1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
|
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
from asyncore import file_dispatcher
import importlib
import numpy as np
import os
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
import subprocess
import sys
from pathlib import Path
import nsysstats
from nsys_recipe.log import logger
from nsys_recipe.lib import exceptions, nsys_path
from nsys_recipe import nsys_constants
EVENT_TYPE_NVTX_DOMAIN_CREATE = 75
EVENT_TYPE_NVTX_PUSHPOP_RANGE = 59
EVENT_TYPE_NVTX_STARTEND_RANGE = 60
class _Loader:
output_suffix = ""
def __init__(self, report_path):
self._report_path = report_path
def _validate_export_time(self, path):
if not Path(path).exists():
return False
return os.path.getctime(self._report_path) < os.path.getctime(path)
def validate_table(self, path, table, columns):
raise NotImplementedError()
def read_table(self, handle, table, columns):
raise NotImplementedError()
def list_tables(self, path):
raise NotImplementedError
class _ParquetLoader(_Loader):
output_suffix = "_pqtdir"
file_extension = ".parquet"
def validate_table(self, path, table, columns):
file_path = Path(path) / f"{table}{self.file_extension}"
if not self._validate_export_time(file_path):
return None
parquet_file = pq.ParquetFile(file_path)
parquet_schema = parquet_file.schema
parquet_columns = parquet_schema.names
if columns and any(column not in parquet_columns for column in columns):
return None
return parquet_file
def read_table(self, handle, table, columns):
if not columns:
columns = None
return handle.read(columns).to_pandas()
def list_tables(self, path):
path = Path(path)
if not path.exists():
return []
files = list(path.glob(f"*{self.file_extension}"))
return [file.stem for file in files]
class _ArrowLoader(_Loader):
output_suffix = "_arwdir"
file_extension = ".arrow"
def validate_table(self, path, table, columns):
file_path = Path(path) / f"{table}{self.file_extension}"
if not self._validate_export_time(file_path):
return None
reader = pa.RecordBatchStreamReader(file_path)
arrow_schema = reader.schema
arrow_columns = arrow_schema.names
if columns and any(column not in arrow_columns for column in columns):
return None
return reader
def read_table(self, handle, table, columns):
df = handle.read_pandas()
return df[columns] if columns else df
def list_tables(self, path):
path = Path(path)
if not path.exists():
return []
files = list(path.glob(f"*{self.file_extension}"))
return [file.stem for file in files]
class _SqliteLoader(_Loader):
output_suffix = ".sqlite"
file_extension = ".sqlite"
def validate_tables(self, path, tables):
if not self._validate_export_time(path):
return None
try:
sql_report = nsysstats.Report(path)
except nsysstats.Report.Error_InvalidDatabaseFile:
return None
if sql_report is None:
return None
if tables and any(not sql_report.table_exists(table) for table in tables):
return None
return sql_report
def validate_table(self, path, table, columns):
sql_report = self.validate_tables(path, [table])
if sql_report is None:
return None
if columns and any(
not sql_report.table_col_exists(table, column) for column in columns
):
return None
return sql_report
def read_sql_query(self, handle, query):
df = pd.read_sql(query, handle.dbcon)
return df
def read_table(self, handle, table, columns):
column_query = ",".join(columns) if columns else "*"
query = f"SELECT {column_query} FROM {table}"
return self.read_sql_query(handle, query)
def list_tables(self, path):
if Path(path) is None:
return []
try:
return nsysstats.Report(path).tables
except Exception:
return []
class StatsService:
def __init__(self, report_path):
self._data_service = DataService(report_path)
self._sqlite_file = Path(report_path).with_suffix(".sqlite")
def _get_stats_class(self, module, class_name):
try:
stats_module_path = f"{nsys_constants.NSYS_REPORT_DIR}.{module}"
module = importlib.import_module(stats_module_path)
except ModuleNotFoundError as e:
try:
rule_module_path = f"{nsys_constants.NSYS_RULE_DIR}.{module}"
module = importlib.import_module(rule_module_path)
except ModuleNotFoundError:
raise exceptions.StatsModuleNotFoundError(e) from e
return getattr(module, class_name)
def _setup(self, stats_class, parsed_args):
report, exitval, errmsg = stats_class.Setup(self._sqlite_file, parsed_args)
if report is not None:
return report
if exitval == stats_class.EXIT_NODATA:
return None
raise exceptions.StatsInternalError(errmsg)
def read_sql_report(self, module, class_name, parsed_args):
stats_class = self._get_stats_class(module, class_name)
report = None
if self._data_service._get_service("sqlite")._validate_export_time(
self._sqlite_file
):
report = self._setup(stats_class, parsed_args)
if report is None:
hints = {"format": "sqlite"}
if not self._data_service.export(None, hints):
return None
report = self._setup(stats_class, parsed_args)
if report is None:
return None
return pd.read_sql(report.get_query(), report.dbcon)
class DataService:
def __init__(self, report_path):
if not Path(report_path).exists:
raise FileNotFoundError(f"{report_path} does not exist.")
