1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
#include <utility>
#include "pybind11/pybind11.h"
#include "pybind11/cast.h"
#include "pybind11/stl.h"
#include "cudnn_frontend.h"
#include "pygraph.h"
namespace py = pybind11;
using namespace pybind11::literals;
namespace cudnn_frontend::python_bindings {
std::array<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>, 2>
PyGraph::sdpa(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& k,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& v,
bool const is_inference,
py::object const& attn_scale,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& bias,
bool const use_alibi_mask,
bool const use_padding_mask,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& seq_len_q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& seq_len_kv,
bool const use_causal_mask,
bool const use_causal_mask_bottom_right,
py::object const& sliding_window_length,
py::object const& dropout,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& rng_dump,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& paged_attention_k_table,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& paged_attention_v_table,
py::object const& paged_attention_max_seq_len_kv,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto attributes = cudnn_frontend::graph::SDPA_attributes()
.set_is_inference(is_inference)
.set_bias(bias)
.set_alibi_mask(use_alibi_mask)
.set_padding_mask(use_padding_mask)
.set_seq_len_q(seq_len_q)
.set_seq_len_kv(seq_len_kv)
.set_causal_mask(use_causal_mask)
.set_causal_mask_bottom_right(use_causal_mask_bottom_right)
.set_compute_data_type(compute_data_type)
.set_name(name);
if (paged_attention_k_table) {
attributes.set_paged_attention_k_table(paged_attention_k_table);
}
if (paged_attention_v_table) {
attributes.set_paged_attention_v_table(paged_attention_v_table);
}
if (!paged_attention_max_seq_len_kv.is_none()) {
if (py::isinstance<py::int_>(paged_attention_max_seq_len_kv)) {
attributes.set_paged_attention_max_seq_len_kv(paged_attention_max_seq_len_kv.cast<int>());
} else {
throw std::runtime_error("paged_attention_max_seq_len_kv must be an integer.");
}
}
if (!attn_scale.is_none()) {
if (py::isinstance<py::float_>(attn_scale)) {
auto const attn_scale_value = attn_scale.cast<float>();
attributes.set_attn_scale(attn_scale_value);
} else {
auto const attn_scale_tensor = attn_scale.cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!attn_scale_tensor) {
throw std::runtime_error("attn_scale must be a cudnn_tensor or float.");
}
attributes.set_attn_scale(attn_scale_tensor);
}
}
if (!sliding_window_length.is_none()) {
int const sliding_window_value = sliding_window_length.cast<int>();
attributes.set_sliding_window_length(sliding_window_value);
}
if (!dropout.is_none()) {
py::tuple dropout_tuple = dropout.cast<py::tuple>();
if ((!dropout_tuple) || (dropout_tuple.size() != 3 && dropout_tuple.size() != 2)) {
throw std::runtime_error(
"dropout must be a tuple of (float probability, a seed tensor, and an offset tensor) or (mask "
"tensor, scale tensor)");
}
if (py::isinstance<py::float_>(dropout_tuple[0])) {
auto const probability = dropout_tuple[0].cast<float>();
auto const seed = dropout_tuple[1].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!seed) {
throw std::runtime_error("dropout seed must be a cudnn_tensor.");
}
auto const offset = dropout_tuple[2].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!offset) {
throw std::runtime_error("dropout offset must be a cudnn_tensor.");
}
attributes.set_dropout(probability, seed, offset);
if (rng_dump) {
attributes.set_rng_dump(rng_dump);
}
} else {
auto const mask = dropout_tuple[0].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!mask) {
throw std::runtime_error("dropout mask must be a cudnn_tensor.");
}
auto const scale = dropout_tuple[1].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!scale) {
throw std::runtime_error("dropout scale must be a cudnn_tensor.");
}
attributes.set_dropout(mask, scale);
}
}
// Add page table attributes
auto [O, Stats] = graph.sdpa(q, k, v, attributes);
return {O, Stats};
}
std::array<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>, 3>
PyGraph::sdpa_backward(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& k,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& v,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& o,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& dO,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& stats,
