1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
|
#include <utility>
#include <unordered_map>
#include <vector>
#include "dlpack/dlpack.h"
// Part of the Array API specification.
#define CUDNN_FRONTEND_DLPACK_CAPSULE_NAME "dltensor"
#define CUDNN_FRONTEND_DLPACK_USED_CAPSULE_NAME "used_dltensor"
#include "pybind11/pybind11.h"
#include "pybind11/cast.h"
#include "pybind11/stl.h"
#include "cudnn_frontend.h"
#include "pygraph.h"
namespace py = pybind11;
using namespace pybind11::literals;
namespace cudnn_frontend::python_bindings {
void
throw_if(bool const cond, cudnn_frontend::error_code_t const error_code, std::string const& error_msg);
void
init_pygraph_norm_submodule(py::class_<PyGraph>&);
void
init_pygraph_sdpa_submodule(py::class_<PyGraph>&);
void
init_pygraph_pointwise_submodule(py::class_<PyGraph>&);
cudnn_frontend::DataType_t
convert_to_cudnn_data_type(const DLDataType& dtype) {
switch (dtype.code) {
case DLDataTypeCode::kDLUInt:
switch (dtype.bits) {
case 8:
return cudnn_frontend::DataType_t::UINT8;
}
break;
case DLDataTypeCode::kDLInt:
switch (dtype.bits) {
case 8:
return cudnn_frontend::DataType_t::INT8;
case 32:
return cudnn_frontend::DataType_t::INT32;
case 64:
return cudnn_frontend::DataType_t::INT64;
}
break;
case DLDataTypeCode::kDLFloat:
switch (dtype.bits) {
case 16:
return cudnn_frontend::DataType_t::HALF;
case 32:
return cudnn_frontend::DataType_t::FLOAT;
case 64:
return cudnn_frontend::DataType_t::DOUBLE;
}
break;
case DLDataTypeCode::kDLBfloat:
switch (dtype.bits) {
case 16:
return cudnn_frontend::DataType_t::BFLOAT16;
}
break;
case DLDataTypeCode::kDLBool:
switch (dtype.bits) {
case 8:
return cudnn_frontend::DataType_t::BOOLEAN;
}
break;
}
return cudnn_frontend::DataType_t::NOT_SET;
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::tensor(std::vector<int64_t> const& dim,
std::vector<int64_t> const& stride,
cudnn_frontend::DataType_t const& data_type,
bool const& is_virtual,
bool const& is_pass_by_value,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes> const& ragged_offset,
std::string const& name) {
auto props = cudnn_frontend::graph::Tensor_attributes()
.set_data_type(data_type)
.set_is_virtual(is_virtual)
.set_is_pass_by_value(is_pass_by_value)
.set_dim(dim)
.set_stride(stride)
.set_ragged_offset(ragged_offset)
.set_name(name);
return graph.tensor(props);
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::tensor_like(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes> const& tensor, std::string const& name) {
return graph.tensor_like(tensor, name);
}
static std::intptr_t
extract_data_pointer(py::object const& obj) {
throw_if(!py::hasattr(obj, "__dlpack__"),
cudnn_frontend::error_code_t::INVALID_VARIANT_PACK,
"Object does not have the __dlpack__() method");
py::capsule capsule = obj.attr("__dlpack__")();
throw_if(capsule.is_none(),
cudnn_frontend::error_code_t::INVALID_VARIANT_PACK,
"Failed to retrieve the DLPack capsule.");
DLManagedTensor* managed =
static_cast<DLManagedTensor*>(PyCapsule_GetPointer(capsule.ptr(), CUDNN_FRONTEND_DLPACK_CAPSULE_NAME));
throw_if(managed == nullptr, cudnn_frontend::error_code_t::INVALID_VARIANT_PACK, "Invalid DLPack capsule.");
DLDeviceType device_type = managed->dl_tensor.device.device_type;
throw_if(
device_type != kDLCPU && device_type != kDLCUDAHost && device_type != kDLCUDA && device_type != kDLCUDAManaged,
cudnn_frontend::error_code_t::INVALID_VARIANT_PACK,
"Invalid device type.");
void* p = (char*)managed->dl_tensor.data + managed->dl_tensor.byte_offset;
auto result = reinterpret_cast<std::intptr_t>(p);
return result;
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::tensor_like(py::object const& pyobj) {
throw_if(!py::hasattr(pyobj, "__dlpack__"),
cudnn_frontend::error_code_t::INVALID_VARIANT_PACK,
"Object does not have the __dlpack__() method");
