllocatedPerCTA = __occRoundUp((int)totalSmemUsagePerCTA, (int)allocationGranularity);
maxSmemUsagePerCTA = staticSmemSize + attributes->maxDynamicSharedSizeBytes;
dynamicSmemSizeExceeded = 0;
totalSmemSizeExceeded = 0;
// Obtain the user set maximum dynamic size if it exists
// If so, the current launch dynamic shared memory must not
// exceed the set limit
if (attributes->shmemLimitConfig != FUNC_SHMEM_LIMIT_DEFAULT &&
dynamicSmemSize > attributes->maxDynamicSharedSizeBytes) {
dynamicSmemSizeExceeded = 1;
}
status = cudaOccSMemPerBlock(&smemLimitPerCTA, properties, attributes->shmemLimitConfig, maxSmemUsagePerCTA);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
if (smemAllocatedPerCTA > smemLimitPerCTA) {
totalSmemSizeExceeded = 1;
}
if (dynamicSmemSizeExceeded || totalSmemSizeExceeded) {
maxBlocks = 0;
}
else {
// User requested shared memory limit is used as long as it is greater
// than the total shared memory used per CTA, i.e. as long as at least
// one CTA can be launched.
if (userSmemPreference >= smemAllocatedPerCTA) {
sharedMemPerMultiprocessor = userSmemPreference;
}
else {
// On Volta+, user requested shared memory will limit occupancy
// if it's less than shared memory per CTA. Otherwise, the
// maximum shared memory limit is used.
if (properties->computeMajor >= 7) {
sharedMemPerMultiprocessor = smemAllocatedPerCTA;
status = cudaOccAlignUpShmemSizeVoltaPlus(&sharedMemPerMultiprocessor, properties);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
}
else {
sharedMemPerMultiprocessor = properties->sharedMemPerMultiprocessor;
}
}
if (smemAllocatedPerCTA > 0) {
maxBlocks = (int)(sharedMemPerMultiprocessor / smemAllocatedPerCTA);
}
else {
maxBlocks = INT_MAX;
}
}
result->allocatedSharedMemPerBlock = smemAllocatedPerCTA;
*limit = maxBlocks;
return status;
}
static __OCC_INLINE
cudaOccError cudaOccMaxBlocksPerSMRegsLimit(
int *limit,
cudaOccPartitionedGCConfig *gcConfig,
cudaOccResult *result,
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
int blockSize)
{
cudaOccError status = CUDA_OCC_SUCCESS;
int allocationGranularity;
int warpsAllocatedPerCTA;
int regsAllocatedPerCTA;
int regsAssumedPerCTA;
int regsPerWarp;
int regsAllocatedPerWarp;
int numSubPartitions;
int numRegsPerSubPartition;
int numWarpsPerSubPartition;
int numWarpsPerSM;
int maxBlocks;
int maxRegsPerThread;
status = cudaOccRegAllocationGranularity(
&allocationGranularity,
properties);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
status = cudaOccRegAllocationMaxPerThread(
&maxRegsPerThread,
properties);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
status = cudaOccSubPartitionsPerMultiprocessor(&numSubPartitions, properties);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
warpsAllocatedPerCTA = __occDivideRoundUp(blockSize, properties->warpSize);
// GPUs of compute capability 2.x and higher allocate registers to warps
//
// Number of regs per warp is regs per thread x warp size, rounded up to
// register allocation granularity
//
regsPerWarp = attributes->numRegs * properties->warpSize;
regsAllocatedPerWarp = __occRoundUp(regsPerWarp, allocationGranularity);
regsAllocatedPerCTA = regsAllocatedPerWarp * warpsAllocatedPerCTA;
// Hardware verifies if a launch fits the per-CTA register limit. For
// historical reasons, the verification logic assumes register
// allocations are made to all partitions simultaneously. Therefore, to
// simulate the hardware check, the warp allocation needs to be rounded
// up to the number of partitions.