py::object const& attn_scale,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& bias,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& dBias,
bool const use_alibi_mask,
bool const use_padding_mask,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& seq_len_q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& seq_len_kv,
py::object const& max_total_seq_len_q,
py::object const& max_total_seq_len_kv,
bool const use_causal_mask,
bool const use_causal_mask_bottom_right,
py::object const& sliding_window_length,
py::object const& dropout,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& rng_dump,
bool const use_deterministic_algorithm,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto attributes = cudnn_frontend::graph::SDPA_backward_attributes()
.set_bias(bias)
.set_dbias(dBias)
.set_alibi_mask(use_alibi_mask)
.set_padding_mask(use_padding_mask)
.set_seq_len_q(seq_len_q)
.set_seq_len_kv(seq_len_kv)
.set_causal_mask(use_causal_mask)
.set_causal_mask_bottom_right(use_causal_mask_bottom_right)
.set_deterministic_algorithm(use_deterministic_algorithm)
.set_compute_data_type(compute_data_type)
.set_name(name);
py::object cudnn_tensor_type = py::module_::import("cudnn").attr("tensor");
if (!attn_scale.is_none()) {
if (py::isinstance<py::float_>(attn_scale)) {
auto const attn_scale_value = attn_scale.cast<float>();
attributes.set_attn_scale(attn_scale_value);
} else {
auto const attn_scale_tensor = attn_scale.cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!attn_scale_tensor) {
throw std::runtime_error("attn_scale must be a cudnn_tensor or float.");
}
attributes.set_attn_scale(attn_scale_tensor);
}
}
if (!max_total_seq_len_q.is_none()) {
int const max_total_seq_len_q_value = max_total_seq_len_q.cast<int>();
attributes.set_max_total_seq_len_q(max_total_seq_len_q_value);
}
if (!max_total_seq_len_kv.is_none()) {
int const max_total_seq_len_kv_value = max_total_seq_len_kv.cast<int>();
attributes.set_max_total_seq_len_kv(max_total_seq_len_kv_value);
}
if (!sliding_window_length.is_none()) {
int const sliding_window_value = sliding_window_length.cast<int>();
attributes.set_sliding_window_length(sliding_window_value);
}
if (!dropout.is_none()) {
if (!py::isinstance<py::tuple>(dropout)) {
throw std::runtime_error(
"dropout must be a tuple of (float probability, a seed tensor"
", and an offset tensor) or (mask tensor, scale tensor)");
}
py::tuple dropout_tuple = dropout.cast<py::tuple>();
if (dropout_tuple.size() != 3) {
throw std::runtime_error(
"dropout must be a tuple of (float probability, a seed tensor"
", and an offset tensor) or (mask tensor, scale tensor)");
}
if (py::isinstance<py::float_>(dropout_tuple[0]) && py::isinstance(dropout_tuple[1], cudnn_tensor_type) &&
py::isinstance(dropout_tuple[2], cudnn_tensor_type)) {
auto const probability = dropout_tuple[0].cast<float>();
auto const seed = dropout_tuple[1].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
auto const offset = dropout_tuple[2].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
attributes.set_dropout(probability, seed, offset);
if (rng_dump) {
attributes.set_rng_dump(rng_dump);
}
} else if (py::isinstance(dropout_tuple[0], cudnn_tensor_type) &&
py::isinstance(dropout_tuple[1], cudnn_tensor_type) &&
py::isinstance(dropout_tuple[2], cudnn_tensor_type)) {
auto const mask = dropout_tuple[0].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
auto const scale = dropout_tuple[1].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
auto const scale_inv = dropout_tuple[2].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
attributes.set_dropout(mask, scale, scale_inv);
} else {
throw std::runtime_error(
"dropout must be a tuple of (float probability, a seed tensor"
", and an offset tensor) or (mask tensor, scale tensor)");
}
}
auto [dQ, dK, dV] = graph.sdpa_backward(q, k, v, o, dO, stats, attributes);
return {dQ, dK, dV};
}
std::array<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>, 4>
PyGraph::sdpa_fp8(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& k,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& v,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_k,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_v,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_s,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& scale_s,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& scale_o,
bool const is_inference,
py::object const& attn_scale,
