File: datatypes.py

package info (click to toggle)
nvidia-cudnn-frontend 1.8.0%2Bds-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 4,376 kB
  • sloc: cpp: 58,463; python: 4,138; ansic: 1,407; makefile: 4
file content (75 lines) | stat: -rw-r--r-- 2,535 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from ._compiled_module import data_type as cudnn_data_type

torch_available = None
_torch_to_cudnn_data_type_dict = None


def is_torch_available():
    global torch_available, _torch_to_cudnn_data_type_dict
    # this condition ensures that datatype mapping is only created once
    if torch_available is None:
        try:
            import torch

            torch_available = True
            _torch_to_cudnn_data_type_dict = {
                torch.half: cudnn_data_type.HALF,
                torch.float16: cudnn_data_type.HALF,
                torch.bfloat16: cudnn_data_type.BFLOAT16,
                torch.float: cudnn_data_type.FLOAT,
                torch.float32: cudnn_data_type.FLOAT,
                torch.double: cudnn_data_type.DOUBLE,
                torch.float64: cudnn_data_type.DOUBLE,
                torch.int8: cudnn_data_type.INT8,
                torch.int32: cudnn_data_type.INT32,
                torch.int64: cudnn_data_type.INT64,
                torch.uint8: cudnn_data_type.UINT8,
                torch.bool: cudnn_data_type.BOOLEAN,
            }

            def possibly_add_type(torch_type_name, cudnn_type):
                # Only try adding the type if the version of torch being used supports it
                if hasattr(torch, torch_type_name):
                    torch_type = getattr(torch, torch_type_name)
                    _torch_to_cudnn_data_type_dict[torch_type] = cudnn_type

            possibly_add_type("float8_e4m3fn", cudnn_data_type.FP8_E4M3)
            possibly_add_type("float8_e5m2", cudnn_data_type.FP8_E5M2)

        except ImportError:
            torch_available = False
            _torch_to_cudnn_data_type_dict = {}
    return torch_available


# Returns None in case mapping is not available
def _torch_to_cudnn_data_type(torch_data_type) -> cudnn_data_type:
    if is_torch_available():
        return _torch_to_cudnn_data_type_dict.get(torch_data_type, None)
    else:
        return None


def _library_type(input_type):
    if type(input_type) is cudnn_data_type:
        return input_type

    for cvt_fn in [
        _torch_to_cudnn_data_type,
        # Add more DL libraries to support here
    ]:
        out = cvt_fn(input_type)
        if out is not None:
            return out

    raise Exception(
        f"No available conversion from type {input_type} to a library type."
    )


def _is_torch_tensor(input_tensor) -> bool:
    if is_torch_available():
        import torch

        return isinstance(input_tensor, torch.Tensor)
    return False