File: sharedBankConflicts.cu

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (281 lines) | stat: -rw-r--r-- 10,229 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*
 * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
 
/* Sample CUDA application for shared memory bank conflicts.
 * Transposes a N x N square matrix of float elements in
 * global memory and generates an output matrix in global memory.
 *
 */

#include <stdio.h>
#include <cuda_runtime_api.h>

#define DEFAULT_KERNEL_OPTION 1
#define DEFAULT_MATRIX_SIZE   512

#define RUNTIME_API_CALL(apiFuncCall)                                                          \
   do                                                                                          \
   {                                                                                           \
       cudaError_t _status = apiFuncCall;                                                      \
       if (_status != cudaSuccess)                                                             \
       {                                                                                       \
           fprintf(stderr, "%s:%d: error: function %s failed with error %s.\n", __FILE__,      \
                   __LINE__, #apiFuncCall, cudaGetErrorString(_status));                       \
           exit(EXIT_FAILURE);                                                                 \
       }                                                                                       \
   } while (0)

#define PRINT_PROGRAM_USAGE()                                                                  \
   fprintf(stderr, "Usage: %s [<kernel option>] [<matrix size>] [<cache config option>]\n"     \
                   "    Default kernel option: %d\n"                                           \
                   "        Use 1 for '%s' and 2 for '%s'\n"                                   \
                   "    Default matrix size: %d\n"                                             \
                   "        Matrix size should be greater than or equal to tile size: %d and"  \
                   " must be an integral multiple of tile size.\n"                             \
                   "    Default cache config option: none\n"                                   \
                   "        Options: none|shared|l1|equal\n",                                  \
           argv[0], DEFAULT_KERNEL_OPTION,                                                     \
           "transposeCoalesced", "transposeNoBankConflicts",                                   \
           DEFAULT_MATRIX_SIZE, TILE_DIM)

// Each block transposes a tile of (TILE_DIM x TILE_DIM) elements
// using TILE_DIM x BLOCK_ROWS threads, 
// so that each thread transposes (TILE_DIM / BLOCK_ROWS) elements.  
// TILE_DIM must be an integral multiple of BLOCK_ROWS
#define TILE_DIM   32
#define BLOCK_ROWS 8

// Coalesced global memory transpose with shared memory bank conflicts
__global__ void transposeCoalesced(float* odata, float* idata, int width, int height)
{
   __shared__ float tile[TILE_DIM][TILE_DIM];

   int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
   int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
   int indexIn = xIndex + yIndex*width;

   xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
   yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
   int indexOut = xIndex + yIndex*height;

   for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS)
   {
       tile[threadIdx.y + i][threadIdx.x] = idata[indexIn + i * width];
   }

   __syncthreads();

   for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS)
   {
       odata[indexOut + i * height] = tile[threadIdx.x][threadIdx.y + i];
   }
}

// Coalesced global memory transpose with no shared memory bank conflicts
__global__ void transposeNoBankConflicts(float* odata, float* idata, int width, int height)
{
   __shared__ float tile[TILE_DIM][TILE_DIM + 1];

   int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
   int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
   int indexIn = xIndex + yIndex*width;

   xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
   yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
   int indexOut = xIndex + yIndex*height;

   for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS)
   {
       tile[threadIdx.y + i][threadIdx.x] = idata[indexIn + i * width];
   }

   __syncthreads();

   for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS)
   {
       odata[indexOut + i * height] = tile[threadIdx.x][threadIdx.y + i];
   }
}

void computeTransposeGold(float* gold, float* idata, const int size_x, const int size_y)
{
   for (int y = 0; y < size_y; ++y)
   {
       for (int x = 0; x < size_x; ++x)
       {
           gold[(x * size_y) + y] = idata[(y * size_x) + x];
       }
   }
}

bool compareData(const float* reference, const float* data, const unsigned int len)
{
   const float epsilon = 0.01f;

   for (unsigned int i = 0; i < len; ++i)
   {
       float diff = reference[i] - data[i];
       if ((diff > epsilon) || (diff < -epsilon))
           return false;
   }

    return true;
}

int setCacheConfig(const char *cacheConfigStr, const void *kernel)
{
   const int NumCacheConfigs = 4;
   const char *cacheConfigOptionsStr[NumCacheConfigs] = { "none", "shared", "l1", "equal"};
   cudaFuncCache cacheConfigOptions[NumCacheConfigs] = {cudaFuncCachePreferNone, cudaFuncCachePreferShared, cudaFuncCachePreferL1, cudaFuncCachePreferEqual};
   cudaFuncCache cacheConfigOption;
   int i;

