File: cuda_runtime.h

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (2374 lines) | stat: -rw-r--r-- 90,683 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
/*
 * Copyright 1993-2023 NVIDIA Corporation.  All rights reserved.
 *
 * NOTICE TO LICENSEE:
 *
 * This source code and/or documentation ("Licensed Deliverables") are
 * subject to NVIDIA intellectual property rights under U.S. and
 * international Copyright laws.
 *
 * These Licensed Deliverables contained herein is PROPRIETARY and
 * CONFIDENTIAL to NVIDIA and is being provided under the terms and
 * conditions of a form of NVIDIA software license agreement by and
 * between NVIDIA and Licensee ("License Agreement") or electronically
 * accepted by Licensee.  Notwithstanding any terms or conditions to
 * the contrary in the License Agreement, reproduction or disclosure
 * of the Licensed Deliverables to any third party without the express
 * written consent of NVIDIA is prohibited.
 *
 * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
 * LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
 * SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE.  IT IS
 * PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
 * NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
 * DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
 * NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
 * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
 * LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
 * SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
 * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
 * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 * OF THESE LICENSED DELIVERABLES.
 *
 * U.S. Government End Users.  These Licensed Deliverables are a
 * "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
 * 1995), consisting of "commercial computer software" and "commercial
 * computer software documentation" as such terms are used in 48
 * C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
 * only as a commercial end item.  Consistent with 48 C.F.R.12.212 and
 * 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
 * U.S. Government End Users acquire the Licensed Deliverables with
 * only those rights set forth herein.
 *
 * Any use of the Licensed Deliverables in individual and commercial
 * software must include, in the user documentation and internal
 * comments to the code, the above Disclaimer and U.S. Government End
 * Users Notice.
 */

#if !defined(__CUDA_RUNTIME_H__)
#define __CUDA_RUNTIME_H__

#if !defined(__CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__)
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
#define __UNDEF_CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS_CUDA_RUNTIME_H__
#endif

#define EXCLUDE_FROM_RTC
#if defined(__GNUC__)
#if defined(__clang__) || (!defined(__PGIC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
#pragma GCC diagnostic push
#endif
#if defined(__clang__) || (!defined(__PGIC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2)))
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#elif defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4820)
#endif
#ifdef __QNX__
#if (__GNUC__ == 4 && __GNUC_MINOR__ >= 7)
typedef unsigned size_t;
#endif
#endif
#undef EXCLUDE_FROM_RTC
/*******************************************************************************
*                                                                              *
*                                                                              *
*                                                                              *
*******************************************************************************/

#include "crt/host_config.h"

/*******************************************************************************
*                                                                              *
*                                                                              *
*                                                                              *
*******************************************************************************/

#include "builtin_types.h"
#include "library_types.h"
#if !defined(__CUDACC_RTC__)
#define EXCLUDE_FROM_RTC
#include "channel_descriptor.h"
#include "cuda_runtime_api.h"
#include "driver_functions.h"
#undef EXCLUDE_FROM_RTC
#endif /* !__CUDACC_RTC__ */
#include "crt/host_defines.h"
#ifdef __CUDACC_RTC__
#include "target"
#endif  /* defined(__CUDACC_RTC__) */


#include "vector_functions.h"

#if defined(__CUDACC__)

#if defined(__CUDACC_RTC__)
#include "nvrtc_device_runtime.h"
#include "crt/device_functions.h"
#include "crt/common_functions.h"
#include "device_launch_parameters.h"

#else /* !__CUDACC_RTC__ */
#define EXCLUDE_FROM_RTC
#include "crt/common_functions.h"
#include "crt/device_functions.h"
#include "device_launch_parameters.h"

#if defined(__CUDACC_EXTENDED_LAMBDA__)
#include <functional>
#include <utility>
struct  __device_builtin__ __nv_lambda_preheader_injection { };
#endif /* defined(__CUDACC_EXTENDED_LAMBDA__) */

#undef EXCLUDE_FROM_RTC
#endif /* __CUDACC_RTC__ */

#endif /* __CUDACC__ */

/** \cond impl_private */
#if defined(__DOXYGEN_ONLY__) || defined(CUDA_ENABLE_DEPRECATED)
#define __CUDA_DEPRECATED
#elif defined(_MSC_VER)
#define __CUDA_DEPRECATED __declspec(deprecated)
#elif defined(__GNUC__)
#define __CUDA_DEPRECATED __attribute__((deprecated))
#else
#define __CUDA_DEPRECATED
#endif
/** \endcond impl_private */

#define EXCLUDE_FROM_RTC
#if defined(__cplusplus) && !defined(__CUDACC_RTC__)

#if __cplusplus >= 201103L || (defined(_MSC_VER) && (_MSC_VER >= 1900))
#include <utility>
#endif

/*******************************************************************************
*                                                                              *
*                                                                              *
*                                                                              *
*******************************************************************************/

/**
 * \addtogroup CUDART_HIGHLEVEL
 * @{
 */

/**
 *\brief Launches a device function
 *
 * The function invokes kernel \p func on \p gridDim (\p gridDim.x &times; \p gridDim.y
 * &times; \p gridDim.z) grid of blocks. Each block contains \p blockDim (\p blockDim.x &times;
 * \p blockDim.y &times; \p blockDim.z) threads.
 *
 * If the kernel has N parameters the \p args should point to array of N pointers.
 * Each pointer, from <tt>args[0]</tt> to <tt>args[N - 1]</tt>, point to the region
 * of memory from which the actual parameter will be copied.
 *
 * \p sharedMem sets the amount of dynamic shared memory that will be available to
 * each thread block.
 *
 * \p stream specifies a stream the invocation is associated to.
 *
 * \param func        - Device function symbol
 * \param gridDim     - Grid dimentions
 * \param blockDim    - Block dimentions
 * \param args        - Arguments
 * \param sharedMem   - Shared memory (defaults to 0)
 * \param stream      - Stream identifier (defaults to NULL)
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidConfiguration,
 * ::cudaErrorLaunchFailure,
 * ::cudaErrorLaunchTimeout,
 * ::cudaErrorLaunchOutOfResources,
 * ::cudaErrorSharedObjectInitFailed,
 * ::cudaErrorInvalidPtx,
 * ::cudaErrorUnsupportedPtxVersion,
 * ::cudaErrorNoKernelImageForDevice,
 * ::cudaErrorJitCompilerNotFound,
 * ::cudaErrorJitCompilationDisabled
 * \notefnerr
 * \note_async
 * \note_null_stream
 * \note_init_rt
 * \note_callback
 *
 * \ref ::cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream) "cudaLaunchKernel (C API)"
 */
template<class T>
static __inline__ __host__ cudaError_t cudaLaunchKernel(
  const T *func,
  dim3 gridDim,
  dim3 blockDim,
  void **args,
  size_t sharedMem = 0,
  cudaStream_t stream = 0
)
{
    return ::cudaLaunchKernel((const void *)func, gridDim, blockDim, args, sharedMem, stream);
}


#if __cplusplus >= 201103L || (defined(_MSC_VER) && (_MSC_VER >= 1900)) || defined(__DOXYGEN_ONLY__)
/**
 * \brief Launches a CUDA function with launch-time configuration
 *
 * Invokes the kernel \p func on \p config->gridDim (\p config->gridDim.x
 * &times; \p config->gridDim.y &times; \p config->gridDim.z) grid of blocks.
 * Each block contains \p config->blockDim (\p config->blockDim.x &times;
 * \p config->blockDim.y &times; \p config->blockDim.z) threads.
 *
 * \p config->dynamicSmemBytes sets the amount of dynamic shared memory that
 * will be available to each thread block.
 *
 * \p config->stream specifies a stream the invocation is associated to.
 *
 * Configuration beyond grid and block dimensions, dynamic shared memory size,
 * and stream can be provided with the following two fields of \p config:
 *
 * \p config->attrs is an array of \p config->numAttrs contiguous
 * ::cudaLaunchAttribute elements. The value of this pointer is not considered
 * if \p config->numAttrs is zero. However, in that case, it is recommended to
 * set the pointer to NULL.
 * \p config->numAttrs is the number of attributes populating the first
 * \p config->numAttrs positions of the \p config->attrs array.
 *
 * The kernel arguments should be passed as arguments to this function via the
 * \p args parameter pack.
 *
 * The C API version of this function, \p cudaLaunchKernelExC, is also available
 * for pre-C++11 compilers and for use cases where the ability to pass kernel
 * parameters via void* array is preferable.
 *
 * \param config - Launch configuration
 * \param func   - Kernel to launch
 * \param args   - Parameter pack of kernel parameters
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidConfiguration,
 * ::cudaErrorLaunchFailure,
 * ::cudaErrorLaunchTimeout,
 * ::cudaErrorLaunchOutOfResources,
 * ::cudaErrorSharedObjectInitFailed,
 * ::cudaErrorInvalidPtx,
 * ::cudaErrorUnsupportedPtxVersion,
 * ::cudaErrorNoKernelImageForDevice,
 * ::cudaErrorJitCompilerNotFound,
 * ::cudaErrorJitCompilationDisabled
 * \note_null_stream
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * \ref ::cudaLaunchKernelExC(const cudaLaunchConfig_t *config, const void *func, void **args) "cudaLaunchKernelEx (C API)",
 * ::cuLaunchKernelEx
 */
template<typename... ExpTypes, typename... ActTypes>
static __inline__ __host__ cudaError_t cudaLaunchKernelEx(
  const cudaLaunchConfig_t *config,
  void (*kernel)(ExpTypes...),
  ActTypes &&... args
)
{
    return [&](ExpTypes... coercedArgs){
        void *pArgs[] = { &coercedArgs... };
        return ::cudaLaunchKernelExC(config, (const void *)kernel, pArgs);
    }(std::forward<ActTypes>(args)...);
}
#endif