self._report_path = Path(report_path)
self._service_instances = {}
def _create_service(self, format):
loader_map = {
"parquetdir": _ParquetLoader,
"arrowdir": _ArrowLoader,
"sqlite": _SqliteLoader,
}
if format not in loader_map:
raise NotImplementedError("Invalid format type.")
return loader_map[format](self._report_path)
def _get_service(self, format):
if format not in self._service_instances:
self._service_instances[format] = self._create_service(format)
return self._service_instances[format]
def _get_output_path(self, hints):
service = self._get_service(hints.get("format", "parquetdir"))
default_output_path = (
str(self._report_path.with_suffix("")) + service.output_suffix
)
return hints.get("path", default_output_path)
def _get_export_args(self, tables, hints):
format_type = hints.get("format", "parquetdir")
mode = hints.get("mode", "partial")
output_path = self._get_output_path(hints)
export_args = [
"--type",
format_type,
"--output",
output_path,
"--force-overwrite",
"true",
"--lazy",
"false",
]
if mode == "partial" and tables:
export_args += ["--tables", ",".join(tables)]
return export_args
def export(self, tables, hints):
format_type = hints.get("format", "parquetdir")
output_path = self._get_output_path(hints)
# TODO(DTSP-15985): Support directory of files for SQLite.
# We do not currently offer support for partial exports in SQLite.
# Regardless of the 'table' argument, all tables will always be imported.
if format_type == "sqlite":
tables = None
if isinstance(tables, str):
tables = [tables]
export_args = self._get_export_args(tables, hints)
nsys_exe = nsys_path.find_installed_file(nsys_constants.NSYS_EXE_NAME)
cmd = [nsys_exe, "export", *export_args, self._report_path]
if tables:
logger.info(
f"Exporting {tables} from {self._report_path} to {output_path}..."
)
else:
logger.info(f"Exporting {self._report_path} to {output_path}...")
try:
p = subprocess.run(cmd, text=True, capture_output=True)
except Exception as e:
logger.error(f"Failed to export {self._report_path}: {e}")
return False
if p.returncode:
logger.error(f"Failed to export {self._report_path}: {p.stderr}")
return False
return True
def read_tables(self, table_column_dict, hints=None):
"""Read tables into dataframes.
Parameters
----------
table_column_dict : dict
Dictionary of tables and columns.
hints : dict
Additional configurations.
"""
if hints is None:
hints = {}
result_dict = {}
tables_to_export = []
output_path = self._get_output_path(hints)
overwrite = hints.get("overwrite", False)
service = self._get_service(hints.get("format", "parquetdir"))
if not overwrite:
for table, columns in table_column_dict.items():
handle = service.validate_table(output_path, table, columns)
if handle is not None:
result_dict[table] = service.read_table(handle, table, columns)
else:
tables_to_export.append(table)
else:
tables_to_export = list(table_column_dict.keys())
if tables_to_export and not self.export(tables_to_export, hints):
return None
for table in tables_to_export:
columns = table_column_dict[table]
handle = service.validate_table(output_path, table, columns)
if handle is not None:
result_dict[table] = service.read_table(handle, table, columns)
else:
logger.error(
f"Could not validate '{table}'."
" Please ensure the table and column names are correct or"
" re-try with a recent version of Nsight Systems."
)
return None
return result_dict
def read_sql_query(self, query, tables=None, hints=None):
"""Read the SQL query into a dataframe.
Parameters
----------
query : str
SQL query to execute.
tables : list of str or str
If specified, the function will export the tables before executing
the query and check whether the table names are valid. If no
tables are provided, all tables will be exported, and no checks
will be made before executing the query.
hints : dict
Additional configurations.
"""
if hints is None:
hints = {}
format_type = hints.get("format", "sqlite")
if format_type != "sqlite":
raise NotImplementedError("Invalid format type")
output_path = self._get_output_path(hints)
overwrite = hints.get("overwrite", False)
service = self._get_service(format_type)
if isinstance(tables, str):
tables = [tables]
if not overwrite and tables:
handle = service.validate_tables(output_path, tables)
if handle is not None:
return service.read_sql_query(handle, query)
if not self.export(tables, hints):
return None
handle = service.validate_tables(output_path, tables)
if handle is not None:
return service.read_sql_query(handle, query)
logger.error(
f"Could not validate {tables}."
" Please ensure the table names are correct or"
" re-try with a recent version of Nsight Systems."
)
def list_tables(self, hints=None):
"""List the available tables in the report file."""
if hints is None:
hints = {}
service = self._get_service(hints.get("format", "parquetdir"))
return service.list_tables(self._get_output_path(hints))
def _get_time_cols(df):
if "start" in df.columns:
if "end" in df.columns:
# Time range.
return ("start", "end")
else:
# Point in time.
return ("start", "start")
if "timestamp" in df.columns:
# Point in time.
return ("timestamp", "timestamp")
elif "rawTimestamp" in df.columns:
# Point in time.
return ("rawTimestamp", "rawTimestamp")
else:
raise NotImplementedError
def filter_by_time_range(dfs, start_time=0, end_time=sys.maxsize):
"""Filter the dataframe(s) to retain only events that start
or end within the given range.