py::capsule capsule = pyobj.attr("__dlpack__")();
throw_if(capsule.is_none(),
cudnn_frontend::error_code_t::INVALID_VARIANT_PACK,
"Failed to retrieve the DLPack capsule.");
DLManagedTensor* managed =
static_cast<DLManagedTensor*>(PyCapsule_GetPointer(capsule.ptr(), CUDNN_FRONTEND_DLPACK_CAPSULE_NAME));
throw_if(managed == nullptr, cudnn_frontend::error_code_t::INVALID_VARIANT_PACK, "Invalid DLPack capsule.");
DLDeviceType device_type = managed->dl_tensor.device.device_type;
throw_if(
device_type != kDLCPU && device_type != kDLCUDAHost && device_type != kDLCUDA && device_type != kDLCUDAManaged,
cudnn_frontend::error_code_t::INVALID_VARIANT_PACK,
"Invalid device type.");
auto ndim = managed->dl_tensor.ndim;
std::vector<int64_t> dim(managed->dl_tensor.shape, managed->dl_tensor.shape + ndim);
auto props = cudnn_frontend::graph::Tensor_attributes()
.set_data_type(convert_to_cudnn_data_type(managed->dl_tensor.dtype))
.set_is_virtual(false)
.set_is_pass_by_value(managed->dl_tensor.device.device_type == kDLCPU)
.set_dim(dim);
if (managed->dl_tensor.strides == nullptr) {
// dlpack says "can be NULL, indicating tensor is compact and row-majored"
auto stride_order = detail::generate_row_major_stride_order(ndim);
props.set_stride(detail::generate_stride(dim, stride_order));
} else {
std::vector<int64_t> stride(managed->dl_tensor.strides, managed->dl_tensor.strides + ndim);
props.set_stride(stride);
}
return graph.tensor(props);
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::slice(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& input,
std::vector<py::slice> const& slices,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto input_dim = input->get_dim();
std::vector<std::pair<int64_t, int64_t>> start_end_indices;
for (size_t i = 0; i < slices.size(); ++i) {
int64_t start, stop, step, length;
if (!slices[i].compute(input_dim[i], &start, &stop, &step, &length)) {
throw std::runtime_error("Invalid slice");
}
start_end_indices.push_back({start, stop});
}
auto attributes = cudnn_frontend::graph::Slice_attributes()
.set_slices(start_end_indices)
.set_compute_data_type(compute_data_type)
.set_name(name);
auto output = graph.slice(input, attributes);
return output;
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::conv_fprop(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& image,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& weight,
std::vector<int64_t> const& pre_padding,
std::vector<int64_t> const& post_padding,
std::vector<int64_t> const& stride,
std::vector<int64_t> const& dilation,
cudnn_frontend::ConvolutionMode_t const& conv_mode,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto attributes = cudnn_frontend::graph::Conv_fprop_attributes()
.set_pre_padding(pre_padding)
.set_post_padding(post_padding)
.set_stride(stride)
.set_dilation(dilation)
.set_convolution_mode(conv_mode)
.set_compute_data_type(compute_data_type)
.set_name(name);
auto Y = graph.conv_fprop(image, weight, attributes);
return Y;
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::conv_dgrad(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& loss,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& filter,
std::vector<int64_t> const& pre_padding,
std::vector<int64_t> const& post_padding,
std::vector<int64_t> const& stride,
std::vector<int64_t> const& dilation,
cudnn_frontend::ConvolutionMode_t const& conv_mode,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto attributes = cudnn_frontend::graph::Conv_dgrad_attributes()
.set_pre_padding(pre_padding)
.set_post_padding(post_padding)
.set_stride(stride)
.set_dilation(dilation)
.set_convolution_mode(conv_mode)
.set_compute_data_type(compute_data_type)
.set_name(name);
auto DX = graph.conv_dgrad(loss, filter, attributes);
return DX;