/**
 *\brief Launches a device function
 *
 * The function invokes kernel \p func on \p gridDim (\p gridDim.x &times; \p gridDim.y
 * &times; \p gridDim.z) grid of blocks. Each block contains \p blockDim (\p blockDim.x &times;
 * \p blockDim.y &times; \p blockDim.z) threads.
 *
 * The device on which this kernel is invoked must have a non-zero value for
 * the device attribute ::cudaDevAttrCooperativeLaunch.
 *
 * The total number of blocks launched cannot exceed the maximum number of blocks per
 * multiprocessor as returned by ::cudaOccupancyMaxActiveBlocksPerMultiprocessor (or
 * ::cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times the number of multiprocessors
 * as specified by the device attribute ::cudaDevAttrMultiProcessorCount.
 *
 * The kernel cannot make use of CUDA dynamic parallelism.
 *
 * If the kernel has N parameters the \p args should point to array of N pointers.
 * Each pointer, from <tt>args[0]</tt> to <tt>args[N - 1]</tt>, point to the region
 * of memory from which the actual parameter will be copied.
 *
 * \p sharedMem sets the amount of dynamic shared memory that will be available to
 * each thread block.
 *
 * \p stream specifies a stream the invocation is associated to.
 *
 * \param func        - Device function symbol
 * \param gridDim     - Grid dimentions
 * \param blockDim    - Block dimentions
 * \param args        - Arguments
 * \param sharedMem   - Shared memory (defaults to 0)
 * \param stream      - Stream identifier (defaults to NULL)
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidConfiguration,
 * ::cudaErrorLaunchFailure,
 * ::cudaErrorLaunchTimeout,
 * ::cudaErrorLaunchOutOfResources,
 * ::cudaErrorSharedObjectInitFailed
 * \notefnerr
 * \note_async
 * \note_null_stream
 * \note_init_rt
 * \note_callback
 *
 * \ref ::cudaLaunchCooperativeKernel(const void *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream) "cudaLaunchCooperativeKernel (C API)"
 */
template<class T>
static __inline__ __host__ cudaError_t cudaLaunchCooperativeKernel(
  const T *func,
  dim3 gridDim,
  dim3 blockDim,
  void **args,
  size_t sharedMem = 0,
  cudaStream_t stream = 0
)
{
    return ::cudaLaunchCooperativeKernel((const void *)func, gridDim, blockDim, args, sharedMem, stream);
}

/**
 * \brief \hl Creates an event object with the specified flags
 *
 * Creates an event object with the specified flags. Valid flags include:
 * - ::cudaEventDefault: Default event creation flag.
 * - ::cudaEventBlockingSync: Specifies that event should use blocking
 *   synchronization. A host thread that uses ::cudaEventSynchronize() to wait
 *   on an event created with this flag will block until the event actually
 *   completes.
 * - ::cudaEventDisableTiming: Specifies that the created event does not need
 *   to record timing data.  Events created with this flag specified and
 *   the ::cudaEventBlockingSync flag not specified will provide the best
 *   performance when used with ::cudaStreamWaitEvent() and ::cudaEventQuery().
 *
 * \param event - Newly created event
 * \param flags - Flags for new event
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorLaunchFailure,
 * ::cudaErrorMemoryAllocation
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa \ref ::cudaEventCreate(cudaEvent_t*) "cudaEventCreate (C API)",
 * ::cudaEventCreateWithFlags, ::cudaEventRecord, ::cudaEventQuery,
 * ::cudaEventSynchronize, ::cudaEventDestroy, ::cudaEventElapsedTime,
 * ::cudaStreamWaitEvent
 */
static __inline__ __host__ cudaError_t cudaEventCreate(
  cudaEvent_t  *event,
  unsigned int  flags
)
{
  return ::cudaEventCreateWithFlags(event, flags);
}

/**
 * \brief Creates an executable graph from a graph
 *
 * Instantiates \p graph as an executable graph. The graph is validated for any
 * structural constraints or intra-node constraints which were not previously
 * validated. If instantiation is successful, a handle to the instantiated graph
 * is returned in \p pGraphExec.
 *
 * If there are any errors, diagnostic information may be returned in \p pErrorNode and
 * \p pLogBuffer. This is the primary way to inspect instantiation errors. The output
 * will be null terminated unless the diagnostics overflow
 * the buffer. In this case, they will be truncated, and the last byte can be
 * inspected to determine if truncation occurred.
 *
 * \param pGraphExec - Returns instantiated graph
 * \param graph      - Graph to instantiate
 * \param pErrorNode - In case of an instantiation error, this may be modified to
 *                      indicate a node contributing to the error
 * \param pLogBuffer   - A character buffer to store diagnostic messages
 * \param bufferSize  - Size of the log buffer in bytes
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue
 * \note_graph_thread_safety
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * ::cudaGraphInstantiateWithFlags,
 * ::cudaGraphCreate,
 * ::cudaGraphUpload,
 * ::cudaGraphLaunch,
 * ::cudaGraphExecDestroy
 */
static __inline__ __host__ cudaError_t cudaGraphInstantiate(
  cudaGraphExec_t *pGraphExec,
  cudaGraph_t graph,
  cudaGraphNode_t *pErrorNode,
  char *pLogBuffer,
  size_t bufferSize
)
{
  (void)pErrorNode;
  (void)pLogBuffer;
  (void)bufferSize;
  return ::cudaGraphInstantiate(pGraphExec, graph, 0);
}

/**
 * \brief \hl Allocates page-locked memory on the host
 *
 * Allocates \p size bytes of host memory that is page-locked and accessible
 * to the device. The driver tracks the virtual memory ranges allocated with
 * this function and automatically accelerates calls to functions such as
 * ::cudaMemcpy(). Since the memory can be accessed directly by the device, it
 * can be read or written with much higher bandwidth than pageable memory
 * obtained with functions such as ::malloc(). Allocating excessive amounts of
 * pinned memory may degrade system performance, since it reduces the amount
 * of memory available to the system for paging. As a result, this function is
 * best used sparingly to allocate staging areas for data exchange between host
 * and device.
 *
 * The \p flags parameter enables different options to be specified that affect
 * the allocation, as follows.
 * - ::cudaHostAllocDefault: This flag's value is defined to be 0.
 * - ::cudaHostAllocPortable: The memory returned by this call will be
 * considered as pinned memory by all CUDA contexts, not just the one that
 * performed the allocation.
 * - ::cudaHostAllocMapped: Maps the allocation into the CUDA address space.
 * The device pointer to the memory may be obtained by calling
 * ::cudaHostGetDevicePointer().
 * - ::cudaHostAllocWriteCombined: Allocates the memory as write-combined (WC).
 * WC memory can be transferred across the PCI Express bus more quickly on some
 * system configurations, but cannot be read efficiently by most CPUs.  WC
 * memory is a good option for buffers that will be written by the CPU and read
 * by the device via mapped pinned memory or host->device transfers.
 *
 * All of these flags are orthogonal to one another: a developer may allocate
 * memory that is portable, mapped and/or write-combined with no restrictions.
 *
 * ::cudaSetDeviceFlags() must have been called with the ::cudaDeviceMapHost
 * flag in order for the ::cudaHostAllocMapped flag to have any effect.
 *
 * The ::cudaHostAllocMapped flag may be specified on CUDA contexts for devices
 * that do not support mapped pinned memory. The failure is deferred to
 * ::cudaHostGetDevicePointer() because the memory may be mapped into other
 * CUDA contexts via the ::cudaHostAllocPortable flag.
 *
 * Memory allocated by this function must be freed with ::cudaFreeHost().
 *
 * \param ptr   - Device pointer to allocated memory
 * \param size  - Requested allocation size in bytes
 * \param flags - Requested properties of allocated memory
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorMemoryAllocation
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaSetDeviceFlags,
 * \ref ::cudaMallocHost(void**, size_t) "cudaMallocHost (C API)",
 * ::cudaFreeHost, ::cudaHostAlloc
 */
static __inline__ __host__ cudaError_t cudaMallocHost(
  void         **ptr,
  size_t         size,
  unsigned int   flags
)
{
  return ::cudaHostAlloc(ptr, size, flags);
}

template<class T>
static __inline__ __host__ cudaError_t cudaHostAlloc(
  T            **ptr,
  size_t         size,
  unsigned int   flags
)
{
  return ::cudaHostAlloc((void**)(void*)ptr, size, flags);
}

template<class T>
static __inline__ __host__ cudaError_t cudaHostGetDevicePointer(
  T            **pDevice,
  void          *pHost,
  unsigned int   flags
)
{
  return ::cudaHostGetDevicePointer((void**)(void*)pDevice, pHost, flags);
}

/**
 * \brief Allocates memory that will be automatically managed by the Unified Memory system
 *
 * Allocates \p size bytes of managed memory on the device and returns in
 * \p *devPtr a pointer to the allocated memory. If the device doesn't support
 * allocating managed memory, ::cudaErrorNotSupported is returned. Support
 * for managed memory can be queried using the device attribute
 * ::cudaDevAttrManagedMemory. The allocated memory is suitably
 * aligned for any kind of variable. The memory is not cleared. If \p size
 * is 0, ::cudaMallocManaged returns ::cudaErrorInvalidValue. The pointer
 * is valid on the CPU and on all GPUs in the system that support managed memory.
 * All accesses to this pointer must obey the Unified Memory programming model.
 *
 * \p flags specifies the default stream association for this allocation.
 * \p flags must be one of ::cudaMemAttachGlobal or ::cudaMemAttachHost. The
 * default value for \p flags is ::cudaMemAttachGlobal.
 * If ::cudaMemAttachGlobal is specified, then this memory is accessible from
 * any stream on any device. If ::cudaMemAttachHost is specified, then the
 * allocation should not be accessed from devices that have a zero value for the
 * device attribute ::cudaDevAttrConcurrentManagedAccess; an explicit call to
 * ::cudaStreamAttachMemAsync will be required to enable access on such devices.
 *
 * If the association is later changed via ::cudaStreamAttachMemAsync to
 * a single stream, the default association, as specifed during ::cudaMallocManaged,
 * is restored when that stream is destroyed. For __managed__ variables, the
 * default association is always ::cudaMemAttachGlobal. Note that destroying a
 * stream is an asynchronous operation, and as a result, the change to default
 * association won't happen until all work in the stream has completed.
 *
 * Memory allocated with ::cudaMallocManaged should be released with ::cudaFree.
 *
 * Device memory oversubscription is possible for GPUs that have a non-zero value for the
 * device attribute ::cudaDevAttrConcurrentManagedAccess. Managed memory on
 * such GPUs may be evicted from device memory to host memory at any time by the Unified
 * Memory driver in order to make room for other allocations.
 *
 * In a multi-GPU system where all GPUs have a non-zero value for the device attribute
 * ::cudaDevAttrConcurrentManagedAccess, managed memory may not be populated when this
 * API returns and instead may be populated on access. In such systems, managed memory can
 * migrate to any processor's memory at any time. The Unified Memory driver will employ heuristics to
 * maintain data locality and prevent excessive page faults to the extent possible. The application
 * can also guide the driver about memory usage patterns via ::cudaMemAdvise. The application
 * can also explicitly migrate memory to a desired processor's memory via
 * ::cudaMemPrefetchAsync.
 *
 * In a multi-GPU system where all of the GPUs have a zero value for the device attribute
 * ::cudaDevAttrConcurrentManagedAccess and all the GPUs have peer-to-peer support
 * with each other, the physical storage for managed memory is created on the GPU which is active
 * at the time ::cudaMallocManaged is called. All other GPUs will reference the data at reduced
 * bandwidth via peer mappings over the PCIe bus. The Unified Memory driver does not migrate
 * memory among such GPUs.
 *
 * In a multi-GPU system where not all GPUs have peer-to-peer support with each other and
 * where the value of the device attribute ::cudaDevAttrConcurrentManagedAccess
 * is zero for at least one of those GPUs, the location chosen for physical storage of managed
 * memory is system-dependent.
 * - On Linux, the location chosen will be device memory as long as the current set of active
 * contexts are on devices that either have peer-to-peer support with each other or have a
 * non-zero value for the device attribute ::cudaDevAttrConcurrentManagedAccess.
 * If there is an active context on a GPU that does not have a non-zero value for that device
 * attribute and it does not have peer-to-peer support with the other devices that have active
 * contexts on them, then the location for physical storage will be 'zero-copy' or host memory.
 * Note that this means that managed memory that is located in device memory is migrated to
 * host memory if a new context is created on a GPU that doesn't have a non-zero value for
 * the device attribute and does not support peer-to-peer with at least one of the other devices
 * that has an active context. This in turn implies that context creation may fail if there is
 * insufficient host memory to migrate all managed allocations.
 * - On Windows, the physical storage is always created in 'zero-copy' or host memory.
 * All GPUs will reference the data at reduced bandwidth over the PCIe bus. In these
 * circumstances, use of the environment variable CUDA_VISIBLE_DEVICES is recommended to
 * restrict CUDA to only use those GPUs that have peer-to-peer support.
 * Alternatively, users can also set CUDA_MANAGED_FORCE_DEVICE_ALLOC to a non-zero
 * value to force the driver to always use device memory for physical storage.
 * When this environment variable is set to a non-zero value, all devices used in
 * that process that support managed memory have to be peer-to-peer compatible
 * with each other. The error ::cudaErrorInvalidDevice will be returned if a device
 * that supports managed memory is used and it is not peer-to-peer compatible with
 * any of the other managed memory supporting devices that were previously used in
 * that process, even if ::cudaDeviceReset has been called on those devices. These
 * environment variables are described in the CUDA programming guide under the
 * "CUDA environment variables" section.
 * - On ARM, managed memory is not available on discrete gpu with Drive PX-2.
 *
 * \param devPtr - Pointer to allocated device memory
 * \param size   - Requested allocation size in bytes
 * \param flags  - Must be either ::cudaMemAttachGlobal or ::cudaMemAttachHost (defaults to ::cudaMemAttachGlobal)
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorMemoryAllocation,
 * ::cudaErrorNotSupported,
 * ::cudaErrorInvalidValue
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaMallocPitch, ::cudaFree, ::cudaMallocArray, ::cudaFreeArray,
 * ::cudaMalloc3D, ::cudaMalloc3DArray,
 * \ref ::cudaMallocHost(void**, size_t) "cudaMallocHost (C API)",
 * ::cudaFreeHost, ::cudaHostAlloc, ::cudaDeviceGetAttribute, ::cudaStreamAttachMemAsync
 */
template<class T>
static __inline__ __host__ cudaError_t cudaMallocManaged(
  T            **devPtr,
  size_t         size,
  unsigned int   flags = cudaMemAttachGlobal
)
{
  return ::cudaMallocManaged((void**)(void*)devPtr, size, flags);
}