   for(i = 0; i < NumCacheConfigs; i++)
   {
       if (strcmp(cacheConfigStr, cacheConfigOptionsStr[i]) == 0)
       {
           cacheConfigOption = cacheConfigOptions[i];
           break;
       }
   }

   if (i >= NumCacheConfigs)
   {
       fprintf(stderr, "Invalid cache config option : '%s'\n", cacheConfigStr);
       return -1;
   } 

   fprintf(stderr, "Set cache config option : '%s'\n", cacheConfigStr);
   RUNTIME_API_CALL(cudaFuncSetCacheConfig(kernel, cacheConfigOption));

   return 0;
}

int main(int argc, char* argv[])
{
   int kernelOption = DEFAULT_KERNEL_OPTION;
   if (argc > 1)
   {
       kernelOption = atoi(argv[1]);
   }

   void (*kernel)(float*, float*, int, int);
   const char* kernelName;
   if (kernelOption == 1)
   {
       kernel = &transposeCoalesced;
       kernelName = "transposeCoalesced";
   }
   else if (kernelOption == 2)
   {
       kernel = &transposeNoBankConflicts;
       kernelName = "transposeNoBankConflicts";
   }
   else
   {
       fprintf(stderr, "** Invalid kernel option: %s\n", argv[1]);
       PRINT_PROGRAM_USAGE();
       exit(EXIT_FAILURE);
   }

   int matrixSize = DEFAULT_MATRIX_SIZE;
   if (argc > 2)
   {
       matrixSize = atoi(argv[2]);
   }

   if ((matrixSize < TILE_DIM) || (matrixSize % TILE_DIM != 0))
   {
       fprintf(stderr, "** Invalid matrix size: %s\n", argv[2]);
       PRINT_PROGRAM_USAGE();
       exit(EXIT_FAILURE);
   }

   // size of memory required to store the matrix
   size_t memSize = sizeof(float) * matrixSize * matrixSize;

   // allocate host memory
   float* h_idata = (float*)malloc(memSize);
   float* h_odata = (float*)malloc(memSize);
   float* transposeGold = (float*)malloc(memSize);

   // allocate device memory
   float *d_idata, *d_odata;
   RUNTIME_API_CALL(cudaMalloc((void**)&d_idata, memSize));
   RUNTIME_API_CALL(cudaMalloc((void**)&d_odata, memSize));

   // initialize host data
   for (int i = 0; i < (matrixSize * matrixSize); ++i)
   {
       h_idata[i] = (float)i;
   }

   // copy host data to device
   RUNTIME_API_CALL(cudaMemcpy(d_idata, h_idata, memSize, cudaMemcpyHostToDevice));

   printf("\nmatrix size: %dx%d (%dx%d tiles), kernel name: '%s', "
          "tile size: %dx%d, block size: %dx%d\n",
          matrixSize, matrixSize,
          matrixSize/TILE_DIM, matrixSize/TILE_DIM,
          kernelName,
          TILE_DIM, TILE_DIM,
          TILE_DIM, BLOCK_ROWS);

   if ((argc > 3) && setCacheConfig(argv[3], (const void *)kernel))
   {
       PRINT_PROGRAM_USAGE();
       exit(EXIT_FAILURE);
   }

   // execution configuration parameters
   dim3 grid(matrixSize / TILE_DIM, matrixSize / TILE_DIM);
   dim3 threads(TILE_DIM, BLOCK_ROWS);

   kernel<<<grid, threads>>>(d_odata, d_idata, matrixSize, matrixSize);
   cudaError_t err = cudaGetLastError();
   if (err != cudaSuccess)
   {
       fprintf(stderr, "Failed to launch '%s' kernel (error code %s)!\n", 
               kernelName, cudaGetErrorString(err));
       exit(EXIT_FAILURE);
   }
   RUNTIME_API_CALL(cudaMemcpy(h_odata, d_odata, memSize, cudaMemcpyDeviceToHost));

   // Compute reference transpose solution
   computeTransposeGold(transposeGold, h_idata, matrixSize, matrixSize);

   bool res = compareData(transposeGold, h_odata, matrixSize * matrixSize);
   if (res == false)
   {
       fprintf(stderr, "** '%s' kernel FAILED\n", kernelName);
       exit(EXIT_FAILURE);
   }

   printf("Done\n");
   return 0;
}