File: ComputeWorkloadAnalysis.section

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (281 lines) | stat: -rw-r--r-- 8,744 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
Identifier: "ComputeWorkloadAnalysis"
DisplayName: "Compute Workload Analysis"
Description: "Detailed analysis of the compute resources of the streaming multiprocessors (SM), including the achieved instructions per clock (IPC) and the utilization of each available pipeline. Pipelines with very high utilization might limit the overall performance."
Order: 20
Sets {
  Identifier: "detailed"
}
Sets {
  Identifier: "full"
}
Header {
  Metrics {
    Label: "Executed Ipc Elapsed"
    Name: "sm__inst_executed.avg.per_cycle_elapsed"
  }
  Metrics {
    Label: "SM Busy"
    Name: "sm__instruction_throughput.avg.pct_of_peak_sustained_active"
  }
  Metrics {
    Label: "Executed Ipc Active"
    Name: "sm__inst_executed.avg.per_cycle_active"
  }
  Metrics {
    Label: "Issue Slots Busy"
    Name: "sm__inst_issued.avg.pct_of_peak_sustained_active"
  }
  Metrics {
    Label: "Issued Ipc Active"
    Name: "sm__inst_issued.avg.per_cycle_active"
  }
  Metrics {
    Name: ""
  }
}
Metrics {
  Metrics {
    Label: "Max. Issued Slots Busy"
    Name: "sm__inst_issued.max.pct_of_peak_sustained_active"
  }
}

Body {
  DisplayName: "Pipe Utilization"
  Items {
    HorizontalContainer {
      Items {
        BarChart {
          Label: "Pipe Utilization (% of active cycles)"
          Description: "Pipeline utilization based on the number of cycles the pipeline was active. This takes the rates of different instructions executing on the pipeline into account. For an instruction requiring 4 cycles to complete execution, the counter is increased by 1 for 4 cycles."
          SortKey: ByValue
          SortDirection: Descending
          ValueAxis {
            Label: "Utilization [%]"
            Range {
              Max: 100
            }
          }
          ValueAxisAlignment: ValueAxisAlignments_Both
          Metrics {
            Label: "ALU"
            Name: "sm__pipe_alu_cycles_active.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "FMA"
            Name: "sm__pipe_fma_cycles_active.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "FP64"
            Name: "sm__pipe_fp64_cycles_active.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "Tensor (All)"
            Name: "sm__pipe_tensor_cycles_active.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "Tensor (DP)"
            Name: "sm__pipe_tensor_op_dmma_cycles_active.avg.pct_of_peak_sustained_active"
            Filter {
              Items {
                MinArch: CC_80
                MaxArch: CC_80
              }
              Items {
                MinArch: CC_90
                MaxArch: CC_90
              }
            }
          }
          Metrics {
            Label: "Tensor (FP)"
            Name: "sm__pipe_tensor_op_hmma_cycles_active.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "Tensor (INT)"
            Name: "sm__pipe_tensor_op_imma_cycles_active.avg.pct_of_peak_sustained_active"
            Filter {
              MinArch: CC_72
            }
          }
          Metrics {
            Label: "Shared (FP64+FP16+Tensor)"
            Name: "sm__pipe_shared_cycles_active.avg.pct_of_peak_sustained_active"
            Filter {
              MinArch: CC_70
              MaxArch: CC_70
            }
            Options {
              Label: "Shared (FP16+Tensor)"
              Name: "sm__pipe_shared_cycles_active.avg.pct_of_peak_sustained_active"
              Filter {
                MinArch: CC_72
                MaxArch: CC_75
              }
            }
            Options {
              Label: "Shared (FP64+Tensor)"
              Name: "sm__pipe_shared_cycles_active.avg.pct_of_peak_sustained_active"
              Filter {
                Items {
                  MinArch: CC_80
                  MaxArch: CC_80
                }
                Items {
                  MinArch: CC_90
                  MaxArch: CC_90
                }
              }
            }
          }
          Metrics {
            Label: "TMA"
            Name: "sm__pipe_tma_cycles_active.avg.pct_of_peak_sustained_active"
            Filter {
              MinArch: CC_90
              MaxArch: CC_90
            }
          }
        }
      }
      Items {
        BarChart {
          Label: "Pipe Utilization (% of peak instructions executed)"
          Description: "Pipeline utilization based on the number of executed instructions. This does not account for any variation in instruction latencies for this pipeline. For an instruction requiring 4 cycles to complete execution, the counter is increased by 1 only."
          SortKey: ByValue
          SortDirection: Descending
          ValueAxis {
            Label: "Utilization [%]"
            Range {
              Max: 100
            }
          }
          ValueAxisAlignment: ValueAxisAlignments_Both
          Metrics {
            Label: "ADU"
            Name: "sm__inst_executed_pipe_adu.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "ALU"
            Name: "sm__inst_executed_pipe_alu.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "CBU"
            Name: "sm__inst_executed_pipe_cbu.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "FMA"
            Name: "sm__inst_executed_pipe_fma.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "FP16"
            Name: "sm__inst_executed_pipe_fp16.avg.pct_of_peak_sustained_active"
            Filter {
              MaxArch: CC_80
            }
            Options {
              Label: "FMA (FP16)"
              Name: "sm__inst_executed_pipe_fma_type_fp16.avg.pct_of_peak_sustained_active"
              Filter {
                MinArch: CC_86
              }
            }
          }
          Metrics {
            Label: "FP64 (DMMA)"
            Name: "sm__inst_executed_pipe_fp64_op_dmma.avg.pct_of_peak_sustained_active"
            Filter {
              MinArch: CC_86
              MaxArch: CC_89
            }
          }
          Metrics {
            Label: "FP64 (FP64)"
            Name: "sm__inst_executed_pipe_fp64_op_fp64.avg.pct_of_peak_sustained_active"
            Filter {
              MinArch: CC_86
              MaxArch: CC_89
            }
          }