Parameters
----------
dfs : list of dataframes or dataframe
Dataframes to filter.
start_time : int
Start time of the desired range.
end_time : int
End time of the desired range.
"""
if not isinstance(dfs, list):
dfs = [dfs]
for df in dfs:
if df.empty:
continue
start_col, end_col = _get_time_cols(df)
mask = pd.Series(True, index=df.index)
if end_time is not None:
mask &= df[start_col] <= end_time
if start_time is not None:
mask &= df[end_col] >= start_time
df.drop(df[~mask].index, inplace=True)
def apply_time_offset(dfs, session_offset):
"""Synchronize session start times.
Parameters
----------
dfs : list of dataframes or dataframe
Dataframes to filter.
session_offset : int
Offset of the session time
"""
if not isinstance(dfs, list):
dfs = [dfs]
for df in dfs:
if df.empty:
continue
start_col, end_col = _get_time_cols(df)
df.loc[:, start_col] += session_offset
if start_col != end_col:
df.loc[:, end_col] += session_offset
def compute_session_duration(analysis_df, target_info_df, min_session):
profile_duration = analysis_df.at[0, "duration"]
session_time = target_info_df.at[0, "utcEpochNs"]
session_offset = session_time - min_session
profile_duration += session_offset
return session_offset, profile_duration
def replace_id_with_value(main_df, str_df, id_column):
"""Replace the values in 'id_column' of 'main_df' with the corresponding
string value stored in 'str_df'.
Parameters
----------
main_df : dataframe
Dataframe containing 'id_column'.
str_df : dataframe
Dataframe 'StringId' that maps IDs to string values.
id_column : str
Name of the column that should be replaced with the corresponding
string values.
"""
renamed_str_df = str_df.rename(columns={"id": id_column})
merged_df = main_df.merge(renamed_str_df, on=id_column, how="left")
# Drop the original 'id_column' column and rename 'value' column to 'id_column'.
merged_df = merged_df.drop(columns=[id_column])
merged_df = merged_df.rename(columns={"value": id_column})
return merged_df
def get_domain_range_df(nvtx_df, domain_name):
"""Get push/pop and start/end ranges of the specified domain."""
domain_df = nvtx_df[
(nvtx_df["eventType"] == EVENT_TYPE_NVTX_DOMAIN_CREATE)
& (nvtx_df["text"] == domain_name)
]
if domain_df.empty:
return domain_df
domain_id = domain_df["domainId"].iloc[0]
return nvtx_df[
(nvtx_df["domainId"] == domain_id)
& (
nvtx_df["eventType"].isin(
[EVENT_TYPE_NVTX_PUSHPOP_RANGE, EVENT_TYPE_NVTX_STARTEND_RANGE]
)
)
]
def combine_text_fields(nvtx_df, str_df):
"""Combine the 'text' and 'textId' fields of the NVTX dataframe.
This function simplifies the lookup process for accessing the event
message. The 'text' field corresponds to the NVTX event message passed
through 'nvtxDomainRegisterString', while the 'textId' field corresponds
to the other case. By merging these fields, we streamline the process of
retrieving the message.
"""
if not nvtx_df["textId"].notnull().any():
return nvtx_df.copy()
nvtx_textId_df = replace_id_with_value(nvtx_df, str_df, "textId")
mask = ~nvtx_textId_df["textId"].isna()
nvtx_textId_df.loc[mask, "text"] = nvtx_textId_df.loc[mask, "textId"]
return nvtx_textId_df.drop(columns=["textId"])
def extract_pid(global_id_series):
"""Extract the PID from the global ID.
Parameters
----------
global_id_series: series
Either the 'globalPid' or 'globalTid' column of the dataframe.
"""
pid = (global_id_series >> np.array(24)) & 0x00FFFFFF
return pid
def combine_api_gpu_dfs(runtime_df, gpu_df):
"""Combine the runtime dataframe and the gpu dataframes.
This function merges all the dataframes based on the 'correlationId'. The
'start' and 'end' columns of the GPU dataframes are renamed to 'gpu_start'
and 'gpu_end'.
"""
gpu_df["pid"] = extract_pid(gpu_df["globalPid"])
gpu_df = gpu_df.rename(columns={"start": "gpu_start", "end": "gpu_end"})
api_df = runtime_df.copy()
api_df["pid"] = extract_pid(api_df["globalTid"])
api_df = api_df.merge(gpu_df, on=["correlationId", "pid"], how="inner")
# Both PID and globalPid can be retrieved from globalTid.
return api_df.drop(columns=["pid", "globalPid"])
|