1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
#include <utility>
#include "pybind11/pybind11.h"
#include "pybind11/cast.h"
#include "pybind11/stl.h"
#include "pybind11/complex.h"
#include "pybind11/functional.h"
#include "cudnn_frontend.h"
namespace py = pybind11;
using namespace pybind11::literals;
namespace cudnn_frontend {
namespace python_bindings {
void
throw_if(bool const cond, cudnn_frontend::error_code_t const error_code, std::string const& error_msg);
class HandleManagement {
public:
static std::intptr_t
create_handle() {
cudnnHandle_t handle;
auto status = detail::create_handle(&handle);
throw_if(
status != CUDNN_STATUS_SUCCESS, cudnn_frontend::error_code_t::HANDLE_ERROR, "cudnnHandle Create failed");
return reinterpret_cast<std::intptr_t>(handle);
}
static void
destroy_handle(std::intptr_t handle) {
auto status = detail::destroy_handle((cudnnHandle_t)handle);
throw_if(
status != CUDNN_STATUS_SUCCESS, cudnn_frontend::error_code_t::HANDLE_ERROR, "cudnnHandle Destroy failed");
}
static void
set_stream(std::intptr_t handle, std::intptr_t stream) {
auto status = detail::set_stream((cudnnHandle_t)handle, (cudaStream_t)stream);
throw_if(status != CUDNN_STATUS_SUCCESS, cudnn_frontend::error_code_t::HANDLE_ERROR, "cudnnSetStream failed");
}
static std::intptr_t
get_stream(std::intptr_t handle) {
cudaStream_t streamId = nullptr;
auto status = detail::get_stream((cudnnHandle_t)handle, &streamId);
throw_if(status != CUDNN_STATUS_SUCCESS, cudnn_frontend::error_code_t::HANDLE_ERROR, "cudnnGetStream failed");
return reinterpret_cast<std::intptr_t>(streamId);
}
};
std::shared_ptr<cudnn_frontend::KernelCache>
create_kernel_cache_helper() {
auto kernel_cache = std::make_shared<cudnn_frontend::KernelCache>();
throw_if(kernel_cache == nullptr, cudnn_frontend::error_code_t::INVALID_VALUE, "kernel cache creation failed");
return kernel_cache;
}
static std::string
get_last_error_string() {
return detail::get_last_error_string_();
}
void
init_properties(py::module_& m) {
py::enum_<cudnn_frontend::DataType_t>(m, "data_type")
.value("FLOAT", cudnn_frontend::DataType_t::FLOAT)
.value("DOUBLE", cudnn_frontend::DataType_t::DOUBLE)
.value("HALF", cudnn_frontend::DataType_t::HALF)
.value("INT8", cudnn_frontend::DataType_t::INT8)
.value("INT32", cudnn_frontend::DataType_t::INT32)
.value("INT8x4", cudnn_frontend::DataType_t::INT8x4)
.value("UINT8", cudnn_frontend::DataType_t::UINT8)
.value("UINT8x4", cudnn_frontend::DataType_t::UINT8x4)
.value("INT8x32", cudnn_frontend::DataType_t::INT8x32)
.value("BFLOAT16", cudnn_frontend::DataType_t::BFLOAT16)
.value("INT64", cudnn_frontend::DataType_t::INT64)
.value("BOOLEAN", cudnn_frontend::DataType_t::BOOLEAN)
.value("FP8_E4M3", cudnn_frontend::DataType_t::FP8_E4M3)
.value("FP8_E5M2", cudnn_frontend::DataType_t::FP8_E5M2)
.value("FAST_FLOAT_FOR_FP8", cudnn_frontend::DataType_t::FAST_FLOAT_FOR_FP8)