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::conv_wgrad(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& image,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& loss,
std::vector<int64_t> const& pre_padding,
std::vector<int64_t> const& post_padding,
std::vector<int64_t> const& stride,
std::vector<int64_t> const& dilation,
cudnn_frontend::ConvolutionMode_t const& conv_mode,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto attributes = cudnn_frontend::graph::Conv_wgrad_attributes()
.set_pre_padding(pre_padding)
.set_post_padding(post_padding)
.set_stride(stride)
.set_dilation(dilation)
.set_convolution_mode(conv_mode)
.set_compute_data_type(compute_data_type)
.set_name(name);
auto DW = graph.conv_wgrad(loss, image, attributes);
return DW;
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::matmul(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& A,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& B,
cudnn_frontend::DataType_t const& compute_data_type,
double const padding,
std::string const& name) {
auto attributes = cudnn_frontend::graph::Matmul_attributes()
.set_compute_data_type(compute_data_type)
.set_name(name)
.set_padding(padding);
auto C = graph.matmul(A, B, attributes);
return C;
}
std::array<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>, 2UL>
PyGraph::genstats(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& input,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto attributes =
cudnn_frontend::graph::Genstats_attributes().set_compute_data_type(compute_data_type).set_name(name);
auto [SUM, SQ_SUM] = graph.genstats(input, attributes);
return {SUM, SQ_SUM};
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::reduction(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& input,
cudnn_frontend::ReductionMode_t const mode,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto attributes = cudnn_frontend::graph::Reduction_attributes()
.set_mode(mode)
.set_compute_data_type(compute_data_type)
.set_name(name);
auto OUT_0 = graph.reduction(input, attributes);
return OUT_0;
}
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>
PyGraph::reshape(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& input, std::string const& name) {
auto attributes = cudnn_frontend::graph::Reshape_attributes().set_name(name);
auto OUT = graph.reshape(input, attributes);
return OUT;
}
void
PyGraph::validate() {
auto status = graph.validate();
throw_if(status.is_bad(), status.get_code(), status.get_message());
}
size_t
PyGraph::key() {
return graph.key();
}
void
PyGraph::build_operation_graph() {
auto status = graph.build_operation_graph(handle);
throw_if(status.is_bad(), status.get_code(), status.get_message());
}
void
PyGraph::create_execution_plans(std::vector<cudnn_frontend::HeurMode_t> const& modes) {
auto status = graph.create_execution_plans(modes);
throw_if(status.is_bad(), status.get_code(), status.get_message());
}
void
PyGraph::build_plans(BuildPlanPolicy_t const policy) {
// TODO: Add multithreaded support in python
auto status = graph.build_plans(handle, policy, false);
throw_if(status.is_bad(), status.get_code(), status.get_message());
}
void
PyGraph::build_plan_at_index(int64_t const index) {
auto status = graph.build_plan_at_index(handle, index);
throw_if(status.is_bad(), status.get_code(), status.get_message());
}
void
PyGraph::build(std::vector<cudnn_frontend::HeurMode_t> const& modes) {
validate();
build_operation_graph();
create_execution_plans(modes);
check_support();
build_plans(cudnn_frontend::BuildPlanPolicy_t::HEURISTICS_CHOICE);
}
void
PyGraph::check_support() {
auto status = graph.check_support(handle);
throw_if(status.is_bad(), status.get_code(), status.get_message());
}
int64_t
PyGraph::get_workspace_size() {
int64_t workspace = 0;
auto status = graph.get_workspace_size(workspace);
throw_if(status.is_bad(), status.get_code(), status.get_message());
return workspace;
}