/**
 * \brief Advise about the usage of a given memory range.
 *
 * This is an alternate spelling for cudaMemAdvise made available through operator overloading.
 *
 * \sa ::cudaMemAdvise,
 * \ref ::cudaMemAdvise(const void* devPtr, size_t count, enum cudaMemoryAdvise advice, struct cudaMemLocation location)  "cudaMemAdvise (C API)"
 */
template<class T>
cudaError_t cudaMemAdvise(
  T                      *devPtr,
  size_t                 count,
  enum cudaMemoryAdvise  advice,
  struct cudaMemLocation location
)
{
  return ::cudaMemAdvise_v2((const void *)devPtr, count, advice, location);
}

template<class T>
static __inline__ __host__ cudaError_t cudaMemPrefetchAsync(
  T                       *devPtr,
  size_t                  count,
  struct cudaMemLocation  location,
  unsigned int            flags,
  cudaStream_t            stream = 0
)
{
  return ::cudaMemPrefetchAsync_v2((const void *)devPtr, count, location, flags, stream);
}

/**
 * \brief Attach memory to a stream asynchronously
 *
 * Enqueues an operation in \p stream to specify stream association of
 * \p length bytes of memory starting from \p devPtr. This function is a
 * stream-ordered operation, meaning that it is dependent on, and will
 * only take effect when, previous work in stream has completed. Any
 * previous association is automatically replaced.
 *
 * \p devPtr must point to an one of the following types of memories:
 * - managed memory declared using the __managed__ keyword or allocated with
 *   ::cudaMallocManaged.
 * - a valid host-accessible region of system-allocated pageable memory. This
 *   type of memory may only be specified if the device associated with the
 *   stream reports a non-zero value for the device attribute
 *   ::cudaDevAttrPageableMemoryAccess.
 *
 * For managed allocations, \p length must be either zero or the entire
 * allocation's size. Both indicate that the entire allocation's stream
 * association is being changed. Currently, it is not possible to change stream
 * association for a portion of a managed allocation.
 *
 * For pageable allocations, \p length must be non-zero.
 *
 * The stream association is specified using \p flags which must be
 * one of ::cudaMemAttachGlobal, ::cudaMemAttachHost or ::cudaMemAttachSingle.
 * The default value for \p flags is ::cudaMemAttachSingle
 * If the ::cudaMemAttachGlobal flag is specified, the memory can be accessed
 * by any stream on any device.
 * If the ::cudaMemAttachHost flag is specified, the program makes a guarantee
 * that it won't access the memory on the device from any stream on a device that
 * has a zero value for the device attribute ::cudaDevAttrConcurrentManagedAccess.
 * If the ::cudaMemAttachSingle flag is specified and \p stream is associated with
 * a device that has a zero value for the device attribute ::cudaDevAttrConcurrentManagedAccess,
 * the program makes a guarantee that it will only access the memory on the device
 * from \p stream. It is illegal to attach singly to the NULL stream, because the
 * NULL stream is a virtual global stream and not a specific stream. An error will
 * be returned in this case.
 *
 * When memory is associated with a single stream, the Unified Memory system will
 * allow CPU access to this memory region so long as all operations in \p stream
 * have completed, regardless of whether other streams are active. In effect,
 * this constrains exclusive ownership of the managed memory region by
 * an active GPU to per-stream activity instead of whole-GPU activity.
 *
 * Accessing memory on the device from streams that are not associated with
 * it will produce undefined results. No error checking is performed by the
 * Unified Memory system to ensure that kernels launched into other streams
 * do not access this region.
 *
 * It is a program's responsibility to order calls to ::cudaStreamAttachMemAsync
 * via events, synchronization or other means to ensure legal access to memory
 * at all times. Data visibility and coherency will be changed appropriately
 * for all kernels which follow a stream-association change.
 *
 * If \p stream is destroyed while data is associated with it, the association is
 * removed and the association reverts to the default visibility of the allocation
 * as specified at ::cudaMallocManaged. For __managed__ variables, the default
 * association is always ::cudaMemAttachGlobal. Note that destroying a stream is an
 * asynchronous operation, and as a result, the change to default association won't
 * happen until all work in the stream has completed.
 *
 * \param stream  - Stream in which to enqueue the attach operation
 * \param devPtr  - Pointer to memory (must be a pointer to managed memory or
 *                  to a valid host-accessible region of system-allocated
 *                  memory)
 * \param length  - Length of memory (defaults to zero)
 * \param flags   - Must be one of ::cudaMemAttachGlobal, ::cudaMemAttachHost or ::cudaMemAttachSingle (defaults to ::cudaMemAttachSingle)
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorNotReady,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorInvalidResourceHandle
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaStreamCreate, ::cudaStreamCreateWithFlags, ::cudaStreamWaitEvent, ::cudaStreamSynchronize, ::cudaStreamAddCallback, ::cudaStreamDestroy, ::cudaMallocManaged
 */
template<class T>
static __inline__ __host__ cudaError_t cudaStreamAttachMemAsync(
  cudaStream_t   stream,
  T              *devPtr,
  size_t         length = 0,
  unsigned int   flags  = cudaMemAttachSingle
)
{
  return ::cudaStreamAttachMemAsync(stream, (void*)devPtr, length, flags);
}

template<class T>
static __inline__ __host__ cudaError_t cudaMalloc(
  T      **devPtr,
  size_t   size
)
{
  return ::cudaMalloc((void**)(void*)devPtr, size);
}

template<class T>
static __inline__ __host__ cudaError_t cudaMallocHost(
  T            **ptr,
  size_t         size,
  unsigned int   flags = 0
)
{
  return cudaMallocHost((void**)(void*)ptr, size, flags);
}

template<class T>
static __inline__ __host__ cudaError_t cudaMallocPitch(
  T      **devPtr,
  size_t  *pitch,
  size_t   width,
  size_t   height
)
{
  return ::cudaMallocPitch((void**)(void*)devPtr, pitch, width, height);
}

/**
 * \brief Allocate from a pool
 *
 * This is an alternate spelling for cudaMallocFromPoolAsync
 * made available through operator overloading.
 *
 * \sa ::cudaMallocFromPoolAsync,
 * \ref ::cudaMallocAsync(void** ptr, size_t size, cudaStream_t hStream)  "cudaMallocAsync (C API)"
 */
static __inline__ __host__ cudaError_t cudaMallocAsync(
  void        **ptr,
  size_t        size,
  cudaMemPool_t memPool,
  cudaStream_t  stream
)
{
  return ::cudaMallocFromPoolAsync(ptr, size, memPool, stream);
}

template<class T>
static __inline__ __host__ cudaError_t cudaMallocAsync(
  T           **ptr,
  size_t        size,
  cudaMemPool_t memPool,
  cudaStream_t  stream
)
{
  return ::cudaMallocFromPoolAsync((void**)(void*)ptr, size, memPool, stream);
}

template<class T>
static __inline__ __host__ cudaError_t cudaMallocAsync(
  T           **ptr,
  size_t        size,
  cudaStream_t  stream
)
{
  return ::cudaMallocAsync((void**)(void*)ptr, size, stream);
}

template<class T>
static __inline__ __host__ cudaError_t cudaMallocFromPoolAsync(
  T           **ptr,
  size_t        size,
  cudaMemPool_t memPool,
  cudaStream_t  stream
)
{
  return ::cudaMallocFromPoolAsync((void**)(void*)ptr, size, memPool, stream);
}

#if defined(__CUDACC__)