.value("NOT_SET", cudnn_frontend::DataType_t::NOT_SET);
py::class_<cudnn_frontend::graph::Tensor_attributes, std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>(
m, "tensor")
.def(py::init<>())
.def("get_name", &cudnn_frontend::graph::Tensor_attributes::get_name)
.def("set_name", &cudnn_frontend::graph::Tensor_attributes::set_name)
.def("get_data_type", &cudnn_frontend::graph::Tensor_attributes::get_data_type)
.def("_set_data_type", &cudnn_frontend::graph::Tensor_attributes::set_data_type)
.def("get_dim", &cudnn_frontend::graph::Tensor_attributes::get_dim)
.def("set_dim", &cudnn_frontend::graph::Tensor_attributes::set_dim)
.def("get_stride", &cudnn_frontend::graph::Tensor_attributes::get_stride)
.def("set_stride", &cudnn_frontend::graph::Tensor_attributes::set_stride)
.def("get_is_virtual", &cudnn_frontend::graph::Tensor_attributes::get_is_virtual)
.def("set_is_virtual", &cudnn_frontend::graph::Tensor_attributes::set_is_virtual)
.def(
"set_output",
[](cudnn_frontend::graph::Tensor_attributes& self,
bool const is_output) -> cudnn_frontend::graph::Tensor_attributes& {
self.set_is_virtual(!is_output);
return self;
},
py::return_value_policy::reference) // NOTICE THATS ITS JUST ANOTHER NAME FOR SET_IS_VIRTUAL
.def("get_is_pass_by_value", &cudnn_frontend::graph::Tensor_attributes::get_is_pass_by_value)
.def("set_is_pass_by_value", &cudnn_frontend::graph::Tensor_attributes::set_is_pass_by_value)
.def("get_uid", &cudnn_frontend::graph::Tensor_attributes::get_uid)
.def("set_uid", &cudnn_frontend::graph::Tensor_attributes::set_uid)
.def("set_ragged_offset", &cudnn_frontend::graph::Tensor_attributes::set_ragged_offset)
.def("__repr__", [](cudnn_frontend::graph::Tensor_attributes const& props) {
std::ostringstream out;
out << json{props};
return out.str();
});
m.def("get_last_error_string", &get_last_error_string);
py::class_<cudnn_frontend::KernelCache, std::shared_ptr<cudnn_frontend::KernelCache>>(m, "kernel_cache");
m.def("create_kernel_cache", &create_kernel_cache_helper);
m.def("create_handle", &HandleManagement::create_handle);
m.def("destroy_handle", &HandleManagement::destroy_handle);
m.def("get_stream", &HandleManagement::get_stream);
m.def("set_stream", &HandleManagement::set_stream, py::arg("handle"), py::arg("stream"));
py::enum_<cudnn_frontend::NormFwdPhase_t>(m, "norm_forward_phase")
.value("INFERENCE", cudnn_frontend::NormFwdPhase_t::INFERENCE)
.value("TRAINING", cudnn_frontend::NormFwdPhase_t::TRAINING)
.value("NOT_SET", cudnn_frontend::NormFwdPhase_t::NOT_SET);
py::enum_<cudnn_frontend::HeurMode_t>(m, "heur_mode")
.value("A", cudnn_frontend::HeurMode_t::A)
.value("B", cudnn_frontend::HeurMode_t::B)
.value("FALLBACK", cudnn_frontend::HeurMode_t::FALLBACK);
py::enum_<cudnn_frontend::ConvolutionMode_t>(m, "convolution_mode")
.value("CONVOLUTION", cudnn_frontend::ConvolutionMode_t::CONVOLUTION)
.value("CROSS_CORRELATION", cudnn_frontend::ConvolutionMode_t::CROSS_CORRELATION);