//
regsAssumedPerCTA = regsAllocatedPerWarp * __occRoundUp(warpsAllocatedPerCTA, numSubPartitions);
if (properties->regsPerBlock < regsAssumedPerCTA || // Hardware check
properties->regsPerBlock < regsAllocatedPerCTA || // Software check
attributes->numRegs > maxRegsPerThread) { // Per thread limit check
maxBlocks = 0;
}
else {
if (regsAllocatedPerWarp > 0) {
// Registers are allocated in each sub-partition. The max number
// of warps that can fit on an SM is equal to the max number of
// warps per sub-partition x number of sub-partitions.
//
numRegsPerSubPartition = properties->regsPerMultiprocessor / numSubPartitions;
numWarpsPerSubPartition = numRegsPerSubPartition / regsAllocatedPerWarp;
maxBlocks = 0;
if (*gcConfig != PARTITIONED_GC_OFF) {
int numSubPartitionsPerSmPartition;
int numWarpsPerSmPartition;
int maxBlocksPerSmPartition;
// If partitioned global caching is on, then a CTA can only
// use a half SM, and thus a half of the registers available
// per SM
//
numSubPartitionsPerSmPartition = numSubPartitions / 2;
numWarpsPerSmPartition = numWarpsPerSubPartition * numSubPartitionsPerSmPartition;
maxBlocksPerSmPartition = numWarpsPerSmPartition / warpsAllocatedPerCTA;
maxBlocks = maxBlocksPerSmPartition * 2;
}
// Try again if partitioned global caching is not enabled, or if
// the CTA cannot fit on the SM with caching on (maxBlocks == 0). In the latter
// case, the device will automatically turn off caching, except
// if the user forces enablement via PARTITIONED_GC_ON_STRICT to calculate
// occupancy and launch configuration.
//
if (maxBlocks == 0 && *gcConfig != PARTITIONED_GC_ON_STRICT) {
// In case *gcConfig was PARTITIONED_GC_ON flip it OFF since
// this is what it will be if we spread CTA across partitions.
//
*gcConfig = PARTITIONED_GC_OFF;
numWarpsPerSM = numWarpsPerSubPartition * numSubPartitions;
maxBlocks = numWarpsPerSM / warpsAllocatedPerCTA;
}
}
else {
maxBlocks = INT_MAX;
}
}
result->allocatedRegistersPerBlock = regsAllocatedPerCTA;
*limit = maxBlocks;
return status;
}
// Barrier limit
//
static __OCC_INLINE cudaOccError cudaOccMaxBlocksPerSMBlockBarrierLimit(
int *limit,
int ctaLimitBlocks,
const cudaOccFuncAttributes *attributes)
{
cudaOccError status = CUDA_OCC_SUCCESS;
int numBarriersAvailable = ctaLimitBlocks * 2;
int numBarriersUsed = attributes->numBlockBarriers;
int maxBlocks = INT_MAX;
if (numBarriersUsed) {
maxBlocks = numBarriersAvailable / numBarriersUsed;
}
*limit = maxBlocks;
return status;
}
///////////////////////////////////
// API Implementations //
///////////////////////////////////
static __OCC_INLINE
cudaOccError cudaOccMaxActiveBlocksPerMultiprocessor(
cudaOccResult *result,
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
const cudaOccDeviceState *state,
int blockSize,
size_t dynamicSmemSize)
{
cudaOccError status = CUDA_OCC_SUCCESS;
int ctaLimitWarps = 0;
int ctaLimitBlocks = 0;
int ctaLimitSMem = 0;
int ctaLimitRegs = 0;
int ctaLimitBars = 0;
int ctaLimit = 0;
unsigned int limitingFactors = 0;
cudaOccPartitionedGCConfig gcConfig = PARTITIONED_GC_OFF;
if (!result || !properties || !attributes || !state || blockSize <= 0) {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
///////////////////////////
// Check user input
///////////////////////////
status = cudaOccInputCheck(properties, attributes, state);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
///////////////////////////
// Initialization
///////////////////////////
gcConfig = cudaOccPartitionedGCExpected(properties, attributes);
///////////////////////////
// Compute occupancy
///////////////////////////
// Limits due to registers/SM
// Also compute if partitioned global caching has to be turned off
//
status = cudaOccMaxBlocksPerSMRegsLimit(&ctaLimitRegs, &gcConfig, result, properties, attributes, blockSize);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
// SMs on GP100 (6.0) have 2 subpartitions, while those on GP10x have 4.