bool const use_padding_mask,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& seq_len_q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& seq_len_kv,
bool const use_causal_mask,
py::object const& dropout,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto attributes = cudnn_frontend::graph::SDPA_fp8_attributes()
.set_is_inference(is_inference)
.set_padding_mask(use_padding_mask)
.set_seq_len_q(seq_len_q)
.set_seq_len_kv(seq_len_kv)
.set_causal_mask(use_causal_mask)
.set_compute_data_type(compute_data_type)
.set_name(name);
if (!attn_scale.is_none()) {
if (py::isinstance<py::float_>(attn_scale)) {
auto const attn_scale_value = attn_scale.cast<float>();
attributes.set_attn_scale(attn_scale_value);
} else {
auto const attn_scale_tensor = attn_scale.cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!attn_scale_tensor) {
throw std::runtime_error("attn_scale must be a cudnn_tensor or float.");
}
attributes.set_attn_scale(attn_scale_tensor);
}
}
if (!dropout.is_none()) {
py::tuple dropout_tuple = dropout.cast<py::tuple>();
if ((!dropout_tuple) || (dropout_tuple.size() != 3 && dropout_tuple.size() != 2)) {
throw std::runtime_error(
"dropout must be a tuple of (float probability, a seed tensor, and an offset tensor) or (mask "
"tensor, scale tensor)");
}
if (py::isinstance<py::float_>(dropout_tuple[0])) {
auto const probability = dropout_tuple[0].cast<float>();
auto const seed = dropout_tuple[1].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!seed) {
throw std::runtime_error("dropout seed must be a cudnn_tensor.");
}
auto const offset = dropout_tuple[2].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!offset) {
throw std::runtime_error("dropout offset must be a cudnn_tensor.");
}
attributes.set_dropout(probability, seed, offset);
} else {
auto const mask = dropout_tuple[0].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!mask) {
throw std::runtime_error("dropout mask must be a cudnn_tensor.");
}
auto const scale = dropout_tuple[1].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!scale) {
throw std::runtime_error("dropout scale must be a cudnn_tensor.");
}
attributes.set_dropout(mask, scale);
}
}
auto [o, stats, amax_s, amax_o] =
graph.sdpa_fp8(q, k, v, descale_q, descale_k, descale_v, descale_s, scale_s, scale_o, attributes);
return {o, stats, amax_s, amax_o};
}
std::array<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>, 7>
PyGraph::sdpa_fp8_backward(std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& k,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& v,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& o,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& dO,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& stats,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_k,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_v,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_o,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_dO,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_s,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& descale_dP,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& scale_s,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& scale_dQ,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& scale_dK,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& scale_dV,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& scale_dP,
py::object const& attn_scale,
bool const use_padding_mask,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& seq_len_q,
std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>& seq_len_kv,
bool const use_causal_mask,
py::object const& dropout,
cudnn_frontend::DataType_t const& compute_data_type,
std::string const& name) {
auto attributes = cudnn_frontend::graph::SDPA_fp8_backward_attributes()
.set_padding_mask(use_padding_mask)
.set_seq_len_q(seq_len_q)
.set_seq_len_kv(seq_len_kv)
.set_causal_mask(use_causal_mask)
.set_compute_data_type(compute_data_type)
.set_name(name);
if (!attn_scale.is_none()) {
if (py::isinstance<py::float_>(attn_scale)) {
auto const attn_scale_value = attn_scale.cast<float>();
attributes.set_attn_scale(attn_scale_value);
} else {
auto const attn_scale_tensor = attn_scale.cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
if (!attn_scale_tensor) {
throw std::runtime_error("attn_scale must be a cudnn_tensor or float.");
}
attributes.set_attn_scale(attn_scale_tensor);
}
}
py::object cudnn_tensor_type = py::module_::import("cudnn").attr("tensor");
if (!dropout.is_none()) {
if (!py::isinstance<py::tuple>(dropout)) {