/**
 * \brief \hl Copies data to the given symbol on the device
 *
 * Copies \p count bytes from the memory area pointed to by \p src
 * to the memory area \p offset bytes from the start of symbol
 * \p symbol. The memory areas may not overlap. \p symbol is a variable that
 * resides in global or constant memory space. \p kind can be either
 * ::cudaMemcpyHostToDevice or ::cudaMemcpyDeviceToDevice.
 *
 * \param symbol - Device symbol reference
 * \param src    - Source memory address
 * \param count  - Size in bytes to copy
 * \param offset - Offset from start of symbol in bytes
 * \param kind   - Type of transfer
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorInvalidSymbol,
 * ::cudaErrorInvalidMemcpyDirection,
 * ::cudaErrorNoKernelImageForDevice
 * \notefnerr
 * \note_sync
 * \note_string_api_deprecation
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaMemcpy, ::cudaMemcpy2D,
 * ::cudaMemcpy2DToArray, ::cudaMemcpy2DFromArray,
 * ::cudaMemcpy2DArrayToArray,
 * ::cudaMemcpyFromSymbol, ::cudaMemcpyAsync, ::cudaMemcpy2DAsync,
 * ::cudaMemcpy2DToArrayAsync,
 * ::cudaMemcpy2DFromArrayAsync,
 * ::cudaMemcpyToSymbolAsync, ::cudaMemcpyFromSymbolAsync
 */
template<class T>
static __inline__ __host__ cudaError_t cudaMemcpyToSymbol(
  const T                   &symbol,
  const void                *src,
        size_t               count,
        size_t               offset = 0,
        enum cudaMemcpyKind  kind   = cudaMemcpyHostToDevice
)
{
  return ::cudaMemcpyToSymbol((const void*)&symbol, src, count, offset, kind);
}

/**
 * \brief \hl Copies data to the given symbol on the device
 *
 * Copies \p count bytes from the memory area pointed to by \p src
 * to the memory area \p offset bytes from the start of symbol
 * \p symbol. The memory areas may not overlap. \p symbol is a variable that
 * resides in global or constant memory space. \p kind can be either
 * ::cudaMemcpyHostToDevice or ::cudaMemcpyDeviceToDevice.
 *
 * ::cudaMemcpyToSymbolAsync() is asynchronous with respect to the host, so
 * the call may return before the copy is complete. The copy can optionally
 * be associated to a stream by passing a non-zero \p stream argument. If
 * \p kind is ::cudaMemcpyHostToDevice and \p stream is non-zero, the copy
 * may overlap with operations in other streams.
 *
 * \param symbol - Device symbol reference
 * \param src    - Source memory address
 * \param count  - Size in bytes to copy
 * \param offset - Offset from start of symbol in bytes
 * \param kind   - Type of transfer
 * \param stream - Stream identifier
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorInvalidSymbol,
 * ::cudaErrorInvalidMemcpyDirection,
 * ::cudaErrorNoKernelImageForDevice
 * \notefnerr
 * \note_async
 * \note_string_api_deprecation
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaMemcpy, ::cudaMemcpy2D,
 * ::cudaMemcpy2DToArray, ::cudaMemcpy2DFromArray,
 * ::cudaMemcpy2DArrayToArray, ::cudaMemcpyToSymbol,
 * ::cudaMemcpyFromSymbol, ::cudaMemcpyAsync, ::cudaMemcpy2DAsync,
 * ::cudaMemcpy2DToArrayAsync,
 * ::cudaMemcpy2DFromArrayAsync,
 * ::cudaMemcpyFromSymbolAsync
 */
template<class T>
static __inline__ __host__ cudaError_t cudaMemcpyToSymbolAsync(
  const T                   &symbol,
  const void                *src,
        size_t               count,
        size_t               offset = 0,
        enum cudaMemcpyKind  kind   = cudaMemcpyHostToDevice,
        cudaStream_t         stream = 0
)
{
  return ::cudaMemcpyToSymbolAsync((const void*)&symbol, src, count, offset, kind, stream);
}

/**
 * \brief \hl Copies data from the given symbol on the device
 *
 * Copies \p count bytes from the memory area \p offset bytes
 * from the start of symbol \p symbol to the memory area pointed to by \p dst.
 * The memory areas may not overlap. \p symbol is a variable that
 * resides in global or constant memory space. \p kind can be either
 * ::cudaMemcpyDeviceToHost or ::cudaMemcpyDeviceToDevice.
 *
 * \param dst    - Destination memory address
 * \param symbol - Device symbol reference
 * \param count  - Size in bytes to copy
 * \param offset - Offset from start of symbol in bytes
 * \param kind   - Type of transfer
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorInvalidSymbol,
 * ::cudaErrorInvalidMemcpyDirection,
 * ::cudaErrorNoKernelImageForDevice
 * \notefnerr
 * \note_sync
 * \note_string_api_deprecation
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaMemcpy, ::cudaMemcpy2D,
 * ::cudaMemcpy2DToArray, ::cudaMemcpy2DFromArray,
 * ::cudaMemcpy2DArrayToArray, ::cudaMemcpyToSymbol,
 * ::cudaMemcpyAsync, ::cudaMemcpy2DAsync,
 * ::cudaMemcpy2DToArrayAsync,
 * ::cudaMemcpy2DFromArrayAsync,
 * ::cudaMemcpyToSymbolAsync, ::cudaMemcpyFromSymbolAsync
 */
template<class T>
static __inline__ __host__ cudaError_t cudaMemcpyFromSymbol(
        void                *dst,
  const T                   &symbol,
        size_t               count,
        size_t               offset = 0,
        enum cudaMemcpyKind  kind   = cudaMemcpyDeviceToHost
)
{
  return ::cudaMemcpyFromSymbol(dst, (const void*)&symbol, count, offset, kind);
}

/**
 * \brief \hl Copies data from the given symbol on the device
 *
 * Copies \p count bytes from the memory area \p offset bytes
 * from the start of symbol \p symbol to the memory area pointed to by \p dst.
 * The memory areas may not overlap. \p symbol is a variable that resides in
 * global or constant memory space. \p kind can be either
 * ::cudaMemcpyDeviceToHost or ::cudaMemcpyDeviceToDevice.
 *
 * ::cudaMemcpyFromSymbolAsync() is asynchronous with respect to the host, so
 * the call may return before the copy is complete. The copy can optionally be
 * associated to a stream by passing a non-zero \p stream argument. If \p kind
 * is ::cudaMemcpyDeviceToHost and \p stream is non-zero, the copy may overlap
 * with operations in other streams.
 *
 * \param dst    - Destination memory address
 * \param symbol - Device symbol reference
 * \param count  - Size in bytes to copy
 * \param offset - Offset from start of symbol in bytes
 * \param kind   - Type of transfer
 * \param stream - Stream identifier
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorInvalidSymbol,
 * ::cudaErrorInvalidMemcpyDirection,
 * ::cudaErrorNoKernelImageForDevice
 * \notefnerr
 * \note_async
 * \note_string_api_deprecation
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaMemcpy, ::cudaMemcpy2D,
 * ::cudaMemcpy2DToArray, ::cudaMemcpy2DFromArray,
 * ::cudaMemcpy2DArrayToArray, ::cudaMemcpyToSymbol,
 * ::cudaMemcpyFromSymbol, ::cudaMemcpyAsync, ::cudaMemcpy2DAsync,
 * ::cudaMemcpy2DToArrayAsync,
 * ::cudaMemcpy2DFromArrayAsync,
 * ::cudaMemcpyToSymbolAsync
 */
template<class T>
static __inline__ __host__ cudaError_t cudaMemcpyFromSymbolAsync(
        void                *dst,
  const T                   &symbol,
        size_t               count,
        size_t               offset = 0,
        enum cudaMemcpyKind  kind   = cudaMemcpyDeviceToHost,
        cudaStream_t         stream = 0
)
{
  return ::cudaMemcpyFromSymbolAsync(dst, (const void*)&symbol, count, offset, kind, stream);
}

/**
 * \brief Creates a memcpy node to copy to a symbol on the device and adds it to a graph
 *
 * Creates a new memcpy node to copy to \p symbol and adds it to \p graph with
 * \p numDependencies dependencies specified via \p pDependencies.
 * It is possible for \p numDependencies to be 0, in which case the node will be placed
 * at the root of the graph. \p pDependencies may not have any duplicate entries.
 * A handle to the new node will be returned in \p pGraphNode.
 *
 * When the graph is launched, the node will copy \p count bytes from the memory area
 * pointed to by \p src to the memory area pointed to by \p offset bytes from the start
 * of symbol \p symbol. The memory areas may not overlap. \p symbol is a variable that
 * resides in global or constant memory space. \p kind can be either
 * ::cudaMemcpyHostToDevice, ::cudaMemcpyDeviceToDevice, or ::cudaMemcpyDefault.
 * Passing ::cudaMemcpyDefault is recommended, in which case the type of
 * transfer is inferred from the pointer values. However, ::cudaMemcpyDefault
 * is only allowed on systems that support unified virtual addressing.
 *
 * Memcpy nodes have some additional restrictions with regards to managed memory, if the
 * system contains at least one device which has a zero value for the device attribute
 * ::cudaDevAttrConcurrentManagedAccess.
 *
 * \param pGraphNode      - Returns newly created node
 * \param graph           - Graph to which to add the node
 * \param pDependencies   - Dependencies of the node
 * \param numDependencies - Number of dependencies
 * \param symbol          - Device symbol address
 * \param src             - Source memory address
 * \param count           - Size in bytes to copy
 * \param offset          - Offset from start of symbol in bytes
 * \param kind            - Type of transfer
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue
 * \note_graph_thread_safety
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * ::cudaMemcpyToSymbol,
 * ::cudaGraphAddMemcpyNode,
 * ::cudaGraphAddMemcpyNodeFromSymbol,
 * ::cudaGraphMemcpyNodeGetParams,
 * ::cudaGraphMemcpyNodeSetParams,
 * ::cudaGraphMemcpyNodeSetParamsToSymbol,
 * ::cudaGraphMemcpyNodeSetParamsFromSymbol,
 * ::cudaGraphCreate,
 * ::cudaGraphDestroyNode,
 * ::cudaGraphAddChildGraphNode,
 * ::cudaGraphAddEmptyNode,
 * ::cudaGraphAddKernelNode,
 * ::cudaGraphAddHostNode,
 * ::cudaGraphAddMemsetNode
 */
template<class T>
static __inline__ __host__ cudaError_t cudaGraphAddMemcpyNodeToSymbol(
    cudaGraphNode_t *pGraphNode,
    cudaGraph_t graph,
    const cudaGraphNode_t *pDependencies,
    size_t numDependencies,
    const T &symbol,
    const void* src,
    size_t count,
    size_t offset,
    enum cudaMemcpyKind kind)
{
  return ::cudaGraphAddMemcpyNodeToSymbol(pGraphNode, graph, pDependencies, numDependencies, (const void*)&symbol, src, count, offset, kind);
}

