1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
import ctypes
import glob
import os
import sysconfig
from ._compiled_module import (
backend_version,
backend_version_string,
get_last_error_string,
destroy_handle,
norm_forward_phase,
reduction_mode,
behavior_note,
create_handle,
create_kernel_cache,
get_stream,
numerical_note,
set_stream,
build_plan_policy,
data_type,
heur_mode,
pygraph,
tensor,
cudnnGraphNotSupportedError,
)
from .datatypes import _library_type, _is_torch_tensor
__version__ = "1.8.0"
def _tensor(
self,
dim,
stride,
data_type=data_type.NOT_SET,
is_virtual=False,
is_pass_by_value=False,
ragged_offset=None,
name="",
):
"""
Create a tensor.
Args:
dim (List[int]): The dimensions of the tensor.
stride (List[int]): The strides of the tensor.
data_type (cudnn.data_type): The data type of the tensor.
is_virtual (bool): Flag indicating if the tensor is virtual.
is_pass_by_value (bool): Flag indicating if the tensor is passed by value.
ragged_offset (cudnn_tensor): The ragged offset tensor.
name (str): The name of the tensor.
Returns:
cudnn_tensor: The created tensor.
"""
return self._make_tensor(
dim=dim,
stride=stride,
data_type=_library_type(data_type),
is_virtual=is_virtual,
is_pass_by_value=is_pass_by_value,
ragged_offset=ragged_offset,
name=name,
)
def _set_data_type(
self,
data_type=data_type.NOT_SET,
):
return self._set_data_type(_library_type(data_type))
_compiled_module.tensor.set_data_type = _set_data_type
pygraph.tensor = _tensor
def _library_device_pointer(input_tensor):
# either pass in pointers directly
if type(input_tensor) is int:
return input_tensor
# directly extract data pointer for torch tensors
elif _is_torch_tensor(input_tensor):
return input_tensor.data_ptr()
# fall back to dlpack support by library
else:
return _compiled_module._get_data_ptr(input_tensor)
def _execute(self, tensor_to_device_buffer, workspace, handle=None):
"""
Execute a cudnn graph.
Args:
tensor_to_device_buffer (dict(cudnn_tensor, Union[torch.Tensor, int, __dlpack__])): The dimensions of the tensor.
workspace (Union[torch.Tensor, int, __dlpack__]): The name of the tensor.
handle: cudnn_handle created with cudnn.create_handle()
Returns:
None
"""
uid_to_tensor_pointer = {
x if type(x) is int else x.get_uid(): _library_device_pointer(pointer)
for x, pointer in tensor_to_device_buffer.items()
if x is not None
}
workspace_pointer = _library_device_pointer(workspace)
self._execute(uid_to_tensor_pointer, workspace_pointer, handle)
def _execute_plan_at_index(
self, tensor_to_device_buffer, workspace, index, handle=None
):
"""
Execute a cudnn graph.
Args:
tensor_to_device_buffer (dict(cudnn_tensor, Union[torch.Tensor, int, __dlpack__])): The dimensions of the tensor.
workspace (Union[torch.Tensor, int, __dlpack__]): The name of the tensor.
index(int): Location of execution plan to use.
handle: cudnn_handle created with cudnn.create_handle()
Returns:
None
"""
uid_to_tensor_pointer = {
x if type(x) is int else x.get_uid(): _library_device_pointer(pointer)
for x, pointer in tensor_to_device_buffer.items()
if x is not None
}
workspace_pointer = _library_device_pointer(workspace)
self._execute_plan_at_index(uid_to_tensor_pointer, workspace_pointer, index, handle)
pygraph.execute = _execute
pygraph.execute_plan_at_index = _execute_plan_at_index
def _dlopen_cudnn():
# First look at python site packages
lib_path = glob.glob(
os.path.join(
sysconfig.get_path("purelib"), "nvidia/cudnn/lib/libcudnn.so.*[0-9]"
)
)
if lib_path:
assert (
len(lib_path) == 1
), f"Found {len(lib_path)} libcudnn.so.x in nvidia-cudnn-cuXX."
lib = ctypes.CDLL(lib_path[0])
else: # Fallback
lib = ctypes.CDLL("libcudnn.so")
handle = ctypes.cast(lib._handle, ctypes.c_void_p).value
_compiled_module._set_dlhandle_cudnn(handle)
_dlopen_cudnn()
|