int64_t
PyGraph::get_workspace_size_plan_at_index(int64_t index) {
int64_t workspace;
auto status = graph.get_workspace_size_plan_at_index(index, workspace);
throw_if(status.is_bad(), status.get_code(), status.get_message());
return workspace;
}
std::vector<uint8_t>
PyGraph::serialize() const {
std::vector<uint8_t> data;
auto status = graph.serialize(data);
throw_if(status.is_bad(), status.get_code(), status.get_message());
return data;
}
void
PyGraph::deserialize(py::object const& pyobj) {
if (py::isinstance<py::str>(pyobj)) {
json j = json::parse(pyobj.cast<std::string>());
auto status = graph.deserialize(j);
throw_if(status.is_bad(), status.get_code(), status.get_message());
} else {
std::vector<uint8_t> data = pyobj.cast<std::vector<uint8_t>>();
auto status = graph.deserialize(handle, data);
throw_if(status.is_bad(), status.get_code(), status.get_message());
}
}
void
PyGraph::update_cuda_graph(std::intptr_t handle,
std::unordered_map<cudnn_frontend::graph::Tensor_attributes::uid_t, std::intptr_t> var_pack,
std::intptr_t workspace,
std::intptr_t cuda_graph) {
std::unordered_map<int64_t, void*> var_pack_;
var_pack_.reserve(var_pack.size());
for (auto const& [uid, device_pointer] : var_pack) {
var_pack_.emplace(uid, (void*)device_pointer);
}
auto status = graph.update_cuda_graph(reinterpret_cast<cudnnHandle_t>(handle),
var_pack_,
reinterpret_cast<void*>(workspace),
reinterpret_cast<cudaGraph_t>(cuda_graph));
throw_if(status.is_bad(), status.get_code(), status.get_message());
return;
}
void
PyGraph::populate_cuda_graph(
std::intptr_t handle,
std::unordered_map<cudnn_frontend::graph::Tensor_attributes::uid_t, std::intptr_t> var_pack,
std::intptr_t workspace,
std::intptr_t cuda_graph) {
std::unordered_map<int64_t, void*> var_pack_;
var_pack_.reserve(var_pack.size());
for (auto const& [uid, device_pointer] : var_pack) {
var_pack_.emplace(uid, (void*)device_pointer);
}
auto status = graph.populate_cuda_graph(reinterpret_cast<cudnnHandle_t>(handle),
var_pack_,
reinterpret_cast<void*>(workspace),
reinterpret_cast<cudaGraph_t>(cuda_graph));
throw_if(status.is_bad(), status.get_code(), status.get_message());
return;
}
void
PyGraph::execute(std::unordered_map<int64_t, std::intptr_t> var_pack,
std::intptr_t workspace,
std::optional<std::intptr_t> exec_handle) {
std::unordered_map<int64_t, void*> var_pack_;
var_pack_.reserve(var_pack.size());
for (auto const& [uid, device_pointer] : var_pack) {
var_pack_.emplace(uid, (void*)device_pointer);
}
auto workspace_ptr = (void*)workspace;
cudnnHandle_t handle_ = exec_handle.has_value() ? static_cast<cudnnHandle_t>((void*)(exec_handle.value())) : handle;
auto status = graph.execute(handle_, var_pack_, workspace_ptr);
throw_if(status.is_bad(), status.get_code(), status.get_message());
return;
}
void
PyGraph::execute_plan_at_index(std::unordered_map<int64_t, std::intptr_t> var_pack,
std::intptr_t workspace,
int64_t index,
std::optional<std::intptr_t> exec_handle) {
std::unordered_map<int64_t, void*> var_pack_;
for (auto const& [uid, device_pointer] : var_pack) {
var_pack_.emplace(uid, (void*)device_pointer);
}
auto workspace_ptr = (void*)workspace;
cudnnHandle_t handle_ = exec_handle.has_value() ? static_cast<cudnnHandle_t>((void*)(exec_handle.value())) : handle;
auto status = graph.execute_plan_at_index(handle_, var_pack_, workspace_ptr, index);
throw_if(status.is_bad(), status.get_code(), status.get_message());
return;
}
std::shared_ptr<graph::Tensor_attributes>
PyGraph::query_tensor_attributes_of_uid(int64_t const uid) const {
graph::Tensor_attributes tensor;
auto status = graph.query_tensor_attributes_of_uid(uid, tensor);
throw_if(status.is_bad(), status.get_code(), status.get_message());
return std::make_shared<graph::Tensor_attributes>(tensor);
}
std::vector<int64_t>
default_vector(void) {
return {};
}
void
