1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from collections import namedtuple
from itertools import product
import NvRules
from RequestedMetrics import MetricRequest, RequestedMetricsParser, Importance
requested_metrics = [
# SASS metrics bytes per sector for (global/local) x (load/store) memory accesses
MetricRequest("smsp__sass_average_data_bytes_per_sector_mem_global_op_ld.ratio", "bytes_per_sector_global_load"),
MetricRequest("smsp__sass_average_data_bytes_per_sector_mem_global_op_ld.max_rate", "max_bytes_per_sector_global_load"),
MetricRequest("smsp__sass_average_data_bytes_per_sector_mem_global_op_st.ratio", "bytes_per_sector_global_store"),
MetricRequest("smsp__sass_average_data_bytes_per_sector_mem_global_op_st.max_rate", "max_bytes_per_sector_global_store"),
MetricRequest("smsp__sass_average_data_bytes_per_sector_mem_local_op_ld.ratio", "bytes_per_sector_local_load"),
MetricRequest("smsp__sass_average_data_bytes_per_sector_mem_local_op_ld.max_rate", "max_bytes_per_sector_local_load"),
MetricRequest("smsp__sass_average_data_bytes_per_sector_mem_local_op_st.ratio", "bytes_per_sector_local_store"),
MetricRequest("smsp__sass_average_data_bytes_per_sector_mem_local_op_st.max_rate", "max_bytes_per_sector_local_store"),
# L1TEX/L2 global/local, load/store hit rates
MetricRequest(
"l1tex__t_sector_pipe_lsu_mem_global_op_ld_hit_rate.pct",
"l1tex_global_load_hit_rate_percent",
),
MetricRequest(
"l1tex__t_sector_pipe_lsu_mem_global_op_st_hit_rate.pct",
"l1tex_global_store_hit_rate_percent",
),
MetricRequest(
"l1tex__t_sector_pipe_lsu_mem_local_op_ld_hit_rate.pct",
"l1tex_local_load_hit_rate_percent",
),
MetricRequest(
"l1tex__t_sector_pipe_lsu_mem_local_op_st_hit_rate.pct",
"l1tex_local_store_hit_rate_percent",
),
MetricRequest(
"lts__t_sector_op_read_hit_rate.pct",
"l2_load_hit_rate_percent",
),
MetricRequest(
"lts__t_sector_op_write_hit_rate.pct",
"l2_store_hit_rate_percent",
),
# L1TEX/L2/DRAM throughput metrics
MetricRequest(
"l1tex__throughput.avg.pct_of_peak_sustained_elapsed",
"l1tex_throughput_percent",
),
MetricRequest(
"lts__throughput.avg.pct_of_peak_sustained_elapsed",
"l2_throughput_percent",
),
MetricRequest(
"gpu__dram_throughput.avg.pct_of_peak_sustained_elapsed",
"dram_throughput_percent",
Importance.OPTIONAL,
None,
False,
),
]
FocusMetric = namedtuple(
"FocusMetric",
["name", "value", "severity", "advice"],
)
RuleResult = namedtuple(
"RuleResult",
["message", "title", "speedup_type", "speedup_value", "focus_metrics"],
defaults=("", "", NvRules.IFrontend.SpeedupType_LOCAL, 0, []),
)
def get_identifier():
return "MemoryCacheAccessPattern"
def get_name():
return "Memory Cache Access Pattern"
def get_description():
return "Detection of inefficient memory access patterns in the L1/TEX and L2 caches."
def get_section_identifier():
return "MemoryWorkloadAnalysis_Tables"
def get_parent_rules_identifiers():
return ["Memory"]
def get_bytes_per_sector_metric_names(memory_space, operation):
metric_extension = f"{memory_space}_{operation}"
bytes_per_sector_name = f"bytes_per_sector_{metric_extension}"
max_bytes_per_sector_name = f"max_bytes_per_sector_{metric_extension}"
return bytes_per_sector_name, max_bytes_per_sector_name
def get_bytes_per_sector_metrics(metrics, memory_space, operation):
bytes_per_sector_name, max_bytes_per_sector_name = \
get_bytes_per_sector_metric_names(memory_space, operation)
bytes_per_sector = metrics[bytes_per_sector_name].value()
max_bytes_per_sector = metrics[max_bytes_per_sector_name].value()
return bytes_per_sector, max_bytes_per_sector
def get_speedup_and_focus_metrics(cache, memory_space, operation, metrics):
"""Speedup Estimation and Focus Metrics for memory access patterns in all caches.
