File: nsys_display.py

package info (click to toggle)
nvidia-cuda-toolkit 12.4.1-3
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 18,505,836 kB
  • sloc: ansic: 203,477; cpp: 64,769; python: 34,699; javascript: 22,006; xml: 13,410; makefile: 3,085; sh: 2,343; perl: 352
file content (204 lines) | stat: -rw-r--r-- 5,755 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.

import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

from ipywidgets import Dropdown, interact


def get_stats_cols(df):
    column_names_set = set(df.columns)
    q1 = "Q1" if "Q1" in column_names_set else "Q1 (approx)"
    q3 = "Q3" if "Q3" in column_names_set else "Q3 (approx)"

    if "Med" in column_names_set:
        med = "Med"
    elif "Median" in column_names_set:
        med = "Median"
    else:
        med = "Median (approx)"

    if "StdDev" in column_names_set:
        std = "StdDev"
    elif "Std" in column_names_set:
        std = "Std"
    else:
        std = "Std (approx)"

    return q1, med, q3, std


def display_box(df, x=None, **layout_args):
    if x is None:
        x = df.index

    q1, med, q3, std = get_stats_cols(df)

    fig = go.Figure()
    fig.add_trace(
        go.Box(
            x=x,
            q1=df[q1],
            median=df[med],
            q3=df[q3],
            lowerfence=df["Min"],
            upperfence=df["Max"],
            sd=df[std],
        )
    )

    fig.update_layout(**layout_args)
    fig.show()


def display_stats_scatter(df, x=None, **layout_args):
    if x is None:
        x = df.index

    fig = go.Figure()

    q1, med, q3, _ = get_stats_cols(df)
    col_names = [q1, med, q3, "Min", "Max"]

    for name in col_names:
        fig.add_trace(go.Scatter(x=x, y=df[name], name=name))

    fig.update_layout(**layout_args)
    fig.show()


def display_table_per_rank(df):
    if df.empty:
        display(df)
        return

    report_groups = df.groupby("File")

    def display_table(name):
        report_df = report_groups.get_group(name)
        report_df = report_df.drop(columns=["File"])
        display(report_df)

    dropdown = Dropdown(
        options=report_groups.groups.keys(), layout={"width": "max-content"}
    )

    interact(display_table, name=dropdown)


def display_stats_per_operation(
    df, x=None, box=True, scatter=True, table=True, **layout_args
):
    if df.empty:
        display(df)
        return

    if x is None:
        x = df.index

    op_groups = df.groupby(x)

    def display_graphs(name):
        op_df = op_groups.get_group(name)
        if table:
            display(op_df.reset_index(drop=True).set_index("File"))
        if box:
            display_box(op_df, x=op_df["File"], **layout_args)
        if scatter:
            display_stats_scatter(op_df, x=op_df["File"], **layout_args)

    operations = list(op_groups.groups.keys())

    # Plot is not being displayed for the default dropdown value. If there is
    # only one element, do not create the dropdown. Otherwise, set it to the
    # second element before resetting to the first one.
    if len(operations) > 1:
        dropdown = Dropdown(
            options=operations, layout={"width": "max-content"}, value=operations[1]
        )
        interact(display_graphs, name=dropdown)
        dropdown.value = operations[0]
    elif len(operations) == 1:
        display_graphs(operations[0])


def display_summary_graph(df, value_col, **layout_args):
    fig = px.line(df.groupby("Duration")[value_col].mean())
    fig.update_layout(**layout_args)
    fig.show()


def _get_heatmap_height(name_count, plot_count=1):
    if name_count < 9:
        name_count = 9
    return (name_count * 27 + 110) * plot_count


def display_heatmaps(
    df, types, xaxis_title, yaxis_title, zaxis_title, zmax=100, **layout_args
):
    unique_name_count = df["Name"].nunique()
    height = _get_heatmap_height(unique_name_count, len(types))

    fig = make_subplots(
        len(types), 1, subplot_titles=types, vertical_spacing=150 / height
    )

    for index, type in enumerate(types):
        fig.add_trace(
            go.Heatmap(
                x=df["Duration"],
                y=df["Name"],
                z=df[type],
                showscale=False,
                zmax=zmax,
                zauto=False,
            ),
            index + 1,
            1,
        )

    fig.update_layout(height=height, **layout_args)
    fig.update_xaxes(title=xaxis_title)
    fig.update_yaxes(
        title=yaxis_title, categoryorder="category descending", nticks=unique_name_count
    )
    fig.update_traces({"colorbar": {"title_text": zaxis_title}}, showscale=True, row=0)
    fig.update_traces(
        hovertemplate=f"{xaxis_title}: %{{x}}<br>{yaxis_title}: %{{y}}<br>{zaxis_title}: %{{z}}<extra></extra>"
    )
    fig.show()


def display_heatmap(
    df, value_col, xaxis_title, yaxis_title, zaxis_title, zmax=100, **layout_args
):
    fig = px.imshow(
        df.pivot(index="Name", columns="Duration")[value_col], range_color=(0, zmax)
    )

    unique_name_count = df["Name"].nunique()
    fig.update_layout(
        height=_get_heatmap_height(unique_name_count),
        coloraxis_colorbar_title=zaxis_title,
        **layout_args,
    )
    fig.update_xaxes(title=xaxis_title)
    fig.update_yaxes(
        title=yaxis_title, categoryorder="category descending", nticks=unique_name_count
    )
    fig.update_traces(
        hovertemplate=f"{xaxis_title}: %{{x}}<br>{yaxis_title}: %{{y}}<br>{zaxis_title}: %{{z}}<extra></extra>"
    )

    fig.show()