File: HighPipeUtilization.py

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (289 lines) | stat: -rw-r--r-- 17,261 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#  * Neither the name of NVIDIA CORPORATION nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import NvRules
from RequestedMetrics import MetricRequest, RequestedMetricsParser, Importance

requested_metrics = [
    MetricRequest("device__attribute_compute_capability_major", "cc_major"),
    MetricRequest("device__attribute_compute_capability_minor", "cc_minor"),
    # Active cycles pipelines
    MetricRequest("sm__pipe_alu_cycles_active.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__pipe_fma_cycles_active.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__pipe_fp64_cycles_active.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__pipe_shared_cycles_active.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__pipe_tensor_cycles_active.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__pipe_tensor_op_dmma_cycles_active.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__pipe_tensor_op_hmma_cycles_active.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__pipe_tensor_op_imma_cycles_active.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__pipe_tma_cycles_active.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    # Instruction executed pipelines
    MetricRequest("sm__inst_executed_pipe_adu.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_alu.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_cbu.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_fma.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_fma_type_fp16.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_fp16.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_fp64.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_fp64_op_dmma.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_fp64_op_fp64.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_lsu.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_tensor_op_dmma.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_tensor_op_hmma.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_tensor_op_imma.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_tex.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_tma.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_uniform.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    MetricRequest("sm__inst_executed_pipe_xu.avg.pct_of_peak_sustained_active", None, Importance.OPTIONAL, None, False),
    # Additional metrics
    MetricRequest("smsp__issue_active.avg.per_cycle_active", "issue_active", Importance.OPTIONAL, None, False),
]


def get_identifier():
    return "HighPipeUtilization"

def get_name():
    return "High Pipe Utilization"

def get_description():
    return "High pipe utilization bottleneck analysis"

def get_section_identifier():
    return "ComputeWorkloadAnalysis"

def get_parent_rules_identifiers():
    return ["Compute"]

def get_estimated_speedup(max_utilization_ac):
    improvement_local = 1 - (max_utilization_ac / 100)

    speedup_type = NvRules.IFrontend.SpeedupType_LOCAL
    improvement_percent = improvement_local * 100

    return speedup_type, improvement_percent

def get_max_pipeline(pipelines, metrics):
    max_utilization = 0.0
    max_pipe = None

    for pipe in pipelines:
        metric_name = pipe.metric
        if metrics[metric_name] is not None:
            value = metrics[metric_name].value()
            if value > max_utilization:
                max_utilization = value
                max_pipe = pipe

    return (max_pipe, max_utilization)


class Pipeline:
    def __init__(self, name, metric, description = None):
        self.name = name
        self.metric = metric + ".avg.pct_of_peak_sustained_active"
        self.description = description

    def get_description(self, metrics):
        return self.description


class CompositePipeline(Pipeline):
    def __init__(self, name, metric, description, sub_pipelines):
        super().__init__(name, metric, description)
        self.sub_pipelines = sub_pipelines

    def get_description(self, metrics):
        description = self.description

        max_pipe, _ = get_max_pipeline(self.sub_pipelines, metrics)
        if max_pipe is not None:
            description += ". It's dominated by its {} sub-pipeline".format(max_pipe.name)

        return description


class SharedPipeline(CompositePipeline):
    def __init__(self, name, metric, sub_pipelines):
        super().__init__(name, metric, None, sub_pipelines)

    def get_description(self, metrics):
        cc = metrics["cc_major"].value() * 10 + metrics["cc_minor"].value()

        descriptions = {
            70 : ". It executes 64- and 16-bit floating point and tensor operations",
            72 : ". It executes 16-bit floating point and tensor operations",
            75 : ". It executes 16-bit floating point and tensor operations",
            80 : ". It executes 64-bit floating point and tensor operations",
            90 : ". It executes 64-bit floating point and tensor operations",
        }

        description = "is the logical sum of several other pipelines which can't achieve full utilization on their own"

        if cc in descriptions:
            description += descriptions[cc]

        self.description = description
        description = super().get_description(metrics)

        return description


def apply(handle):
    ctx = NvRules.get_context(handle)
    action = ctx.range_by_idx(0).action_by_idx(0)
    fe = ctx.frontend()
    metrics = RequestedMetricsParser(handle, action).parse(requested_metrics)

    fe.send_dict_to_children({
        "fp32_pipeline_utilization_pct": metrics["sm__pipe_fma_cycles_active.avg.pct_of_peak_sustained_active"].value(),
        "fp64_pipeline_utilization_pct": metrics["sm__pipe_fp64_cycles_active.avg.pct_of_peak_sustained_active"].value(),
    })