Assuming that at each cache level the bandwidth is independent of the amount
of data moved, the speedup can be estimated as follows:
s = time_old / time_new
= (data_old * bandwidth_new) / (data_new * bandwidth_old)
= (data_old / data_new)
= (max_bytes_per_sector_old * num_sectors_old)
/ (max_bytes_per_sector_new * num_sectors_new)
= (num_sectors_new * bytes_per_sector_new / bytes_per_sector_old)
/ num_sectors_new
= bytes_per_sector_new / bytes_per_sector_old
where we used that the "useful" amount of data moved, remains constant, i.e.
bytes_per_sector_old * num_sectors_old = bytes_per_sector_new * num_sectors_new.
Thus, the maximal speedup is s_max = max_bytes_per_sector / bytes_per_sector.
Using that the maximal improvement = 1 - (1 / s_max), we get
improvement_percent = (1 - bytes_per_sector / max_bytes_per_sector) * 100
At each cache level, the relevant amount of data is given by the sectors missed
at its respective lower-level cache, introducing new factors of `cache_miss_rate`.
To get a global estimate, we can use the cache's throughput as a weight.
"""
bytes_per_sector, max_bytes_per_sector = \
get_bytes_per_sector_metrics(metrics, memory_space, operation)
# Only get an estimate for non-trivial amounts of transferred data
if bytes_per_sector == 0 or max_bytes_per_sector == 0:
return NvRules.IFrontend.SpeedupType_LOCAL, 0
# Get L1TEX miss rate for L2/DRAM, and L2 miss rate for DRAM
l1_miss_rate = None
l2_miss_rate = None
l1_hit_rate_name = None
l2_hit_rate_name = None
if cache in ["l2", "dram"]:
if memory_space == "global" and operation == "load":
l1_miss_rate = 1 - metrics["l1tex_global_load_hit_rate_percent"].value() / 100
l1_hit_rate_name = metrics["l1tex_global_load_hit_rate_percent"].name()
elif memory_space == "global" and operation == "store":
l1_miss_rate = 1 - metrics["l1tex_global_store_hit_rate_percent"].value() / 100
l1_hit_rate_name = metrics["l1tex_global_store_hit_rate_percent"].name()
elif memory_space == "local" and operation == "load":
l1_miss_rate = 1 - metrics["l1tex_local_load_hit_rate_percent"].value() / 100
l1_hit_rate_name = metrics["l1tex_local_load_hit_rate_percent"].name()
elif memory_space == "local" and operation == "store":
l1_miss_rate = 1 - metrics["l1tex_local_store_hit_rate_percent"].value() / 100
l1_hit_rate_name = metrics["l1tex_local_store_hit_rate_percent"].name()
if cache == "dram":
if operation == "load":
l2_miss_rate = 1 - metrics["l2_load_hit_rate_percent"].value() / 100
l2_hit_rate_name = metrics["l2_load_hit_rate_percent"].name()
elif operation == "store":
l2_miss_rate = 1 - metrics["l2_store_hit_rate_percent"].value() / 100
l2_hit_rate_name = metrics["l2_store_hit_rate_percent"].name()
# Get throughput of current cache level to use as weight in global estimates
throughput = None
throughput_name = None
if cache == "l1tex":
throughput = metrics["l1tex_throughput_percent"].value() / 100
throughput_name = metrics["l1tex_throughput_percent"].name()
elif cache == "l2":
throughput = metrics["l2_throughput_percent"].value() / 100
throughput_name = metrics["l2_throughput_percent"].name()
elif (cache == "dram") and (metrics["dram_throughput_percent"] is not None):
throughput = metrics["dram_throughput_percent"].value() / 100
throughput_name = metrics["dram_throughput_percent"].name()
if throughput:
speedup_type = NvRules.IFrontend.SpeedupType_GLOBAL
else:
speedup_type = NvRules.IFrontend.SpeedupType_LOCAL
# Calculate speedup as described above
improvement_percent = (
(1 - bytes_per_sector / max_bytes_per_sector)
* (l1_miss_rate if l1_miss_rate else 1)
* (l2_miss_rate if l2_miss_rate else 1)
* (throughput if throughput else 1)
* 100
)
# Store Focus Metrics for all metrics that enter the speedup calculation
focus_metrics = []
bytes_per_sector_focus_metric = FocusMetric(
metrics[get_bytes_per_sector_metric_names(memory_space, operation)[0]].name(),
bytes_per_sector,
NvRules.IFrontend.Severity_SEVERITY_HIGH,
f"Increase the average number of bytes utilized per sector towards "
f"{max_bytes_per_sector:.0f} bytes"
)
focus_metrics.append(bytes_per_sector_focus_metric)
if l1_hit_rate_name:
l1_hit_rate_focus_metric = FocusMetric(
l1_hit_rate_name,
metrics[l1_hit_rate_name].value(),