throw std::runtime_error(
"dropout must be a tuple of (float probability, a seed tensor"
", and an offset tensor) or (mask tensor, scale tensor)");
}
py::tuple dropout_tuple = dropout.cast<py::tuple>();
if (dropout_tuple.size() != 3) {
throw std::runtime_error(
"dropout must be a tuple of (float probability, a seed tensor"
", and an offset tensor) or (mask tensor, scale tensor)");
}
if (py::isinstance<py::float_>(dropout_tuple[0]) && py::isinstance(dropout_tuple[1], cudnn_tensor_type) &&
py::isinstance(dropout_tuple[2], cudnn_tensor_type)) {
auto const probability = dropout_tuple[0].cast<float>();
auto const seed = dropout_tuple[1].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
auto const offset = dropout_tuple[2].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
attributes.set_dropout(probability, seed, offset);
} else if (py::isinstance(dropout_tuple[0], cudnn_tensor_type) &&
py::isinstance(dropout_tuple[1], cudnn_tensor_type) &&
py::isinstance(dropout_tuple[2], cudnn_tensor_type)) {
auto const mask = dropout_tuple[0].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
auto const scale = dropout_tuple[1].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
auto const scale_inv = dropout_tuple[2].cast<std::shared_ptr<cudnn_frontend::graph::Tensor_attributes>>();
attributes.set_dropout(mask, scale, scale_inv);
} else {
throw std::runtime_error(
"dropout must be a tuple of (float probability, a seed tensor"
", and an offset tensor) or (mask tensor, scale tensor)");
}
}
auto [dQ, dK, dV, amax_dQ, amax_dK, amax_dV, amax_dP] = graph.sdpa_fp8_backward(q,
k,
v,
o,
dO,
stats,
descale_q,
descale_k,
descale_v,
descale_o,
descale_dO,
descale_s,
descale_dP,
scale_s,
scale_dQ,
scale_dK,
scale_dV,
scale_dP,
attributes);
return {dQ, dK, dV, amax_dQ, amax_dK, amax_dV, amax_dP};
}
void
init_pygraph_sdpa_submodule(py::class_<PyGraph>& m) {
m.def("sdpa",
&PyGraph::sdpa,
py::arg("q"),
py::arg("k"),
py::arg("v"),
py::arg("is_inference"),
py::arg_v("attn_scale", py::none()),
py::arg_v("bias", nullptr),
py::arg_v("use_alibi_mask", false),
py::arg_v("use_padding_mask", false),
py::arg_v("seq_len_q", nullptr),
py::arg_v("seq_len_kv", nullptr),
py::arg_v("use_causal_mask", false),
py::arg_v("use_causal_mask_bottom_right", false),
py::arg_v("sliding_window_length", py::none()),
py::arg_v("dropout", py::none()),
py::arg_v("rng_dump", nullptr),
py::arg_v("paged_attention_k_table", py::none()),
py::arg_v("paged_attention_v_table", py::none()),
py::arg_v("paged_attention_max_seq_len_kv", py::none()),
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""),
R"pbdoc(
Perform scaled dot product attention.
Args:
q (cudnn_tensor): The query data.
k (cudnn_tensor): The key data. When page_table_k is provided, 'k' is a container of non-contiguous key data.
v (cudnn_tensor): The value data. When page_table_v is provided, 'v' is a container of non-contiguous value data.
is_inference (bool): Whether it is an inference step or training step.
attn_scale (Optional[Union[float, cudnn_tensor]]): The scale factor for attention. Default is None.
bias (Optional[cudnn_tensor]): The bias data for attention. Default is None.
use_alibi_mask (Optional[bool]): Whether to use alibi mask. Default is False.
use_padding_mask (Optional[bool]): Whether to use padding mask. Default is False.
seq_len_q (Optional[cudnn_tensor]): The sequence length of the query.
seq_len_kv (Optional[cudnn_tensor]): The sequence length of the key.
use_causal_mask (Optional[bool]): Whether to use causal mask. Default is False.
use_causal_mask_bottom_right (Optional[bool]): Whether to use bottom right aligned causal mask. Default is False.
sliding_window_length (Optional[int]): The length of sliding window. Default is None.
dropout (Optional[Union[Tuple[(probability: float, seed: cudnn_tensor, offset: cudnn_tensor)], Tuple[mask: cudnn_tensor, scale: cudnn_tensor]]]): Whether to do dropout. Default is None.
rng_dump (Optional[cudnn_tensor]): Debug tensor to dump the Philox RNG dropout mask. Default is None.
paged_attention_k_table (Optional[cudnn_tensor]): The page table to look up offsets into 'k'
paged_attention_v_table (Optional[cudnn_tensor]): The page table to look up offsets into 'v'
paged_attention_max_seq_len_kv (Optional[integer]): The maximum sequence length for k/v caches when paged attention is active.
compute_data_type (Optional[cudnn.data_type]): The data type for computation. Default is NOT_SET.
name (Optional[str]): The name of the operation.