    # Active cycles pipelines
    # These are based on the number of cycles the pipeline was active.
    # They take the rates of different instructions executing on the pipeline into account.
    # We use these to categorize the overall compute pipeline utilization.
    ac_pipelines = {
        Pipeline("ALU",                     "sm__pipe_alu_cycles_active", "executes integer and logic operations"),
        Pipeline("FMA",                     "sm__pipe_fma_cycles_active", "executes 32-bit floating point (FADD, FMUL, FMAD, ...) and integer (IMUL, IMAD) operations"),
        Pipeline("FP64",                    "sm__pipe_fp64_cycles_active", "executes 64-bit floating point operations"),
        SharedPipeline("Shared",            "sm__pipe_shared_cycles_active",
            [
                Pipeline("FP64",            "sm__pipe_fp64_cycles_active"),
                Pipeline("Tensor (FP)",     "sm__pipe_tensor_op_hmma_cycles_active"),
                Pipeline("Tensor (INT)",    "sm__pipe_tensor_op_imma_cycles_active"),
                Pipeline("Tensor (DP)",     "sm__pipe_tensor_op_dmma_cycles_active"),
            ]),
        CompositePipeline("Tensor",         "sm__pipe_tensor_cycles_active", "is the logical aggregation of individual tensor pipelines",
            [
                Pipeline("Tensor (FP)",     "sm__pipe_tensor_op_hmma_cycles_active"),
                Pipeline("Tensor (INT)",    "sm__pipe_tensor_op_imma_cycles_active"),
                Pipeline("Tensor (DP)",     "sm__pipe_tensor_op_dmma_cycles_active"),
            ]
        ),
        Pipeline("TMA",                     "sm__pipe_tma_cycles_active", "executes Tensor Memory Accelerator (TMA) operations"),
    }

    # Instruction executed pipelines
    # They do not account for any variation in instruction latencies for this pipeline.
    # We use these to understand the active cycles results in more detail.
    inst_pipelines = {
        Pipeline("ADU",            "sm__inst_executed_pipe_adu"),
        Pipeline("ALU",            "sm__inst_executed_pipe_alu", "executes integer and logic operations"),
        Pipeline("CBU",            "sm__inst_executed_pipe_cbu"),
        Pipeline("FMA",            "sm__inst_executed_pipe_fma", "executes 32-bit floating point (FADD, FMUL, FMAD, ...) and integer (IMUL, IMAD) operations"),
        Pipeline("FP16",           "sm__inst_executed_pipe_fp16", "executes 16-bit floating point operations"),
        Pipeline("FMA (FP16)",     "sm__inst_executed_pipe_fma_type_fp16", "executes 16-bit floating point operations"),
        Pipeline("FP64",           "sm__inst_executed_pipe_fp64", "executes 64-bit floating point operations"),
        Pipeline("FP64 (DMMA)",    "sm__inst_executed_pipe_fp64_op_dmma", "executes DMMA operations"),
        Pipeline("FP64 (FP64)",    "sm__inst_executed_pipe_fp64_op_fp64", "executes non-DMMA 64-bit floating point operations"),
        Pipeline("LSU",            "sm__inst_executed_pipe_lsu", "executes load/store memory operations"),
        Pipeline("Tensor (DP)",    "sm__inst_executed_pipe_tensor_op_dmma", "executes 64-bit floating point tensor operations"),
        Pipeline("Tensor (FP)",    "sm__inst_executed_pipe_tensor_op_hmma", "executes 16-bit floating point tensor operations"),
        Pipeline("Tensor (INT)",   "sm__inst_executed_pipe_tensor_op_imma", "executes 4/8-bit integer tensor operations"),
        Pipeline("TEX",            "sm__inst_executed_pipe_tex", "executes texture/surface operations"),
        Pipeline("TMA",            "sm__inst_executed_pipe_tma", "executes Tensor Memory Accelerator (TMA) operations"),
        Pipeline("Uniform",        "sm__inst_executed_pipe_uniform"),
        Pipeline("XU",             "sm__inst_executed_pipe_xu"),
    }