NvRules.IFrontend.Severity_SEVERITY_DEFAULT,
"Try to increase the hit rate in L1TEX to benefit from its higher bandwidth"
)
focus_metrics.append(l1_hit_rate_focus_metric)
if l2_hit_rate_name:
l2_hit_rate_focus_metric = FocusMetric(
l2_hit_rate_name,
metrics[l2_hit_rate_name].value(),
NvRules.IFrontend.Severity_SEVERITY_DEFAULT,
"Try to increase the hit rate in L2 to benefit from its higher bandwidth"
)
focus_metrics.append(l2_hit_rate_focus_metric)
if throughput_name:
throughput_focus_metric = FocusMetric(
throughput_name,
metrics[throughput_name].value(),
NvRules.IFrontend.Severity_SEVERITY_LOW,
f"The higher the {cache.upper()} throughput the more severe the issue "
f"becomes"
)
focus_metrics.append(throughput_focus_metric)
return speedup_type, improvement_percent, focus_metrics
def apply(handle):
ctx = NvRules.get_context(handle)
action = ctx.range_by_idx(0).action_by_idx(0)
fe = ctx.frontend()
metrics = RequestedMetricsParser(handle, action).parse(requested_metrics)
cache_levels = [
"l1tex",
"l2",
"dram",
]
memory_spaces = [
"global",
"local",
]
operations = [
"load",
"store",
]
threshold_speedup_percent = 0
# For each memory space/operation combination, store the rule result
# for the cache level with the highest speedup
rule_results = {
"global": {
"load": RuleResult(),
"store": RuleResult(),
},
"local": {
"load": RuleResult(),
"store": RuleResult(),
},
}
# Generate rule messages, speedup estimates and focus metrics
for cache, space, operation in product(cache_levels, memory_spaces, operations):
bytes_per_sector, max_bytes_per_sector = \
get_bytes_per_sector_metrics(metrics, space, operation)
# Only consider non-trivial loads/stores with less than perfect efficiency
if 0 < bytes_per_sector < max_bytes_per_sector:
speedup_type, speedup_value, focus_metrics = \
get_speedup_and_focus_metrics(cache, space, operation, metrics)
if speedup_value <= rule_results[space][operation].speedup_value:
continue
rule_title = f"{cache.upper()} {space.title()} {operation.title()} Access Pattern"
cache_level_message = ""
if cache == "l2":
if space == "global" and operation == "load":
l1_miss_rate = 100 - metrics["l1tex_global_load_hit_rate_percent"].value()
elif space == "global" and operation == "store":
l1_miss_rate = 100 - metrics["l1tex_global_store_hit_rate_percent"].value()
elif space == "local" and operation == "load":
l1_miss_rate = 100 - metrics["l1tex_local_load_hit_rate_percent"].value()
elif space == "local" and operation == "store":
l1_miss_rate = 100 - metrics["l1tex_local_store_hit_rate_percent"].value()
cache_level_message = (
f"This applies to the {l1_miss_rate:.1f}% of sectors missed in L1TEX. "
)
elif cache == "dram":
if operation == "load":
l2_miss_rate = 100 - metrics["l2_load_hit_rate_percent"].value()
elif operation == "store":
l2_miss_rate = 100 - metrics["l2_store_hit_rate_percent"].value()
cache_level_message = (
f"This applies to the {l2_miss_rate:.1f}% of sectors missed in L2. "
)
rule_message = (
f"The memory access pattern for {space} {operation}s "
f"{'from' if operation == 'load' else 'to'} {cache.upper()} "
f"might not be optimal. "
f"On average, only {bytes_per_sector:.1f} of the "
f"{max_bytes_per_sector:.0f} bytes transmitted per sector are utilized "
f"by each thread. "
+ cache_level_message
+ f"This could possibly be caused by a stride between threads. "
f"Check the @section:SourceCounters:Source Counters@ section for "
f"uncoalesced {space} {operation}s."
)
rule_results[space][operation] = RuleResult(
rule_message,
rule_title,
speedup_type,
speedup_value,
focus_metrics,
)
# Send the most impactful rule results to the frontend
for space, operation in product(memory_spaces, operations):
if (
rule_results[space][operation].message
and rule_results[space][operation].speedup_value >= threshold_speedup_percent
):
message_id = fe.message(
NvRules.IFrontend.MsgType_MSG_OPTIMIZATION,
rule_results[space][operation].message,
rule_results[space][operation].title,
)
fe.speedup(
message_id,
rule_results[space][operation].speedup_type,
rule_results[space][operation].speedup_value,
)
for metric in rule_results[space][operation].focus_metrics:
fe.focus_metric(
message_id,
metric.name,
metric.value,
metric.severity,
metric.advice,
)
|