Returns:
o (cudnn_tensor): The output data.
stats (Optional[cudnn_tensor]): The softmax statistics in case the operation is in a training step.
)pbdoc");
m.def("sdpa_backward",
&PyGraph::sdpa_backward,
py::arg("q"),
py::arg("k"),
py::arg("v"),
py::arg("o"),
py::arg("dO"),
py::arg("stats"),
py::arg_v("attn_scale", py::none()),
py::arg_v("bias", nullptr),
py::arg_v("dBias", nullptr),
py::arg_v("use_alibi_mask", false),
py::arg_v("use_padding_mask", false),
py::arg_v("seq_len_q", nullptr),
py::arg_v("seq_len_kv", nullptr),
py::arg_v("max_total_seq_len_q", py::none()),
py::arg_v("max_total_seq_len_kv", py::none()),
py::arg_v("use_causal_mask", false),
py::arg_v("use_causal_mask_bottom_right", false),
py::arg_v("sliding_window_length", py::none()),
py::arg_v("dropout", py::none()),
py::arg_v("rng_dump", nullptr),
py::arg_v("use_deterministic_algorithm", false),
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""),
R"pbdoc(
Compute the key, query, value gradients of scaled dot product attention.
Args:
q (cudnn_tensor): The query data.
k (cudnn_tensor): The key data.
v (cudnn_tensor): The value data.
o (cudnn_tensor): The output data.
dO (cudnn_tensor): The output loss gradient.
stats (cudnn_tensor): The softmax statistics from the forward pass.
attn_scale (Optional[Union[float, cudnn_tensor]]): The scale factor for attention. Default is None.
bias (Optional[cudnn_tensor]): The bias data for attention. Default is None.
dBias (Optional[cudnn_tensor]): The dBias data for attention. Default is None.
use_alibi_mask (Optional[bool]): Whether to use alibi mask. Default is False.
use_padding_mask (Optional[bool]): Whether to use padding mask. Default is False.
seq_len_q (Optional[cudnn_tensor]): The sequence length of the query.
seq_len_kv (Optional[cudnn_tensor]): The sequence length of the key.
use_causal_mask (Optional[bool]): Whether to use causal mask. Default is False.
use_causal_mask_bottom_right (Optional[bool]): Whether to use bottom right aligned causal mask. Default is False.
sliding_window_length (Optional[int]): The length of sliding window. Default is None.
dropout (Optional[Union[Tuple[(probability: float, seed: cudnn_tensor, offset: cudnn_tensor)], Tuple[mask: cudnn_tensor, scale: cudnn_tensor]]]): Whether to do dropout. Default is None.
rng_dump (Optional[cudnn_tensor]): Debug tensor to dump the Philox RNG dropout mask. Default is None.
use_deterministic_algorithm (Optional[bool]): Whether to always use deterministic algorithm. Default is False.
compute_data_type (Optional[cudnn.data_type]): The data type for computation. Default is NOT_SET.
name (Optional[str]): The name of the operation.
Returns:
dQ (cudnn_tensor): The query gradient data.
dK (cudnn_tensor): The key gradient data.
dV (cudnn_tensor): The value gradient data.
)pbdoc");
m.def("sdpa_fp8",
&PyGraph::sdpa_fp8,
py::arg("q"),
py::arg("k"),
py::arg("v"),
py::arg("descale_q"),
py::arg("descale_k"),
py::arg("descale_v"),
py::arg("descale_s"),
py::arg("scale_s"),
py::arg("scale_o"),
py::arg("is_inference"),
py::arg_v("attn_scale", py::none()),
py::arg("use_padding_mask"),
py::arg_v("seq_len_q", nullptr),
py::arg_v("seq_len_kv", nullptr),
py::arg_v("use_causal_mask", false),
py::arg_v("dropout", py::none()),
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""),
R"pbdoc(
Perform scaled dot product attention with fp8 datatype inputs and outputs.