init_pygraph_submodule(py::module_& m) {
py::class_<PyGraph> pygraph_(m, "pygraph");
pygraph_
.def(py::init<std::string const&,
cudnn_frontend::DataType_t,
cudnn_frontend::DataType_t,
cudnn_frontend::DataType_t,
std::optional<std::intptr_t>,
py::object,
std::shared_ptr<KernelCache>>(),
py::arg_v("name", "test_graph"),
py::arg_v("io_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("intermediate_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("handle", std::nullopt),
py::arg_v("sm_count", py::none()),
py::arg_v("kernel_cache", nullptr))
.def("tensor_like",
py::overload_cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes> const&, std::string const&>(
&PyGraph::tensor_like),
py::arg("input"),
py::arg_v("name", ""))
.def("tensor_like", py::overload_cast<py::object const&>(&PyGraph::tensor_like))
.def("_make_tensor",
&PyGraph::tensor,
py::arg{"dim"},
py::arg{"stride"},
py::arg_v("data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v{"is_virtual", false},
py::arg_v{"is_pass_by_value", false},
py::arg_v{"ragged_offset", nullptr},
py::arg_v("name", ""))
.def("genstats",
&PyGraph::genstats,
py::arg("input"),
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""))
.def("slice",
&PyGraph::slice,
py::arg("input"),
py::arg_v{"slices", default_vector()},
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""),
R"pbdoc(
Perform slice operation on the given input tensor.
Args:
input (cudnn_tensor): The input tensor to be sliced.
slices (List[slice]): A list of Python slice objects, one for each dimension.
compute_data_type (Optional[cudnn.data_type]): The data type for computation.
Default is NOT_SET.
name (Optional[str]): A name for the slice operation.
Returns:
cudnn_tensor: The resulting sliced tensor.
Example:
>>> input_tensor = graph.tensor([4, 8, 16])
>>> sliced_tensor = graph.slice(input_tensor, [slice(0, 2), slice(1, 5), slice(0, 16)])
)pbdoc")
.def(
"conv_fprop",
[](PyGraph& self,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& image,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& weight,
std::vector<int64_t> const& padding,
std::vector<int64_t> const& stride,
std::vector<int64_t> const& dilation,
cudnn_frontend::ConvolutionMode_t const convolution_mode,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
return self.conv_fprop(
image, weight, padding, padding, stride, dilation, convolution_mode, compute_data_type, name);
},
py::arg("image"),
py::arg("weight"),
py::arg_v{"padding", default_vector()},
py::arg_v{"stride", default_vector()},
py::arg_v{"dilation", default_vector()},
py::arg_v{"convolution_mode", cudnn_frontend::ConvolutionMode_t::CROSS_CORRELATION},
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""))
.def("conv_fprop",
&PyGraph::conv_fprop,
py::arg("image"),
py::arg("weight"),
py::arg_v{"pre_padding", default_vector()},
py::arg_v{"post_padding", default_vector()},
py::arg_v{"stride", default_vector()},
py::arg_v{"dilation", default_vector()},
py::arg_v{"convolution_mode", cudnn_frontend::ConvolutionMode_t::CROSS_CORRELATION},
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""),
R"pbdoc(
Perform convolution operation with the given inputs.
Args:
image (cudnn_tensor): The image tensor.
weight (cudnn_tensor): The weight tensor.
pre_padding (Optional[List[int]]): The pre padding values for the operation. Default is an empty list.
post_padding (Optional[List[int]]): The post padding values for the operation. Default is an empty list.
stride (Optional[List[int]]): The stride values for the operation. Default is an empty list.
dilation (Optional[List[int]]): The dilation values for the operation. Default is an empty list.
compute_data_type (Optional[cudnn.data_type]): The data type for computation. Default is NOT_SET.
name (Optional[str]): A name for the operation to be performed.
Returns:
cudnn_tensor: The created tensor.