// As a result, an SM on GP100 may be able to run more CTAs than the one on GP10x.
// For forward compatibility within Pascal family, if a function cannot run on GP10x (maxBlock == 0),
// we do not let it run on any Pascal processor, even though it may be able to run on GP100.
// Therefore, we check the occupancy on GP10x when it can run on GP100
//
if (properties->computeMajor == 6 && properties->computeMinor == 0 && ctaLimitRegs) {
cudaOccDeviceProp propertiesGP10x;
cudaOccPartitionedGCConfig gcConfigGP10x = gcConfig;
int ctaLimitRegsGP10x = 0;
// Set up properties for GP10x
memcpy(&propertiesGP10x, properties, sizeof(propertiesGP10x));
propertiesGP10x.computeMinor = 1;
status = cudaOccMaxBlocksPerSMRegsLimit(&ctaLimitRegsGP10x, &gcConfigGP10x, result, &propertiesGP10x, attributes, blockSize);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
if (ctaLimitRegsGP10x == 0) {
ctaLimitRegs = 0;
}
}
// Limits due to warps/SM
//
status = cudaOccMaxBlocksPerSMWarpsLimit(&ctaLimitWarps, gcConfig, properties, attributes, blockSize);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
// Limits due to blocks/SM
//
status = cudaOccMaxBlocksPerMultiprocessor(&ctaLimitBlocks, properties);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
// Limits due to shared memory/SM
//
status = cudaOccMaxBlocksPerSMSmemLimit(&ctaLimitSMem, result, properties, attributes, state, blockSize, dynamicSmemSize);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
///////////////////////////
// Overall occupancy
///////////////////////////
// Overall limit is min() of limits due to above reasons
//
ctaLimit = __occMin(ctaLimitRegs, __occMin(ctaLimitSMem, __occMin(ctaLimitWarps, ctaLimitBlocks)));
// Determine occupancy limiting factors
//
if (ctaLimit == ctaLimitWarps) {
limitingFactors |= OCC_LIMIT_WARPS;
}
if (ctaLimit == ctaLimitRegs) {
limitingFactors |= OCC_LIMIT_REGISTERS;
}
if (ctaLimit == ctaLimitSMem) {
limitingFactors |= OCC_LIMIT_SHARED_MEMORY;
}
if (ctaLimit == ctaLimitBlocks) {
limitingFactors |= OCC_LIMIT_BLOCKS;
}
// For Hopper onwards compute the limits to occupancy based on block barrier count
//
if (properties->computeMajor >= 9 && attributes->numBlockBarriers > 0) {
// Limits due to barrier/SM
//
status = cudaOccMaxBlocksPerSMBlockBarrierLimit(&ctaLimitBars, ctaLimitBlocks, attributes);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
// Recompute overall limit based on barrier/SM
//
ctaLimit = __occMin(ctaLimitBars, ctaLimit);
// Determine if this is occupancy limiting factor
//
if (ctaLimit == ctaLimitBars) {
limitingFactors |= OCC_LIMIT_BARRIERS;
}
}
else {
ctaLimitBars = INT_MAX;
}
// Fill in the return values
//
result->limitingFactors = limitingFactors;
result->blockLimitRegs = ctaLimitRegs;
result->blockLimitSharedMem = ctaLimitSMem;
result->blockLimitWarps = ctaLimitWarps;
result->blockLimitBlocks = ctaLimitBlocks;
result->blockLimitBarriers = ctaLimitBars;
result->partitionedGCConfig = gcConfig;
// Final occupancy
result->activeBlocksPerMultiprocessor = ctaLimit;
return CUDA_OCC_SUCCESS;
}
static __OCC_INLINE
cudaOccError cudaOccAvailableDynamicSMemPerBlock(
size_t *bytesAvailable,
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
const cudaOccDeviceState *state,
int numBlocks,
int blockSize)
{
int allocationGranularity;
size_t smemLimitPerBlock;
size_t smemAvailableForDynamic;
size_t userSmemPreference = 0;
size_t sharedMemPerMultiprocessor;
cudaOccResult result;
cudaOccError status = CUDA_OCC_SUCCESS;
if (numBlocks <= 0)
return CUDA_OCC_ERROR_INVALID_INPUT;
// First compute occupancy of potential kernel launch.