/**
 * \brief Creates a memcpy node to copy from a symbol on the device and adds it to a graph
 *
 * Creates a new memcpy node to copy from \p symbol and adds it to \p graph with
 * \p numDependencies dependencies specified via \p pDependencies.
 * It is possible for \p numDependencies to be 0, in which case the node will be placed
 * at the root of the graph. \p pDependencies may not have any duplicate entries.
 * A handle to the new node will be returned in \p pGraphNode.
 *
 * When the graph is launched, the node will copy \p count bytes from the memory area
 * pointed to by \p offset bytes from the start of symbol \p symbol to the memory area
 *  pointed to by \p dst. The memory areas may not overlap. \p symbol is a variable
 *  that resides in global or constant memory space. \p kind can be either
 * ::cudaMemcpyDeviceToHost, ::cudaMemcpyDeviceToDevice, or ::cudaMemcpyDefault.
 * Passing ::cudaMemcpyDefault is recommended, in which case the type of transfer
 * is inferred from the pointer values. However, ::cudaMemcpyDefault is only
 * allowed on systems that support unified virtual addressing.
 *
 * Memcpy nodes have some additional restrictions with regards to managed memory, if the
 * system contains at least one device which has a zero value for the device attribute
 * ::cudaDevAttrConcurrentManagedAccess.
 *
 * \param pGraphNode      - Returns newly created node
 * \param graph           - Graph to which to add the node
 * \param pDependencies   - Dependencies of the node
 * \param numDependencies - Number of dependencies
 * \param dst             - Destination memory address
 * \param symbol          - Device symbol address
 * \param count           - Size in bytes to copy
 * \param offset          - Offset from start of symbol in bytes
 * \param kind            - Type of transfer
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue
 * \note_graph_thread_safety
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * ::cudaMemcpyFromSymbol,
 * ::cudaGraphAddMemcpyNode,
 * ::cudaGraphAddMemcpyNodeToSymbol,
 * ::cudaGraphMemcpyNodeGetParams,
 * ::cudaGraphMemcpyNodeSetParams,
 * ::cudaGraphMemcpyNodeSetParamsFromSymbol,
 * ::cudaGraphMemcpyNodeSetParamsToSymbol,
 * ::cudaGraphCreate,
 * ::cudaGraphDestroyNode,
 * ::cudaGraphAddChildGraphNode,
 * ::cudaGraphAddEmptyNode,
 * ::cudaGraphAddKernelNode,
 * ::cudaGraphAddHostNode,
 * ::cudaGraphAddMemsetNode
 */
template<class T>
static __inline__ __host__ cudaError_t cudaGraphAddMemcpyNodeFromSymbol(
    cudaGraphNode_t* pGraphNode,
    cudaGraph_t graph,
    const cudaGraphNode_t* pDependencies,
    size_t numDependencies,
    void* dst,
    const T &symbol,
    size_t count,
    size_t offset,
    enum cudaMemcpyKind kind)
{
  return ::cudaGraphAddMemcpyNodeFromSymbol(pGraphNode, graph, pDependencies, numDependencies, dst, (const void*)&symbol, count, offset, kind);
}

/**
 * \brief Sets a memcpy node's parameters to copy to a symbol on the device
 *
 * Sets the parameters of memcpy node \p node to the copy described by the provided parameters.
 *
 * When the graph is launched, the node will copy \p count bytes from the memory area
 * pointed to by \p src to the memory area pointed to by \p offset bytes from the start
 * of symbol \p symbol. The memory areas may not overlap. \p symbol is a variable that
 * resides in global or constant memory space. \p kind can be either
 * ::cudaMemcpyHostToDevice, ::cudaMemcpyDeviceToDevice, or ::cudaMemcpyDefault.
 * Passing ::cudaMemcpyDefault is recommended, in which case the type of
 * transfer is inferred from the pointer values. However, ::cudaMemcpyDefault
 * is only allowed on systems that support unified virtual addressing.
 *
 * \param node            - Node to set the parameters for
 * \param symbol          - Device symbol address
 * \param src             - Source memory address
 * \param count           - Size in bytes to copy
 * \param offset          - Offset from start of symbol in bytes
 * \param kind            - Type of transfer
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue
 * \note_graph_thread_safety
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * ::cudaMemcpyToSymbol,
 * ::cudaGraphMemcpyNodeSetParams,
 * ::cudaGraphMemcpyNodeSetParamsFromSymbol,
 * ::cudaGraphAddMemcpyNode,
 * ::cudaGraphMemcpyNodeGetParams
 */
template<class T>
static __inline__ __host__ cudaError_t cudaGraphMemcpyNodeSetParamsToSymbol(
    cudaGraphNode_t node,
    const T &symbol,
    const void* src,
    size_t count,
    size_t offset,
    enum cudaMemcpyKind kind)
{
  return ::cudaGraphMemcpyNodeSetParamsToSymbol(node, (const void*)&symbol, src, count, offset, kind);
}

/**
 * \brief Sets a memcpy node's parameters to copy from a symbol on the device
 *
 * Sets the parameters of memcpy node \p node to the copy described by the provided parameters.
 *
 * When the graph is launched, the node will copy \p count bytes from the memory area
 * pointed to by \p offset bytes from the start of symbol \p symbol to the memory area
 *  pointed to by \p dst. The memory areas may not overlap. \p symbol is a variable
 *  that resides in global or constant memory space. \p kind can be either
 * ::cudaMemcpyDeviceToHost, ::cudaMemcpyDeviceToDevice, or ::cudaMemcpyDefault.
 * Passing ::cudaMemcpyDefault is recommended, in which case the type of transfer
 * is inferred from the pointer values. However, ::cudaMemcpyDefault is only
 * allowed on systems that support unified virtual addressing.
 *
 * \param node            - Node to set the parameters for
 * \param dst             - Destination memory address
 * \param symbol          - Device symbol address
 * \param count           - Size in bytes to copy
 * \param offset          - Offset from start of symbol in bytes
 * \param kind            - Type of transfer
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue
 * \note_graph_thread_safety
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * ::cudaMemcpyFromSymbol,
 * ::cudaGraphMemcpyNodeSetParams,
 * ::cudaGraphMemcpyNodeSetParamsToSymbol,
 * ::cudaGraphAddMemcpyNode,
 * ::cudaGraphMemcpyNodeGetParams
 */
template<class T>
static __inline__ __host__ cudaError_t cudaGraphMemcpyNodeSetParamsFromSymbol(
    cudaGraphNode_t node,
    void* dst,
    const T &symbol,
    size_t count,
    size_t offset,
    enum cudaMemcpyKind kind)
{
  return ::cudaGraphMemcpyNodeSetParamsFromSymbol(node, dst, (const void*)&symbol, count, offset, kind);
}

/**
 * \brief Sets the parameters for a memcpy node in the given graphExec to copy to a symbol on the device
 *
 * Updates the work represented by \p node in \p hGraphExec as though \p node had 
 * contained the given params at instantiation.  \p node must remain in the graph which was 
 * used to instantiate \p hGraphExec.  Changed edges to and from \p node are ignored.
 *
 * \p src and \p symbol must be allocated from the same contexts as the original source and
 * destination memory.  The instantiation-time memory operands must be 1-dimensional.
 * Zero-length operations are not supported.
 *
 * The modifications only affect future launches of \p hGraphExec.  Already enqueued 
 * or running launches of \p hGraphExec are not affected by this call.  \p node is also 
 * not modified by this call.
 *
 * Returns ::cudaErrorInvalidValue if the memory operands' mappings changed or
 * the original memory operands are multidimensional.
 *
 * \param hGraphExec      - The executable graph in which to set the specified node
 * \param node            - Memcpy node from the graph which was used to instantiate graphExec
 * \param symbol          - Device symbol address
 * \param src             - Source memory address
 * \param count           - Size in bytes to copy
 * \param offset          - Offset from start of symbol in bytes
 * \param kind            - Type of transfer
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue
 * \note_graph_thread_safety
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * ::cudaGraphAddMemcpyNode,
 * ::cudaGraphAddMemcpyNodeToSymbol,
 * ::cudaGraphMemcpyNodeSetParams,
 * ::cudaGraphMemcpyNodeSetParamsToSymbol,
 * ::cudaGraphInstantiate,
 * ::cudaGraphExecMemcpyNodeSetParams,
 * ::cudaGraphExecMemcpyNodeSetParamsFromSymbol,
 * ::cudaGraphExecKernelNodeSetParams,
 * ::cudaGraphExecMemsetNodeSetParams,
 * ::cudaGraphExecHostNodeSetParams
 */
template<class T>
static __inline__ __host__ cudaError_t cudaGraphExecMemcpyNodeSetParamsToSymbol(
    cudaGraphExec_t hGraphExec,
    cudaGraphNode_t node,
    const T &symbol,
    const void* src,
    size_t count,
    size_t offset,
    enum cudaMemcpyKind kind)
{
    return ::cudaGraphExecMemcpyNodeSetParamsToSymbol(hGraphExec, node, (const void*)&symbol, src, count, offset, kind);
}

/**
 * \brief Sets the parameters for a memcpy node in the given graphExec to copy from a symbol on the device
 *
 * Updates the work represented by \p node in \p hGraphExec as though \p node had 
 * contained the given params at instantiation.  \p node must remain in the graph which was 
 * used to instantiate \p hGraphExec.  Changed edges to and from \p node are ignored.
 *
 * \p symbol and \p dst must be allocated from the same contexts as the original source and
 * destination memory.  The instantiation-time memory operands must be 1-dimensional.
 * Zero-length operations are not supported.
 *
 * The modifications only affect future launches of \p hGraphExec.  Already enqueued 
 * or running launches of \p hGraphExec are not affected by this call.  \p node is also 
 * not modified by this call.
 *
 * Returns ::cudaErrorInvalidValue if the memory operands' mappings changed or
 * the original memory operands are multidimensional.
 *
 * \param hGraphExec      - The executable graph in which to set the specified node
 * \param node            - Memcpy node from the graph which was used to instantiate graphExec
 * \param dst             - Destination memory address
 * \param symbol          - Device symbol address
 * \param count           - Size in bytes to copy
 * \param offset          - Offset from start of symbol in bytes
 * \param kind            - Type of transfer
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue
 * \note_graph_thread_safety
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * ::cudaGraphAddMemcpyNode,
 * ::cudaGraphAddMemcpyNodeFromSymbol,
 * ::cudaGraphMemcpyNodeSetParams,
 * ::cudaGraphMemcpyNodeSetParamsFromSymbol,
 * ::cudaGraphInstantiate,
 * ::cudaGraphExecMemcpyNodeSetParams,
 * ::cudaGraphExecMemcpyNodeSetParamsToSymbol,
 * ::cudaGraphExecKernelNodeSetParams,
 * ::cudaGraphExecMemsetNodeSetParams,
 * ::cudaGraphExecHostNodeSetParams
 */
template<class T>
static __inline__ __host__ cudaError_t cudaGraphExecMemcpyNodeSetParamsFromSymbol(
    cudaGraphExec_t hGraphExec,
    cudaGraphNode_t node,
    void* dst,
    const T &symbol,
    size_t count,
    size_t offset,
    enum cudaMemcpyKind kind)
{
  return ::cudaGraphExecMemcpyNodeSetParamsFromSymbol(hGraphExec, node, dst, (const void*)&symbol, count, offset, kind);
}