    # several thresholds used to provide guidance
    low_utilization_threshold = 20
    high_utilization_threshold = 60
    bottleneck_utilization_threshold = 80

    # get the dominant active cycles-based pipeline metric
    (max_pipe_ac, max_utilization_ac) = get_max_pipeline(ac_pipelines, metrics)
    if max_pipe_ac is not None:
        doc_msg = " See the @url:Kernel Profiling Guide:https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-decoder@ or hover over the pipeline name to understand the workloads handled by each pipeline."
        inst_section_msg = " The @section:InstructionStats:Instruction Statistics@ section shows the mix of executed instructions in this kernel."

        stall_msg = ""
        if metrics["issue_active"] is not None:
            issue_active = metrics["issue_active"].value()
            if issue_active < 0.8:
                stall_msg = " Check the @section:WarpStateStats:Warp State Statistics@ section for which reasons cause warps to stall."

        # compare the active cycles-based pipeline utilization against various thresholds to categorize the performance and provide guidance
        if max_utilization_ac < low_utilization_threshold:
            message = "All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler."
            message += " Check the @section:LaunchStats:Launch Statistics@ and @section:SchedulerStats:Scheduler Statistics@ sections for further details."
            msg_id = fe.message(NvRules.IFrontend.MsgType_MSG_OPTIMIZATION, message, "Low Utilization")

            speedup_type, speedup_value = get_estimated_speedup(max_utilization_ac)
            fe.speedup(msg_id, speedup_type, speedup_value)

            fe.focus_metric(
                msg_id,
                max_pipe_ac.metric,
                max_utilization_ac,
                NvRules.IFrontend.Severity_SEVERITY_HIGH,
                "Increase the utilization of the busiest pipeline (currently: {})".format(max_pipe_ac.name),
            )
        else:
            # descriptive info about the max active cycles pipe
            message = "{} is the highest-utilized pipeline ({:.1f}%) based on active cycles, taking into account the rates of its different instructions.".format(max_pipe_ac.name, max_utilization_ac)
            pipe_info = max_pipe_ac.get_description(metrics)
            if pipe_info is not None:
                message += " It " + pipe_info + "."

            if max_utilization_ac < high_utilization_threshold:
                message_name = "Balanced"
                message += " It is well-utilized, but should not be a bottleneck."
                fe.message(NvRules.IFrontend.MsgType_MSG_OK, message, message_name)
            else:
                if max_utilization_ac < bottleneck_utilization_threshold:
                    message_name = "High Utilization"
                    message += " The pipeline is well-utilized, but might become a bottleneck if more work is added."
                else:
                    message_name = "Very High Utilization"
                    message += " The pipeline is over-utilized and likely a performance bottleneck."

                # get the dominant instruction executed-based pipeline, too
                (max_pipe_inst, max_utilization_inst) = get_max_pipeline(inst_pipelines, metrics)
                if max_pipe_inst is not None:
                    # descriptive info about the max instruction executed pipe
                    message += " Based on the number of executed instructions, the highest utilized pipeline ({:.1f}%) is {}.".format(max_utilization_inst, max_pipe_inst.name)
                    pipe_info_inst = max_pipe_inst.get_description(metrics)
                    if pipe_info_inst is not None:
                        message += " It " + pipe_info_inst + "."

                    # compare its utilization to the active cycles metric
                    utilization_diff = max_utilization_inst / max_utilization_ac
                    if utilization_diff < 0.3:
                        message += " Comparing the two, the overall pipeline utilization appears to be caused by high-latency instructions."
                    elif utilization_diff > 0.7:
                        message += " Comparing the two, the overall pipeline utilization appears to be caused by frequent, low-latency instructions."

                message += doc_msg + inst_section_msg + stall_msg
                msg_id = fe.message(NvRules.IFrontend.MsgType_MSG_OPTIMIZATION, message, message_name)

                fe.focus_metric(
                    msg_id,
                    max_pipe_ac.metric,
                    max_utilization_ac,
                    NvRules.IFrontend.Severity_SEVERITY_DEFAULT,
                    "Try to decrease the utilization of the busiest pipeline (currently: {})".format(max_pipe_ac.name),
                )