)pbdoc")
.def(
"conv_wgrad",
[](PyGraph& self,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& image,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& loss,
std::vector<int64_t> const& padding,
std::vector<int64_t> const& stride,
std::vector<int64_t> const& dilation,
cudnn_frontend::ConvolutionMode_t const convolution_mode,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
return self.conv_wgrad(
image, loss, padding, padding, stride, dilation, convolution_mode, compute_data_type, name);
},
py::arg("image"),
py::arg("loss"),
py::arg_v{"padding", default_vector()},
py::arg_v{"stride", default_vector()},
py::arg_v{"dilation", default_vector()},
py::arg_v{"convolution_mode", cudnn_frontend::ConvolutionMode_t::CROSS_CORRELATION},
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""))
.def("conv_wgrad",
&PyGraph::conv_wgrad,
py::arg("image"),
py::arg("loss"),
py::arg_v{"pre_padding", default_vector()},
py::arg_v{"post_padding", default_vector()},
py::arg_v{"stride", default_vector()},
py::arg_v{"dilation", default_vector()},
py::arg_v{"convolution_mode", cudnn_frontend::ConvolutionMode_t::CROSS_CORRELATION},
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""),
R"pbdoc(
Compute weight gradients using the given inputs and loss.
Args:
image (cudnn_tensor): The image tensor.
loss (cudnn_tensor): The loss tensor.
pre_padding (Optional[List[int]]): The pre padding values for the operation. Default is an empty list.
post_padding (Optional[List[int]]): The post padding values for the operation. Default is an empty list. stride (Optional[List[int]]): The stride values for the operation. Default is an empty list.
dilation (Optional[List[int]]): The dilation values for the operation. Default is an empty list.
compute_data_type (Optional[cudnn.data_type]): The data type for computation. Default is NOT_SET.
name (Optional[str]): A name for the operation to be performed.
Returns:
cudnn_tensor: The created tensor.
)pbdoc")
.def(
"conv_dgrad",
[](PyGraph& self,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& loss,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& filter,
std::vector<int64_t> const& padding,
std::vector<int64_t> const& stride,
std::vector<int64_t> const& dilation,
cudnn_frontend::ConvolutionMode_t const convolution_mode,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
return self.conv_dgrad(
loss, filter, padding, padding, stride, dilation, convolution_mode, compute_data_type, name);
},
py::arg("loss"),
py::arg("filter"),
py::arg_v{"padding", default_vector()},
py::arg_v{"stride", default_vector()},
py::arg_v{"dilation", default_vector()},
py::arg_v{"convolution_mode", cudnn_frontend::ConvolutionMode_t::CROSS_CORRELATION},
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""))
.def("conv_dgrad",
&PyGraph::conv_dgrad,
py::arg("loss"),
py::arg("filter"),
py::arg_v{"pre_padding", default_vector()},
py::arg_v{"post_padding", default_vector()},
py::arg_v{"stride", default_vector()},
py::arg_v{"dilation", default_vector()},
py::arg_v{"convolution_mode", cudnn_frontend::ConvolutionMode_t::CROSS_CORRELATION},
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""),
R"pbdoc(
Compute filter gradients using the given inputs and loss.
Args:
loss (cudnn_tensor): The loss tensor.
filter (cudnn_tensor): The filter tensor.
pre_padding (Optional[List[int]]): The pre padding values for the operation. Default is an empty list.
post_padding (Optional[List[int]]): The post padding values for the operation. Default is an empty list.
stride (Optional[List[int]]): The stride values for the operation. Default is an empty list.
dilation (Optional[List[int]]): The dilation values for the operation. Default is an empty list.
compute_data_type (Optional[pycudnn.data_type]): The data type for computation. Default is NOT_SET.
name (Optional[str]): A name for the operation to be performed.
Returns:
cudnn_tensor: The created tensor.
)pbdoc")
.def("matmul",
&PyGraph::matmul,
py::arg("A"),
py::arg("B"),
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("padding", 0.0),
py::arg_v("name", ""),
R"pbdoc(
Perform matrix multiplication of two tensors A and B.
Args:
A (cudnn_tensor): The first tensor.