          Metrics {
            Label: "FP64"
            Name: "sm__inst_executed_pipe_fp64.avg.pct_of_peak_sustained_active"
            Filter {
              Items {
                MaxArch: CC_75
              }
              Items {
                MinArch: CC_80
                MaxArch: CC_80
              }
              Items {
                MinArch: CC_90
              }
            }
          }
          Metrics {
            Label: "LSU"
            Name: "sm__inst_executed_pipe_lsu.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "Tensor (DP)"
            Name: "sm__inst_executed_pipe_tensor_op_dmma.avg.pct_of_peak_sustained_active"
            Filter {
              Items {
                MinArch: CC_80
                MaxArch: CC_80
              }
              Items {
                MinArch: CC_90
                MaxArch: CC_90
              }
            }
          }
          Metrics {
            Label: "Tensor (Warp Group)"
            Name: "sm__inst_executed_pipe_tensor_op_gmma.avg.pct_of_peak_sustained_active"
            Filter {
              MinArch: CC_90
              MaxArch: CC_90
            }
          }
          Metrics {
            Label: "Tensor (FP)"
            Name: "sm__inst_executed_pipe_tensor_op_hmma.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "Tensor (INT)"
            Name: "sm__inst_executed_pipe_tensor_op_imma.avg.pct_of_peak_sustained_active"
            Filter {
              MinArch: CC_72
            }
          }
          Metrics {
            Label: "TEX"
            Name: "sm__inst_executed_pipe_tex.avg.pct_of_peak_sustained_active"
          }
          Metrics {
            Label: "TMA"
            Name: "sm__inst_executed_pipe_tma.avg.pct_of_peak_sustained_active"
            Filter {
              MinArch: CC_90
              MaxArch: CC_90
            }
          }
          Metrics {
            Label: "Uniform"
            Name: "sm__inst_executed_pipe_uniform.avg.pct_of_peak_sustained_active"
            Filter {
              MinArch: CC_75
            }
          }
          Metrics {
            Label: "XU"
            Name: "sm__inst_executed_pipe_xu.avg.pct_of_peak_sustained_active"
          }
        }
      }
    }
  }
}