1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import pickle
import importlib
import os
import sys
import glob
import math
import re
from collections import deque
import pandas as pd
import numpy as np
import sqlite3
import concurrent.futures
# import nsys_rep
# import nvtx
# import multinode_loader
k_nanoseconds2milliseconds = 1000000
k_nvtx_start = "gpu_start"
k_nvtx_end = "gpu_end"
k_nvtx_duration = "gpu_duration"
k_nvtx_text = "text"
k_nvtx_stats_count = "Count"
k_nvtx_stats_sum = "Sum"
k_nvtx_stats_min = "Min"
k_nvtx_stats_max = "Max"
k_nvtx_stats_mean = "Mean"
k_nvtx_stats_median = "Median"
# k_nvtx_stats_std = 'StdDev'
k_nvtx_stats_q1 = "Q1"
k_nvtx_stats_q3 = "Q3"
k_nvtx_stats_rank = "Rank"
# DTSP-14650: Code cleanup
def display_column_graph(
figs,
vis_df,
columnName,
title="",
xaxis_title="Rank",
yaxis_title="Time",
legend_title="Legend",
):
k_nanoseconds2milliseconds = 1000000
ranks_ds = vis_df[k_nvtx_stats_rank]
column_ds = pd.Series(vis_df[columnName].values / k_nanoseconds2milliseconds)
return __display_graph(
figs,
ranks_ds, # x_axis
column_ds, # y_axes
title=" ".join([title, columnName]),
xaxis_title=xaxis_title,
yaxis_title=yaxis_title,
legend_title=legend_title,
)
def display_pace_graph(
figs,
fileDir,
tableName, # nsys_rep.k_table_nvtx
selectRowByColumnName, # k_nvtx_text
selectRowByColumnValue, # ex: a particular NVTX range name like ncclAllReduce
paceColumnName, # ex: start, end, gpu_start, gpu_end
wall_adjust=True,
title=None,
xaxis_title="Ranks",
yaxis_title="Time",
legend_title="Steps",
):
session_start_min = sys.maxsize
# session_start_list = list()
if wall_adjust == True:
for fileData in fileDir:
session_df = fileData[nsys_rep.k_table_session_start]
session_start = session_df.at[0, "utcEpochNs"]
if session_start < session_start_min:
session_start_min = session_start
pace_ds_list = list()
table_gdf_list = list() # for pacing
for fileData in fileDir:
table_df = fileData[tableName]
table_df = table_df.loc[
(table_df[paceColumnName].isna() == False)
& (table_df[selectRowByColumnName] == selectRowByColumnValue)
]
if wall_adjust == True:
session_df = fileData[nsys_rep.k_table_session_start]
session_offset = session_df.at[0, "utcEpochNs"] - session_start_min
table_df["session_offset"] = session_offset
table_df[paceColumnName] = (
table_df[paceColumnName] + table_df["session_offset"]
)
pace_ds = table_df[paceColumnName].values
pace_ds_list.append(pace_ds)
pace_df = pd.DataFrame(pace_ds_list)
import warnings
warnings.filterwarnings("ignore")
fig = pace_df.plot.line(orientation="v")
fig.update_layout(
xaxis_title=xaxis_title,
yaxis_title=yaxis_title,
legend_title=legend_title,
title=(
title
if (title != None)
else (" ".join(["Pace of", selectRowByColumnValue, paceColumnName]))
),
)
fig.show()
if figs != None:
figs.append(fig)
display("Each line represents how long it took a rank to reach this point in time.")
return fig
def display_boxplots_grouped(
figs,
stats_groups,
orientation="v",
title=None,
xaxis_title="Names",
yaxis_title="Time",
legend_title="Legend",
):
# if we wanted outliers
# The lower fence is at x = Q1 - 1.5 * IQR.
# The upper fence is at x = Q3 + I.5 * IQR.
# The IQR is the interquartile range: IQR = Q3 - Q1.
# Since the IQR is the length of the box in the boxplot,
# outliers are data that is more than 1.5 boxlengths
# from the boxplot box.
mean_ds = stats_groups["Mean"].mean()
min_ds = stats_groups["Min"].min()
q1_ds = stats_groups["Q1"].min()
q3_ds = stats_groups["Q3"].max()
max_ds = stats_groups["Max"].max()
median_ds = stats_groups["Median"].median()
index = list(stats_groups.groups.keys())
return display_boxplot(
figs,
index,
min_ds,
q1_ds,
median_ds,
q3_ds,
max_ds,
mean_ds=mean_ds,
orientation=orientation,
title=title,
xaxis_title=xaxis_title,
)
def display_boxplots_df(
figs,
stats_df,
orientation="v",
title=None,
xaxis_title="Names",
yaxis_title="Time",
legend_title="Legend",
):