//
status = cudaOccMaxActiveBlocksPerMultiprocessor(&result, properties, attributes, state, blockSize, 0);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
// Check if occupancy is achievable given user requested number of blocks.
//
if (result.activeBlocksPerMultiprocessor < numBlocks) {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
status = cudaOccSMemAllocationGranularity(&allocationGranularity, properties);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
// Return the per block shared memory limit based on function config.
//
status = cudaOccSMemPerBlock(&smemLimitPerBlock, properties, attributes->shmemLimitConfig, properties->sharedMemPerMultiprocessor);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
// If there is only a single block needed per SM, then the user preference can be ignored and the fully SW
// limit is allowed to be used as shared memory otherwise if more than one block is needed, then the user
// preference sets the total limit of available shared memory.
//
cudaOccSMemPerMultiprocessor(&userSmemPreference, properties, state);
if (numBlocks == 1) {
sharedMemPerMultiprocessor = smemLimitPerBlock;
}
else {
if (!userSmemPreference) {
userSmemPreference = 1 ;
status = cudaOccAlignUpShmemSizeVoltaPlus(&userSmemPreference, properties);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
}
sharedMemPerMultiprocessor = userSmemPreference;
}
// Compute total shared memory available per SM
//
smemAvailableForDynamic = sharedMemPerMultiprocessor / numBlocks;
smemAvailableForDynamic = (smemAvailableForDynamic / allocationGranularity) * allocationGranularity;
// Cap shared memory
//
if (smemAvailableForDynamic > smemLimitPerBlock) {
smemAvailableForDynamic = smemLimitPerBlock;
}
// Now compute dynamic shared memory size
smemAvailableForDynamic = smemAvailableForDynamic - attributes->sharedSizeBytes;
// Cap computed dynamic SM by user requested limit specified via cuFuncSetAttribute()
//
if (smemAvailableForDynamic > attributes->maxDynamicSharedSizeBytes)
smemAvailableForDynamic = attributes->maxDynamicSharedSizeBytes;
*bytesAvailable = smemAvailableForDynamic;
return CUDA_OCC_SUCCESS;
}
static __OCC_INLINE
cudaOccError cudaOccMaxPotentialOccupancyBlockSize(
int *minGridSize,
int *blockSize,
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
const cudaOccDeviceState *state,
size_t (*blockSizeToDynamicSMemSize)(int),
size_t dynamicSMemSize)
{
cudaOccError status = CUDA_OCC_SUCCESS;
cudaOccResult result;
// Limits
int occupancyLimit;
int granularity;
int blockSizeLimit;
// Recorded maximum
int maxBlockSize = 0;
int numBlocks = 0;
int maxOccupancy = 0;
// Temporary
int blockSizeToTryAligned;
int blockSizeToTry;
int blockSizeLimitAligned;
int occupancyInBlocks;
int occupancyInThreads;
///////////////////////////
// Check user input
///////////////////////////
if (!minGridSize || !blockSize || !properties || !attributes || !state) {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
status = cudaOccInputCheck(properties, attributes, state);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
/////////////////////////////////////////////////////////////////////////////////
// Try each block size, and pick the block size with maximum occupancy
/////////////////////////////////////////////////////////////////////////////////
occupancyLimit = properties->maxThreadsPerMultiprocessor;
granularity = properties->warpSize;
blockSizeLimit = __occMin(properties->maxThreadsPerBlock, attributes->maxThreadsPerBlock);
blockSizeLimitAligned = __occRoundUp(blockSizeLimit, granularity);
for (blockSizeToTryAligned = blockSizeLimitAligned; blockSizeToTryAligned > 0; blockSizeToTryAligned -= granularity) {
blockSizeToTry = __occMin(blockSizeLimit, blockSizeToTryAligned);
// Ignore dynamicSMemSize if the user provides a mapping
//