// convenience function to avoid source breakage in c++ code
static __inline__ __host__ cudaError_t CUDARTAPI cudaGraphExecUpdate(cudaGraphExec_t hGraphExec, cudaGraph_t hGraph, cudaGraphNode_t *hErrorNode_out, enum cudaGraphExecUpdateResult *updateResult_out)
{
    cudaGraphExecUpdateResultInfo resultInfo;
    cudaError_t status = cudaGraphExecUpdate(hGraphExec, hGraph, &resultInfo);
    if (hErrorNode_out) {
        *hErrorNode_out = resultInfo.errorNode;
    }
    if (updateResult_out) {
        *updateResult_out = resultInfo.result;
    }
    return status;
}

#if __cplusplus >= 201103L || (defined(_MSC_VER) && (_MSC_VER >= 1900))

/**
 * \brief Creates a user object by wrapping a C++ object
 *
 * TODO detail
 *
 * \param object_out      - Location to return the user object handle
 * \param objectToWrap    - This becomes the \ptr argument to ::cudaUserObjectCreate. A
 *                          lambda will be passed for the \p destroy argument, which calls
 *                          delete on this object pointer.
 * \param initialRefcount - The initial refcount to create the object with, typically 1. The
 *                          initial references are owned by the calling thread.
 * \param flags           - Currently it is required to pass cudaUserObjectNoDestructorSync,
 *                          which is the only defined flag. This indicates that the destroy
 *                          callback cannot be waited on by any CUDA API. Users requiring
 *                          synchronization of the callback should signal its completion
 *                          manually.
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue
 *
 * \sa
 * ::cudaUserObjectCreate
 */
template<class T>
static __inline__ __host__ cudaError_t cudaUserObjectCreate(
    cudaUserObject_t *object_out,
    T *objectToWrap,
    unsigned int initialRefcount,
    unsigned int flags)
{
    return ::cudaUserObjectCreate(
            object_out,
            objectToWrap,
            [](void *vpObj) { delete reinterpret_cast<T *>(vpObj); },
            initialRefcount,
            flags);
}

template<class T>
static __inline__ __host__ cudaError_t cudaUserObjectCreate(
    cudaUserObject_t *object_out,
    T *objectToWrap,
    unsigned int initialRefcount,
    cudaUserObjectFlags flags)
{
    return cudaUserObjectCreate(object_out, objectToWrap, initialRefcount, (unsigned int)flags);
}

#endif

/**
 * \brief \hl Finds the address associated with a CUDA symbol
 *
 * Returns in \p *devPtr the address of symbol \p symbol on the device.
 * \p symbol can either be a variable that resides in global or constant memory space.
 * If \p symbol cannot be found, or if \p symbol is not declared
 * in the global or constant memory space, \p *devPtr is unchanged and the error
 * ::cudaErrorInvalidSymbol is returned.
 *
 * \param devPtr - Return device pointer associated with symbol
 * \param symbol - Device symbol reference
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidSymbol,
 * ::cudaErrorNoKernelImageForDevice
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa \ref ::cudaGetSymbolAddress(void**, const void*) "cudaGetSymbolAddress (C API)",
 * \ref ::cudaGetSymbolSize(size_t*, const T&) "cudaGetSymbolSize (C++ API)"
 */
template<class T>
static __inline__ __host__ cudaError_t cudaGetSymbolAddress(
        void **devPtr,
  const T     &symbol
)
{
  return ::cudaGetSymbolAddress(devPtr, (const void*)&symbol);
}

/**
 * \brief \hl Finds the size of the object associated with a CUDA symbol
 *
 * Returns in \p *size the size of symbol \p symbol. \p symbol must be a
 * variable that resides in global or constant memory space.
 * If \p symbol cannot be found, or if \p symbol is not declared
 * in global or constant memory space, \p *size is unchanged and the error
 * ::cudaErrorInvalidSymbol is returned.
 *
 * \param size   - Size of object associated with symbol
 * \param symbol - Device symbol reference
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidSymbol,
 * ::cudaErrorNoKernelImageForDevice
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa \ref ::cudaGetSymbolAddress(void**, const T&) "cudaGetSymbolAddress (C++ API)",
 * \ref ::cudaGetSymbolSize(size_t*, const void*) "cudaGetSymbolSize (C API)"
 */
template<class T>
static __inline__ __host__ cudaError_t cudaGetSymbolSize(
        size_t *size,
  const T      &symbol
)
{
  return ::cudaGetSymbolSize(size, (const void*)&symbol);
}

/**
 * \brief \hl Sets the preferred cache configuration for a device function
 *
 * On devices where the L1 cache and shared memory use the same hardware
 * resources, this sets through \p cacheConfig the preferred cache configuration
 * for the function specified via \p func. This is only a preference. The
 * runtime will use the requested configuration if possible, but it is free to
 * choose a different configuration if required to execute \p func.
 *
 * \p func must be a pointer to a function that executes on the device.
 * The parameter specified by \p func must be declared as a \p __global__
 * function. If the specified function does not exist,
 * then ::cudaErrorInvalidDeviceFunction is returned.
 *
 * This setting does nothing on devices where the size of the L1 cache and
 * shared memory are fixed.
 *
 * Launching a kernel with a different preference than the most recent
 * preference setting may insert a device-side synchronization point.
 *
 * The supported cache configurations are:
 * - ::cudaFuncCachePreferNone: no preference for shared memory or L1 (default)
 * - ::cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache
 * - ::cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory
 *
 * \param func        - device function pointer
 * \param cacheConfig - Requested cache configuration
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDeviceFunction
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \ref ::cudaLaunchKernel(const T *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream) "cudaLaunchKernel (C++ API)",
 * \ref ::cudaFuncSetCacheConfig(const void*, enum cudaFuncCache) "cudaFuncSetCacheConfig (C API)",
 * \ref ::cudaFuncGetAttributes(struct cudaFuncAttributes*, T*) "cudaFuncGetAttributes (C++ API)",
 * ::cudaSetDoubleForDevice,
 * ::cudaSetDoubleForHost,
 * ::cudaThreadGetCacheConfig,
 * ::cudaThreadSetCacheConfig
 */
template<class T>
static __inline__ __host__ cudaError_t cudaFuncSetCacheConfig(
  T                  *func,
  enum cudaFuncCache  cacheConfig
)
{
  return ::cudaFuncSetCacheConfig((const void*)func, cacheConfig);
}

template<class T>
static __inline__ 
__CUDA_DEPRECATED 
__host__ cudaError_t cudaFuncSetSharedMemConfig(
  T                        *func,
  enum cudaSharedMemConfig  config
)
{
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#elif defined(_MSC_VER)
#pragma warning(suppress: 4996)    
#endif
  return ::cudaFuncSetSharedMemConfig((const void*)func, config);
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}

#endif // __CUDACC__

/**
 * \brief Returns occupancy for a device function
 *
 * Returns in \p *numBlocks the maximum number of active blocks per
 * streaming multiprocessor for the device function.
 *
 * \param numBlocks       - Returned occupancy
 * \param func            - Kernel function for which occupancy is calulated
 * \param blockSize       - Block size the kernel is intended to be launched with
 * \param dynamicSMemSize - Per-block dynamic shared memory usage intended, in bytes
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDevice,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorUnknown,
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
 * \sa ::cudaOccupancyMaxPotentialBlockSize
 * \sa ::cudaOccupancyMaxPotentialBlockSizeWithFlags
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMem
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
 * \sa ::cudaOccupancyAvailableDynamicSMemPerBlock
 */
template<class T>
static __inline__ __host__ cudaError_t cudaOccupancyMaxActiveBlocksPerMultiprocessor(
    int   *numBlocks,
    T      func,
    int    blockSize,
    size_t dynamicSMemSize)
{
    return ::cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(numBlocks, (const void*)func, blockSize, dynamicSMemSize, cudaOccupancyDefault);
}

/**
 * \brief Returns occupancy for a device function with the specified flags
 *
 * Returns in \p *numBlocks the maximum number of active blocks per
 * streaming multiprocessor for the device function.
 *
 * The \p flags parameter controls how special cases are handled. Valid flags include:
 *
 * - ::cudaOccupancyDefault: keeps the default behavior as
 *   ::cudaOccupancyMaxActiveBlocksPerMultiprocessor
 *
 * - ::cudaOccupancyDisableCachingOverride: suppresses the default behavior
 *   on platform where global caching affects occupancy. On such platforms, if caching
 *   is enabled, but per-block SM resource usage would result in zero occupancy, the
 *   occupancy calculator will calculate the occupancy as if caching is disabled.
 *   Setting this flag makes the occupancy calculator to return 0 in such cases.
 *   More information can be found about this feature in the "Unified L1/Texture Cache"
 *   section of the Maxwell tuning guide.
 *
 * \param numBlocks       - Returned occupancy
 * \param func            - Kernel function for which occupancy is calulated
 * \param blockSize       - Block size the kernel is intended to be launched with
 * \param dynamicSMemSize - Per-block dynamic shared memory usage intended, in bytes
 * \param flags           - Requested behavior for the occupancy calculator
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDevice,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorUnknown,
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessor
 * \sa ::cudaOccupancyMaxPotentialBlockSize
 * \sa ::cudaOccupancyMaxPotentialBlockSizeWithFlags
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMem
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
 * \sa ::cudaOccupancyAvailableDynamicSMemPerBlock
 */
template<class T>
static __inline__ __host__ cudaError_t cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(
    int         *numBlocks,
    T            func,
    int          blockSize,
    size_t       dynamicSMemSize,
    unsigned int flags)
{
    return ::cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(numBlocks, (const void*)func, blockSize, dynamicSMemSize, flags);
}

/**
 * Helper functor for cudaOccupancyMaxPotentialBlockSize
 */
class __cudaOccupancyB2DHelper {
  size_t n;
public:
  inline __host__ CUDART_DEVICE __cudaOccupancyB2DHelper(size_t n_) : n(n_) {}
  inline __host__ CUDART_DEVICE size_t operator()(int)
  {
      return n;
  }
};