# if we wanted outliers
# The lower fence is at x = Q1 - 1.5 * IQR.
# The upper fence is at x = Q3 + I.5 * IQR.
# The IQR is the interquartile range: IQR = Q3 - Q1.
# Since the IQR is the length of the box in the boxplot,
# outliers are data that is more than 1.5 boxlengths
# from the boxplot box.
mean_ds = stats_df.get("Mean", None)
if mean_ds is None:
mean_ds = stats_df.get("mean", None)
min_ds = stats_df.get("Min", None)
if min_ds is None:
min_ds = stats_df.get("min", None)
max_ds = stats_df.get("Max", None)
if max_ds is None:
max_ds = stats_df.get("max", None)
q1_ds = stats_df.get("Q1", None)
if q1_ds is None:
q1_ds = stats_df.get("Q1 (approx)", None)
if q1_ds is None:
q1_ds = stats_df["25%"]
median_ds = stats_df.get("Median")
if median_ds is None:
median_ds = stats_df.get("Median (approx)", None)
if median_ds is None:
median_ds = stats_df["50%"]
q3_ds = stats_df.get("Q3", None)
if q3_ds is None:
q3_ds = stats_df.get("Q3 (approx)", None)
if q3_ds is None:
q3_ds = stats_df["75%"]
index = stats_df.index
return display_boxplot(
figs,
index,
min_ds,
q1_ds,
median_ds,
q3_ds,
max_ds,
mean_ds=mean_ds,
orientation=orientation,
title=title,
xaxis_title=xaxis_title,
)
def display_boxplot_and_graph(
figs,
ranks_ds,
vis_df,
orientation="v",
title=None,
xaxis_title=None,
yaxis_title="Time",
legend_title="Legend",
):
result_figs = list()
display_boxplot(
result_figs,
ranks_ds,
vis_df["Min"],
vis_df["Q1"],
vis_df["Median"],
vis_df["Q3"],
vis_df["Max"],
mean_ds=vis_df["Mean"],
orientation=orientation,
title=(title + " - Full Distribution"),
xaxis_title=xaxis_title,
yaxis_title=yaxis_title,
legend_title=legend_title,
)
display_graph(
result_figs,
ranks_ds,
vis_df[["Q1", "Median", "Q3"]],
title=(title + " - 50% of Distribution"),
xaxis_title=xaxis_title,
yaxis_title=yaxis_title,
legend_title=legend_title,
)
if figs != None:
figs.extend(result_figs)
return result_figs
def display_boxplot(
figs,
x_axis,
min_ds,
q1_ds,
median_ds,
q3_ds,
max_ds,
mean_ds=None,
orientation="v",
title=None,
xaxis_title=None,
yaxis_title="Time",
legend_title="Legend",
):
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(
go.Box(
x=x_axis,
lowerfence=min_ds,
q1=q1_ds,
median=median_ds,
q3=q3_ds,
upperfence=max_ds,
mean=mean_ds,
)
)
fig.update_traces(orientation=orientation)
fig.update_layout(
xaxis_title=xaxis_title,
yaxis_title=yaxis_title,
legend_title=legend_title,
title=title,
height=800,
)
fig.show()
if figs != None:
figs.append(fig)
return fig
def display_graph(
figs,
x_axis,
y_axes,
title=None,
xaxis_title=None,
yaxis_title=None,
legend_title="Legend",
):
data = None
if isinstance(y_axes, pd.DataFrame) == True:
data = y_axes.set_index(x_axis)
elif isinstance(y_axes, dict) == True:
data = pd.DataFrame(y_axes, index=x_axis)
elif isinstance(y_axes, pd.Series) == True:
data = d.DataFrame({"": y_axes}, index=x_axis)
elif isinstance(y_axes, np.ndarray) == True:
data = pd.DataFrame({"": pd.Series(y_axes)}, index=x_axis)
else:
# print(type(y_axes))
return
fig = data.plot.line()
fig.update_layout(
title=title,
xaxis_title=xaxis_title,
yaxis_title=yaxis_title,
legend_title=legend_title,
)
fig.show()
if figs != None:
figs.append(fig)
return fig
def display_pace_graph(figs, pace_map_by_column, pace_column, start=1):
pace_df = pace_map_by_column[pace_column]
pace_df = pace_df.loc[start:]
__display_pace_graph(figs, pace_df, pace_column)
def display_pace_graph_delta_minus_median(figs, pace_map_by_column, start=1):
pace_column = "delta"
stats_df = pace_map_by_column["delta_stats"]
median_ds = stats_df["Median"]
pace_df = pace_map_by_column[pace_column].copy()
for columnName, column_ds in list(pace_df.items()):
pace_df[columnName] = column_ds - median_ds
pace_df = pace_df.loc[start:]
__display_pace_graph(figs, pace_df, "variance of " + pace_column)
def __display_pace_graph(figs, pace_df, pace_column):
# display(pace_df)
import warnings
warnings.filterwarnings("ignore")
fig = pace_df.plot.line()
fig.update_layout(
yaxis_title="Time",
title="Progress - Iterations defined by " + pace_column,
)
fig.show()
figs.append(fig)
fig = pace_df.T.plot.line()
fig.update_layout(
yaxis_title="Time",
title="Consistency - Iterations defined by " + pace_column,
)
fig.show()
figs.append(fig)
def __display_stats_per_rank_of_group(selected, rank_stats_gdf):
df = rank_stats_gdf.get_group(selected)
df = df.reset_index(drop=True)
df = df.set_index(df[k_nvtx_stats_rank])
display(df)
figs = list()
display_boxplots_df(figs, df, xaxis_title="Ranks")
display_graph(
figs,
df.index,
df[["Q1", "Median", "Q3"]],
title="50% of Distribution",
xaxis_title="Ranks",
)
def display_stats_per_rank_groups_combobox(rank_stats_gdf):
from ipywidgets import interact, fixed, Dropdown
list_names = list(rank_stats_gdf.groups.keys())
# Plot does not display if the value is not manually changed
if len(list_names) > 1:
dropdown = Dropdown(
options=list_names, layout={"width": "max-content"}, value=list_names[1]
)
interact(
__display_stats_per_rank_of_group,
selected=dropdown,
rank_stats_gdf=fixed(rank_stats_gdf),
)
dropdown.value = list_names[0]
elif len(list_names) == 1:
__display_stats_per_rank_of_group(list_names[0], rank_stats_gdf)
|