if (blockSizeToDynamicSMemSize) {
dynamicSMemSize = (*blockSizeToDynamicSMemSize)(blockSizeToTry);
}
status = cudaOccMaxActiveBlocksPerMultiprocessor(
&result,
properties,
attributes,
state,
blockSizeToTry,
dynamicSMemSize);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
occupancyInBlocks = result.activeBlocksPerMultiprocessor;
occupancyInThreads = blockSizeToTry * occupancyInBlocks;
if (occupancyInThreads > maxOccupancy) {
maxBlockSize = blockSizeToTry;
numBlocks = occupancyInBlocks;
maxOccupancy = occupancyInThreads;
}
// Early out if we have reached the maximum
//
if (occupancyLimit == maxOccupancy) {
break;
}
}
///////////////////////////
// Return best available
///////////////////////////
// Suggested min grid size to achieve a full machine launch
//
*minGridSize = numBlocks * properties->numSms;
*blockSize = maxBlockSize;
return status;
}
#if defined(__cplusplus)
namespace {
__OCC_INLINE
cudaOccError cudaOccMaxPotentialOccupancyBlockSize(
int *minGridSize,
int *blockSize,
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
const cudaOccDeviceState *state,
size_t dynamicSMemSize)
{
return cudaOccMaxPotentialOccupancyBlockSize(
minGridSize,
blockSize,
properties,
attributes,
state,
NULL,
dynamicSMemSize);
}
template <typename UnaryFunction>
__OCC_INLINE
cudaOccError cudaOccMaxPotentialOccupancyBlockSizeVariableSMem(
int *minGridSize,
int *blockSize,
const cudaOccDeviceProp *properties,
const cudaOccFuncAttributes *attributes,
const cudaOccDeviceState *state,
UnaryFunction blockSizeToDynamicSMemSize)
{
cudaOccError status = CUDA_OCC_SUCCESS;
cudaOccResult result;
// Limits
int occupancyLimit;
int granularity;
int blockSizeLimit;
// Recorded maximum
int maxBlockSize = 0;
int numBlocks = 0;
int maxOccupancy = 0;
// Temporary
int blockSizeToTryAligned;
int blockSizeToTry;
int blockSizeLimitAligned;
int occupancyInBlocks;
int occupancyInThreads;
size_t dynamicSMemSize;
///////////////////////////
// Check user input
///////////////////////////
if (!minGridSize || !blockSize || !properties || !attributes || !state) {
return CUDA_OCC_ERROR_INVALID_INPUT;
}
status = cudaOccInputCheck(properties, attributes, state);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
/////////////////////////////////////////////////////////////////////////////////
// Try each block size, and pick the block size with maximum occupancy
/////////////////////////////////////////////////////////////////////////////////
occupancyLimit = properties->maxThreadsPerMultiprocessor;
granularity = properties->warpSize;
blockSizeLimit = __occMin(properties->maxThreadsPerBlock, attributes->maxThreadsPerBlock);
blockSizeLimitAligned = __occRoundUp(blockSizeLimit, granularity);
for (blockSizeToTryAligned = blockSizeLimitAligned; blockSizeToTryAligned > 0; blockSizeToTryAligned -= granularity) {
blockSizeToTry = __occMin(blockSizeLimit, blockSizeToTryAligned);
dynamicSMemSize = blockSizeToDynamicSMemSize(blockSizeToTry);
status = cudaOccMaxActiveBlocksPerMultiprocessor(
&result,
properties,
attributes,
state,
blockSizeToTry,
dynamicSMemSize);
if (status != CUDA_OCC_SUCCESS) {
return status;
}
occupancyInBlocks = result.activeBlocksPerMultiprocessor;
occupancyInThreads = blockSizeToTry * occupancyInBlocks;
if (occupancyInThreads > maxOccupancy) {
maxBlockSize = blockSizeToTry;
numBlocks = occupancyInBlocks;
maxOccupancy = occupancyInThreads;
}
// Early out if we have reached the maximum
//
if (occupancyLimit == maxOccupancy) {
break;
}
}
///////////////////////////
// Return best available
///////////////////////////
// Suggested min grid size to achieve a full machine launch
//
*minGridSize = numBlocks * properties->numSms;
*blockSize = maxBlockSize;
return status;
}
} // namespace anonymous
#endif /*__cplusplus */
#undef __OCC_INLINE
#endif /*__cuda_occupancy_h__*/
|