/**
 * \brief Returns grid and block size that achieves maximum potential occupancy for a device function
 *
 * Returns in \p *minGridSize and \p *blocksize a suggested grid /
 * block size pair that achieves the best potential occupancy
 * (i.e. the maximum number of active warps with the smallest number
 * of blocks).
 *
 * The \p flags parameter controls how special cases are handled. Valid flags include:
 *
 * - ::cudaOccupancyDefault: keeps the default behavior as
 *   ::cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
 *
 * - ::cudaOccupancyDisableCachingOverride: This flag suppresses the default behavior
 *   on platform where global caching affects occupancy. On such platforms, if caching
 *   is enabled, but per-block SM resource usage would result in zero occupancy, the
 *   occupancy calculator will calculate the occupancy as if caching is disabled.
 *   Setting this flag makes the occupancy calculator to return 0 in such cases.
 *   More information can be found about this feature in the "Unified L1/Texture Cache"
 *   section of the Maxwell tuning guide.
 *
 * \param minGridSize - Returned minimum grid size needed to achieve the best potential occupancy
 * \param blockSize   - Returned block size
 * \param func        - Device function symbol
 * \param blockSizeToDynamicSMemSize - A unary function / functor that takes block size, and returns the size, in bytes, of dynamic shared memory needed for a block
 * \param blockSizeLimit  - The maximum block size \p func is designed to work with. 0 means no limit.
 * \param flags       - Requested behavior for the occupancy calculator
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDevice,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorUnknown,
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMem
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessor
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
 * \sa ::cudaOccupancyMaxPotentialBlockSize
 * \sa ::cudaOccupancyMaxPotentialBlockSizeWithFlags
 * \sa ::cudaOccupancyAvailableDynamicSMemPerBlock
 */

template<typename UnaryFunction, class T>
static __inline__ __host__ CUDART_DEVICE cudaError_t cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags(
    int           *minGridSize,
    int           *blockSize,
    T              func,
    UnaryFunction  blockSizeToDynamicSMemSize,
    int            blockSizeLimit = 0,
    unsigned int   flags = 0)
{
    cudaError_t status;

    // Device and function properties
    int                       device;
    struct cudaFuncAttributes attr;

    // Limits
    int maxThreadsPerMultiProcessor;
    int warpSize;
    int devMaxThreadsPerBlock;
    int multiProcessorCount;
    int funcMaxThreadsPerBlock;
    int occupancyLimit;
    int granularity;

    // Recorded maximum
    int maxBlockSize = 0;
    int numBlocks    = 0;
    int maxOccupancy = 0;

    // Temporary
    int blockSizeToTryAligned;
    int blockSizeToTry;
    int blockSizeLimitAligned;
    int occupancyInBlocks;
    int occupancyInThreads;
    size_t dynamicSMemSize;

    ///////////////////////////
    // Check user input
    ///////////////////////////

    if (!minGridSize || !blockSize || !func) {
        return cudaErrorInvalidValue;
    }

    //////////////////////////////////////////////
    // Obtain device and function properties
    //////////////////////////////////////////////

    status = ::cudaGetDevice(&device);
    if (status != cudaSuccess) {
        return status;
    }

    status = cudaDeviceGetAttribute(
        &maxThreadsPerMultiProcessor,
        cudaDevAttrMaxThreadsPerMultiProcessor,
        device);
    if (status != cudaSuccess) {
        return status;
    }

    status = cudaDeviceGetAttribute(
        &warpSize,
        cudaDevAttrWarpSize,
        device);
    if (status != cudaSuccess) {
        return status;
    }

    status = cudaDeviceGetAttribute(
        &devMaxThreadsPerBlock,
        cudaDevAttrMaxThreadsPerBlock,
        device);
    if (status != cudaSuccess) {
        return status;
    }

    status = cudaDeviceGetAttribute(
        &multiProcessorCount,
        cudaDevAttrMultiProcessorCount,
        device);
    if (status != cudaSuccess) {
        return status;
    }

    status = cudaFuncGetAttributes(&attr, func);
    if (status != cudaSuccess) {
        return status;
    }
    
    funcMaxThreadsPerBlock = attr.maxThreadsPerBlock;

    /////////////////////////////////////////////////////////////////////////////////
    // Try each block size, and pick the block size with maximum occupancy
    /////////////////////////////////////////////////////////////////////////////////

    occupancyLimit = maxThreadsPerMultiProcessor;
    granularity    = warpSize;

    if (blockSizeLimit == 0) {
        blockSizeLimit = devMaxThreadsPerBlock;
    }

    if (devMaxThreadsPerBlock < blockSizeLimit) {
        blockSizeLimit = devMaxThreadsPerBlock;
    }

    if (funcMaxThreadsPerBlock < blockSizeLimit) {
        blockSizeLimit = funcMaxThreadsPerBlock;
    }

    blockSizeLimitAligned = ((blockSizeLimit + (granularity - 1)) / granularity) * granularity;

    for (blockSizeToTryAligned = blockSizeLimitAligned; blockSizeToTryAligned > 0; blockSizeToTryAligned -= granularity) {
        // This is needed for the first iteration, because
        // blockSizeLimitAligned could be greater than blockSizeLimit
        //
        if (blockSizeLimit < blockSizeToTryAligned) {
            blockSizeToTry = blockSizeLimit;
        } else {
            blockSizeToTry = blockSizeToTryAligned;
        }
        
        dynamicSMemSize = blockSizeToDynamicSMemSize(blockSizeToTry);

        status = cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(
            &occupancyInBlocks,
            func,
            blockSizeToTry,
            dynamicSMemSize,
            flags);

        if (status != cudaSuccess) {
            return status;
        }

        occupancyInThreads = blockSizeToTry * occupancyInBlocks;

        if (occupancyInThreads > maxOccupancy) {
            maxBlockSize = blockSizeToTry;
            numBlocks    = occupancyInBlocks;
            maxOccupancy = occupancyInThreads;
        }

        // Early out if we have reached the maximum
        //
        if (occupancyLimit == maxOccupancy) {
            break;
        }
    }

    ///////////////////////////
    // Return best available
    ///////////////////////////

    // Suggested min grid size to achieve a full machine launch
    //
    *minGridSize = numBlocks * multiProcessorCount;
    *blockSize = maxBlockSize;

    return status;
}

/**
 * \brief Returns grid and block size that achieves maximum potential occupancy for a device function
 *
 * Returns in \p *minGridSize and \p *blocksize a suggested grid /
 * block size pair that achieves the best potential occupancy
 * (i.e. the maximum number of active warps with the smallest number
 * of blocks).
 *
 * \param minGridSize - Returned minimum grid size needed to achieve the best potential occupancy
 * \param blockSize   - Returned block size
 * \param func        - Device function symbol
 * \param blockSizeToDynamicSMemSize - A unary function / functor that takes block size, and returns the size, in bytes, of dynamic shared memory needed for a block
 * \param blockSizeLimit  - The maximum block size \p func is designed to work with. 0 means no limit.
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDevice,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorUnknown,
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessor
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
 * \sa ::cudaOccupancyMaxPotentialBlockSize
 * \sa ::cudaOccupancyMaxPotentialBlockSizeWithFlags
 * \sa ::cudaOccupancyAvailableDynamicSMemPerBlock
 */

template<typename UnaryFunction, class T>
static __inline__ __host__ CUDART_DEVICE cudaError_t cudaOccupancyMaxPotentialBlockSizeVariableSMem(
    int           *minGridSize,
    int           *blockSize,
    T              func,
    UnaryFunction  blockSizeToDynamicSMemSize,
    int            blockSizeLimit = 0)
{
    return cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags(minGridSize, blockSize, func, blockSizeToDynamicSMemSize, blockSizeLimit, cudaOccupancyDefault);
}

/**
 * \brief Returns grid and block size that achieves maximum potential occupancy for a device function
 *
 * Returns in \p *minGridSize and \p *blocksize a suggested grid /
 * block size pair that achieves the best potential occupancy
 * (i.e. the maximum number of active warps with the smallest number
 * of blocks).
 *
 * Use \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMem if the
 * amount of per-block dynamic shared memory changes with different
 * block sizes.
 *
 * \param minGridSize - Returned minimum grid size needed to achieve the best potential occupancy
 * \param blockSize   - Returned block size
 * \param func        - Device function symbol
 * \param dynamicSMemSize - Per-block dynamic shared memory usage intended, in bytes
 * \param blockSizeLimit  - The maximum block size \p func is designed to work with. 0 means no limit.
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDevice,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorUnknown,
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaOccupancyMaxPotentialBlockSizeWithFlags
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessor
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMem
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
 * \sa ::cudaOccupancyAvailableDynamicSMemPerBlock
 */
template<class T>
static __inline__ __host__ CUDART_DEVICE cudaError_t cudaOccupancyMaxPotentialBlockSize(
    int    *minGridSize,
    int    *blockSize,
    T       func,
    size_t  dynamicSMemSize = 0,
    int     blockSizeLimit = 0)
{
  return cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags(minGridSize, blockSize, func, __cudaOccupancyB2DHelper(dynamicSMemSize), blockSizeLimit, cudaOccupancyDefault);
}

/**
 * \brief Returns dynamic shared memory available per block when launching \p numBlocks blocks on SM.
 *
 * Returns in \p *dynamicSmemSize the maximum size of dynamic shared memory to allow \p numBlocks blocks per SM. 
 *
 * \param dynamicSmemSize - Returned maximum dynamic shared memory 
 * \param func            - Kernel function for which occupancy is calculated
 * \param numBlocks       - Number of blocks to fit on SM 
 * \param blockSize       - Size of the block
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDevice,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorUnknown,
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaOccupancyMaxPotentialBlockSize
 * \sa ::cudaOccupancyMaxPotentialBlockSizeWithFlags
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessor
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMem
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
 */
template<class T>
static __inline__ __host__ cudaError_t cudaOccupancyAvailableDynamicSMemPerBlock(
    size_t *dynamicSmemSize,
    T      func,
    int    numBlocks,
    int    blockSize)
{
    return ::cudaOccupancyAvailableDynamicSMemPerBlock(dynamicSmemSize, (const void*)func, numBlocks, blockSize);
}

/**
 * \brief Returns grid and block size that achived maximum potential occupancy for a device function with the specified flags
 *
 * Returns in \p *minGridSize and \p *blocksize a suggested grid /
 * block size pair that achieves the best potential occupancy
 * (i.e. the maximum number of active warps with the smallest number
 * of blocks).
 *
 * The \p flags parameter controls how special cases are handle. Valid flags include:
 *
 * - ::cudaOccupancyDefault: keeps the default behavior as
 *   ::cudaOccupancyMaxPotentialBlockSize
 *
 * - ::cudaOccupancyDisableCachingOverride: This flag suppresses the default behavior
 *   on platform where global caching affects occupancy. On such platforms, if caching
 *   is enabled, but per-block SM resource usage would result in zero occupancy, the
 *   occupancy calculator will calculate the occupancy as if caching is disabled.
 *   Setting this flag makes the occupancy calculator to return 0 in such cases.
 *   More information can be found about this feature in the "Unified L1/Texture Cache"
 *   section of the Maxwell tuning guide.
 *
 * Use \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMem if the
 * amount of per-block dynamic shared memory changes with different
 * block sizes.
 *
 * \param minGridSize - Returned minimum grid size needed to achieve the best potential occupancy
 * \param blockSize   - Returned block size
 * \param func        - Device function symbol
 * \param dynamicSMemSize - Per-block dynamic shared memory usage intended, in bytes
 * \param blockSizeLimit  - The maximum block size \p func is designed to work with. 0 means no limit.
 * \param flags       - Requested behavior for the occupancy calculator
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDevice,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorUnknown,
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa ::cudaOccupancyMaxPotentialBlockSize
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessor
 * \sa ::cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMem
 * \sa ::cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
 * \sa ::cudaOccupancyAvailableDynamicSMemPerBlock
 */
template<class T>
static __inline__ __host__ CUDART_DEVICE cudaError_t cudaOccupancyMaxPotentialBlockSizeWithFlags(
    int    *minGridSize,
    int    *blockSize,
    T      func,
    size_t dynamicSMemSize = 0,
    int    blockSizeLimit = 0,
    unsigned int flags = 0)
{
    return cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags(minGridSize, blockSize, func, __cudaOccupancyB2DHelper(dynamicSMemSize), blockSizeLimit, flags);
}