B (cudnn_tensor): The second matrix tensor.
compute_data_type (Optional[cudnn.data_type]): The data type for computation. Default is NOT_SET.
name (Optional[str]): A name for the operation to be performed.
Returns:
cudnn_tensor: The result of the matrix multiplication.
)pbdoc")
.def("reduction",
&PyGraph::reduction,
py::arg("input"),
py::arg("mode"),
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""),
R"pbdoc(
Reduce an input tensor along certain dimensions. These dimensions to reduce on are inferred from output tensor shape.
Args:
input (cudnn_tensor): The input tensor.
mode (cudnn.reduction_mode): The mode to use to reduce along a dimension.
compute_data_type (Optional[cudnn.data_type]): The data type for computation. Default is NOT_SET.
name (Optional[str]): A name for the operation to be performed.
Returns:
cudnn_tensor: The result of reduction operation.
)pbdoc")
.def("reshape",
&PyGraph::reshape,
py::arg("input"),
py::arg_v("name", ""),
R"pbdoc(
Reshape an input tensor to other dimensions without changing the actual memory layout.
These dimensions to reshape to are inferred from output tensor shape.
Args:
input (cudnn_tensor): The input tensor.
name (Optional[str]): A name for the operation to be performed.
Returns:
cudnn_tensor: The result of reshape operation. Please set the dims for the output tensor.
)pbdoc")
.def("deselect_engines", &PyGraph::deselect_engines)
.def("deselect_numeric_notes", &PyGraph::deselect_numeric_notes)
.def("deselect_behavior_notes", &PyGraph::deselect_behavior_notes)
.def("select_numeric_notes", &PyGraph::select_numeric_notes)
.def("select_behavior_notes", &PyGraph::select_behavior_notes)
.def("deselect_workspace_greater_than", &PyGraph::deselect_workspace_greater_than)
.def("validate", &PyGraph::validate)
.def("key", &PyGraph::key)
.def("build_operation_graph", &PyGraph::build_operation_graph)
.def("create_execution_plans", &PyGraph::create_execution_plans)
.def("check_support", &PyGraph::check_support)
.def("build_plans",
&PyGraph::build_plans,
py::arg("policy") = cudnn_frontend::BuildPlanPolicy_t::HEURISTICS_CHOICE)
.def("build_plan_at_index",
&PyGraph::build_plan_at_index,
py::arg("index"),
R"pbdoc(
Build a plan at the given index.
Args:
index (int): The index of the plan to build.
)pbdoc")
.def("build", &PyGraph::build)
.def("get_execution_plan_count",
&PyGraph::get_execution_plan_count,
R"pbdoc(
Get the number of execution plan candidates.
)pbdoc")
.def("get_workspace_size", &PyGraph::get_workspace_size)
.def("get_workspace_size_plan_at_index",
&PyGraph::get_workspace_size_plan_at_index,
py::arg("index"),
R"pbdoc(
Get workspace for a plan at the given index.
Args:
index (int): The index of the plan to get workspace from.
If the graph is not built at the index, this will return 0.
)pbdoc")
.def("query_tensor_attributes_of_uid",
&PyGraph::query_tensor_attributes_of_uid,
py::arg("uid"),
R"pbdoc(
Get tensor_attributes for a given UID
Args:
uid (int): The uid of tensor to be queried
If the graph does not have the UID, this will raise an error
)pbdoc")
.def("_execute", &PyGraph::execute)
.def("populate_cuda_graph", &PyGraph::populate_cuda_graph)
.def("update_cuda_graph", &PyGraph::update_cuda_graph)
.def("serialize", &PyGraph::serialize)
.def("deserialize", &PyGraph::deserialize)
.def("_execute_plan_at_index", &PyGraph::execute_plan_at_index)
.def("__repr__", [](PyGraph const& pygraph) {
std::stringstream ss;
json j = pygraph.graph;
ss << j.dump(4);
return ss.str();
});
m.def("_get_data_ptr", &extract_data_pointer);
init_pygraph_norm_submodule(pygraph_);
init_pygraph_sdpa_submodule(pygraph_);
init_pygraph_pointwise_submodule(pygraph_);
}
} // namespace cudnn_frontend::python_bindings
|