py::enum_<cudnn_frontend::ReductionMode_t>(m, "reduction_mode")
.value("ADD", cudnn_frontend::ReductionMode_t::ADD)
.value("MUL", cudnn_frontend::ReductionMode_t::MUL)
.value("MIN", cudnn_frontend::ReductionMode_t::MIN)
.value("MAX", cudnn_frontend::ReductionMode_t::MAX)
.value("AMAX", cudnn_frontend::ReductionMode_t::AMAX)
.value("AVG", cudnn_frontend::ReductionMode_t::AVG)
.value("NORM1", cudnn_frontend::ReductionMode_t::NORM1)
.value("NORM2", cudnn_frontend::ReductionMode_t::NORM2)
.value("MUL_NO_ZEROS", cudnn_frontend::ReductionMode_t::MUL_NO_ZEROS)
.value("NOT_SET", cudnn_frontend::ReductionMode_t::NOT_SET);
py::enum_<cudnn_frontend::BuildPlanPolicy_t>(m, "build_plan_policy")
.value("HEURISTICS_CHOICE", cudnn_frontend::BuildPlanPolicy_t::HEURISTICS_CHOICE)
.value("ALL", cudnn_frontend::BuildPlanPolicy_t::ALL);
py::enum_<cudnn_frontend::NumericalNote_t>(m, "numerical_note")
.value("TENSOR_CORE", cudnn_frontend::NumericalNote_t::TENSOR_CORE)
.value("DOWN_CONVERT_INPUTS", cudnn_frontend::NumericalNote_t::DOWN_CONVERT_INPUTS)
.value("REDUCED_PRECISION_REDUCTION", cudnn_frontend::NumericalNote_t::REDUCED_PRECISION_REDUCTION)
.value("FFT", cudnn_frontend::NumericalNote_t::FFT)
.value("NONDETERMINISTIC", cudnn_frontend::NumericalNote_t::NONDETERMINISTIC)
.value("WINOGRAD", cudnn_frontend::NumericalNote_t::WINOGRAD)
.value("WINOGRAD_TILE_4x4", cudnn_frontend::NumericalNote_t::WINOGRAD_TILE_4x4)
.value("WINOGRAD_TILE_6x6", cudnn_frontend::NumericalNote_t::WINOGRAD_TILE_6x6)
.value("WINOGRAD_TILE_13x13", cudnn_frontend::NumericalNote_t::WINOGRAD_TILE_13x13)
.value("STRICT_NAN_PROP", cudnn_frontend::NumericalNote_t::STRICT_NAN_PROP);
py::enum_<cudnn_frontend::BehaviorNote_t>(m, "behavior_note")
.value("RUNTIME_COMPILATION", cudnn_frontend::BehaviorNote_t::RUNTIME_COMPILATION)
.value("REQUIRES_FILTER_INT8x32_REORDER", cudnn_frontend::BehaviorNote_t::REQUIRES_FILTER_INT8x32_REORDER)
.value("REQUIRES_BIAS_INT8x32_REORDER", cudnn_frontend::BehaviorNote_t::REQUIRES_BIAS_INT8x32_REORDER)
.value("SUPPORTS_CUDA_GRAPH_NATIVE_API", cudnn_frontend::BehaviorNote_t::SUPPORTS_CUDA_GRAPH_NATIVE_API);
}
} // namespace python_bindings
} // namespace cudnn_frontend
// namespace pybind11 {
// namespace detail {
// template <> struct type_caster<std::shared_ptr<cudnn_frontend::KernelCache>> {
// public:
// PYBIND11_TYPE_CASTER(std::shared_ptr<cudnn_frontend::KernelCache>, _("KernelCachePtr"));
// bool load(handle , bool) {
// return false; // Prevent Python -> C++ conversion
// }
// static handle cast(std::shared_ptr<cudnn_frontend::KernelCache> src, return_value_policy, handle) {
// if (!src) return none().release();
// return capsule(new std::shared_ptr<cudnn_frontend::KernelCache>(std::move(src)),
// [](void *ptr) { delete static_cast<std::shared_ptr<cudnn_frontend::KernelCache>*>(ptr);
// }).release();
// }
// };
// }} // namespace pybind11::detail
|