/**
 * \brief Given the kernel function (\p func) and launch configuration
 * (\p config), return the maximum cluster size in \p *clusterSize.
 *
 * The cluster dimensions in \p config are ignored. If func has a required
 * cluster size set (see ::cudaFuncGetAttributes),\p *clusterSize will reflect 
 * the required cluster size.
 *
 * By default this function will always return a value that's portable on
 * future hardware. A higher value may be returned if the kernel function
 * allows non-portable cluster sizes.
 *
 * This function will respect the compile time launch bounds.
 *
 * \param clusterSize - Returned maximum cluster size that can be launched
 *                      for the given kernel function and launch configuration
 * \param func        - Kernel function for which maximum cluster
 *                      size is calculated
 * \param config      - Launch configuration for the given kernel function
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorUnknown,
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * ::cudaFuncGetAttributes
 */
template<class T>
static __inline__ __host__ cudaError_t cudaOccupancyMaxPotentialClusterSize(
    int *clusterSize,
    T *func,
    const cudaLaunchConfig_t *config)
{
    return ::cudaOccupancyMaxPotentialClusterSize(clusterSize, (const void*)func, config);
}

/**
 * \brief Given the kernel function (\p func) and launch configuration
 * (\p config), return the maximum number of clusters that could co-exist
 * on the target device in \p *numClusters.
 *
 * If the function has required cluster size already set (see
 * ::cudaFuncGetAttributes), the cluster size from config must either be
 * unspecified or match the required size.
 * Without required sizes, the cluster size must be specified in config,
 * else the function will return an error.
 *
 * Note that various attributes of the kernel function may affect occupancy
 * calculation. Runtime environment may affect how the hardware schedules
 * the clusters, so the calculated occupancy is not guaranteed to be achievable.
 *
 * \param numClusters - Returned maximum number of clusters that
 *                      could co-exist on the target device
 * \param func        - Kernel function for which maximum number
 *                      of clusters are calculated
 * \param config      - Launch configuration for the given kernel function
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorInvalidClusterSize,
 * ::cudaErrorUnknown,
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \sa
 * ::cudaFuncGetAttributes
 */
template<class T>
static __inline__ __host__ cudaError_t cudaOccupancyMaxActiveClusters(
    int *numClusters,
    T *func,
    const cudaLaunchConfig_t *config)
{
    return ::cudaOccupancyMaxActiveClusters(numClusters, (const void*)func, config);
}

#if defined __CUDACC__

/**
 * \brief \hl Find out attributes for a given function
 *
 * This function obtains the attributes of a function specified via \p entry.
 * The parameter \p entry must be a pointer to a function that executes
 * on the device. The parameter specified by \p entry must be declared as a \p __global__
 * function. The fetched attributes are placed in \p attr. If the specified
 * function does not exist, then ::cudaErrorInvalidDeviceFunction is returned.
 *
 * Note that some function attributes such as
 * \ref ::cudaFuncAttributes::maxThreadsPerBlock "maxThreadsPerBlock"
 * may vary based on the device that is currently being used.
 *
 * \param attr  - Return pointer to function's attributes
 * \param entry - Function to get attributes of
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDeviceFunction
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \ref ::cudaLaunchKernel(const T *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream) "cudaLaunchKernel (C++ API)",
 * \ref ::cudaFuncSetCacheConfig(T*, enum cudaFuncCache) "cudaFuncSetCacheConfig (C++ API)",
 * \ref ::cudaFuncGetAttributes(struct cudaFuncAttributes*, const void*) "cudaFuncGetAttributes (C API)",
 * ::cudaSetDoubleForDevice,
 * ::cudaSetDoubleForHost
 */
template<class T>
static __inline__ __host__ cudaError_t cudaFuncGetAttributes(
  struct cudaFuncAttributes *attr,
  T                         *entry
)
{
  return ::cudaFuncGetAttributes(attr, (const void*)entry);
}

/**
 * \brief \hl Set attributes for a given function
 *
 * This function sets the attributes of a function specified via \p entry.
 * The parameter \p entry must be a pointer to a function that executes
 * on the device. The parameter specified by \p entry must be declared as a \p __global__
 * function. The enumeration defined by \p attr is set to the value defined by \p value.
 * If the specified function does not exist, then ::cudaErrorInvalidDeviceFunction is returned.
 * If the specified attribute cannot be written, or if the value is incorrect, 
 * then ::cudaErrorInvalidValue is returned.
 *
 * Valid values for \p attr are:
 * - ::cudaFuncAttributeMaxDynamicSharedMemorySize - The requested maximum size in bytes of dynamically-allocated shared memory. The sum of this value and the function attribute ::sharedSizeBytes
 *   cannot exceed the device attribute ::cudaDevAttrMaxSharedMemoryPerBlockOptin. The maximal size of requestable dynamic shared memory may differ by GPU architecture.
 * - ::cudaFuncAttributePreferredSharedMemoryCarveout - On devices where the L1 cache and shared memory use the same hardware resources, 
 *   this sets the shared memory carveout preference, in percent of the total shared memory. See ::cudaDevAttrMaxSharedMemoryPerMultiprocessor.
 *   This is only a hint, and the driver can choose a different ratio if required to execute the function.
 * - ::cudaFuncAttributeRequiredClusterWidth: The required cluster width in
 *   blocks. The width, height, and depth values must either all be 0 or all be
 *   positive. The validity of the cluster dimensions is checked at launch time.
 *   If the value is set during compile time, it cannot be set at runtime.
 *   Setting it at runtime will return cudaErrorNotPermitted.
 * - ::cudaFuncAttributeRequiredClusterHeight: The required cluster height in
 *   blocks. The width, height, and depth values must either all be 0 or all be
 *   positive. The validity of the cluster dimensions is checked at launch time.
 *   If the value is set during compile time, it cannot be set at runtime.
 *   Setting it at runtime will return cudaErrorNotPermitted.
 * - ::cudaFuncAttributeRequiredClusterDepth: The required cluster depth in
 *   blocks. The width, height, and depth values must either all be 0 or all be
 *   positive. The validity of the cluster dimensions is checked at launch time.
 *   If the value is set during compile time, it cannot be set at runtime.
 *   Setting it at runtime will return cudaErrorNotPermitted.
 * - ::cudaFuncAttributeClusterSchedulingPolicyPreference: The block
 *   scheduling policy of a function. The value type is cudaClusterSchedulingPolicy.
 *
 * \param entry - Function to get attributes of
 * \param attr  - Attribute to set
 * \param value - Value to set
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidDeviceFunction,
 * ::cudaErrorInvalidValue
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \ref ::cudaLaunchKernel(const T *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream) "cudaLaunchKernel (C++ API)",
 * \ref ::cudaFuncSetCacheConfig(T*, enum cudaFuncCache) "cudaFuncSetCacheConfig (C++ API)",
 * \ref ::cudaFuncGetAttributes(struct cudaFuncAttributes*, const void*) "cudaFuncGetAttributes (C API)",
 * ::cudaSetDoubleForDevice,
 * ::cudaSetDoubleForHost
 */
template<class T>
static __inline__ __host__ cudaError_t cudaFuncSetAttribute(
  T                         *entry,
  enum cudaFuncAttribute    attr,
  int                       value
)
{
  return ::cudaFuncSetAttribute((const void*)entry, attr, value);
}

/**
 * \brief Returns the function name for a device entry function pointer.
 *
 * Returns in \p **name the function name associated with the symbol \p func .
 * The function name is returned as a null-terminated string. This API may
 * return a mangled name if the function is not declared as having C linkage.
 * If \p **name is NULL, ::cudaErrorInvalidValue is returned. If \p func is
 * not a device entry function, ::cudaErrorInvalidDeviceFunction is returned.
 *
 * \param name - The returned name of the function
 * \param func - The function pointer to retrieve name for
 *
 * \return
 * ::cudaSuccess,
 * ::cudaErrorInvalidValue,
 * ::cudaErrorInvalidDeviceFunction
 * \notefnerr
 * \note_init_rt
 * \note_callback
 *
 * \ref ::cudaFuncGetName(const char **name, const void *func) "cudaFuncGetName (C API)"
 */
template<class T>
static __inline__ __host__ cudaError_t CUDARTAPI cudaFuncGetName(
  const char **name,
  const T *func
)
{
  return ::cudaFuncGetName(name, (const void *)func);
}

/**
 * \brief Get pointer to device kernel that matches entry function \p entryFuncAddr
  *
  * Returns in \p kernelPtr the device kernel corresponding to the entry function \p entryFuncAddr.
  *
  * \param kernelPtr          - Returns the device kernel
  * \param entryFuncAddr      - Address of device entry function to search kernel for
  *
  * \return
  * ::cudaSuccess
  *
  * \sa
  * \ref ::cudaGetKernel(cudaKernel_t *kernelPtr, const void *entryFuncAddr) "cudaGetKernel (C API)"
  */
template<class T>
static  __inline__ __host__ cudaError_t cudaGetKernel(
  cudaKernel_t *kernelPtr,
  const T *entryFuncAddr
)
{
  return ::cudaGetKernel(kernelPtr, (const void *)entryFuncAddr);
}

#endif /* __CUDACC__ */

/** @} */ /* END CUDART_HIGHLEVEL */

#endif /* __cplusplus && !__CUDACC_RTC__ */

#if !defined(__CUDACC_RTC__)
#if defined(__GNUC__)
#if defined(__clang__) || (!defined(__PGIC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
#pragma GCC diagnostic pop
#endif
#elif defined(_MSC_VER)
#pragma warning(pop)
#endif
#endif

#undef EXCLUDE_FROM_RTC
#undef __CUDA_DEPRECATED

#if defined(__UNDEF_CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS_CUDA_RUNTIME_H__)
#undef __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
#undef __UNDEF_CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS_CUDA_RUNTIME_H__
#endif

#endif /* !__CUDA_RUNTIME_H__ */