Args:
q (cudnn_tensor): The query data.
k (cudnn_tensor): The key data.
v (cudnn_tensor): The value data.
descale_q (cudnn_tensor): Descale factor for query.
descale_k (cudnn_tensor): Descale factor for key.
descale_v (cudnn_tensor): Descale factor for value.
descale_s (cudnn_tensor): Descale factor for S tensor.
scale_s (cudnn_tensor): Scale factor for S tensor.
scale_o (cudnn_tensor): Scale factor for output.
is_inference (bool): Whether it is an inference step or training step.
attn_scale (Optional[Union[float, cudnn_tensor]]): The scale factor for attention. Default is None.
use_padding_mask (bool): Whether it is an inference step or training step.
seq_len_q (Optional[cudnn_tensor]): The sequence length of the query.
seq_len_kv (Optional[cudnn_tensor]): The sequence length of the key.
use_causal_mask (Optional[bool]): Whether to use causal mask. Default is False.
dropout (Optional[Union[Tuple[(probability: float, seed: cudnn_tensor, offset: cudnn_tensor)], Tuple[mask: cudnn_tensor, scale: cudnn_tensor]]]): Whether to do dropout. Default is None.
compute_data_type (Optional[cudnn.data_type]): The data type for computation. Default is NOT_SET.
name (Optional[str]): The name of the operation.
Returns:
o (cudnn_tensor): The output data.
stats (Optional[cudnn_tensor]): The softmax statistics in case the operation is in a training step.
amax_s (cudnn_tensor): The absolute maximum of S tensor.
amax_o (cudnn_tensor): The absolute maximum of output tensor.
)pbdoc");
m.def("sdpa_fp8_backward",
&PyGraph::sdpa_fp8_backward,
py::arg("q"),
py::arg("k"),
py::arg("v"),
py::arg("o"),
py::arg("dO"),
py::arg("stats"),
py::arg("descale_q"),
py::arg("descale_k"),
py::arg("descale_v"),
py::arg("descale_o"),
py::arg("descale_dO"),
py::arg("descale_s"),
py::arg("descale_dP"),
py::arg("scale_s"),
py::arg("scale_dQ"),
py::arg("scale_dK"),
py::arg("scale_dV"),
py::arg("scale_dP"),
py::arg_v("attn_scale", py::none()),
py::arg_v("use_padding_mask", false),
py::arg_v("seq_len_q", nullptr),
py::arg_v("seq_len_kv", nullptr),
py::arg_v("use_causal_mask", false),
py::arg_v("dropout", py::none()),
py::arg_v("compute_data_type", cudnn_frontend::DataType_t::NOT_SET),
py::arg_v("name", ""),
R"pbdoc(
Compute the key, query, value gradients of scaled dot product attention with fp8 datatype inputs and outputs.
Args:
q (cudnn_tensor): The query data.
k (cudnn_tensor): The key data.
v (cudnn_tensor): The value data.
o (cudnn_tensor): The output data.
dO (cudnn_tensor): The output gradient data.
stats (cudnn_tensor): The softmax statistics in case the operation is in a training step.
descale_q (cudnn_tensor): Descale factor for query.
descale_k (cudnn_tensor): Descale factor for key.
descale_v (cudnn_tensor): Descale factor for value.
descale_o (cudnn_tensor): Descale factor for output.
descale_dO (cudnn_tensor): Descale factor for output gradient.
descale_s (cudnn_tensor): Descale factor for S tensor.
descale_dP (cudnn_tensor): Descale factor for P gradient tensor.
scale_s (cudnn_tensor): Scale factor for S tensor.
scale_dQ (cudnn_tensor): Scale factor for query gradient.
scale_dK (cudnn_tensor): Scale factor for key gradient.
scale_dV (cudnn_tensor): Scale factor for value gradient.
scale_dP (cudnn_tensor): Scale factor for dP gradient.
attn_scale (Optional[Union[float, cudnn_tensor]]): The scale factor for attention. Default is None.
use_padding_mask (bool): Whether it is an inference step or training step.
seq_len_q (Optional[cudnn_tensor]): The sequence length of the query.
seq_len_kv (Optional[cudnn_tensor]): The sequence length of the key.
use_causal_mask (Optional[bool]): Whether to use causal mask. Default is False.
dropout (Optional[Union[Tuple[(probability: float, seed: cudnn_tensor, offset: cudnn_tensor)], Tuple[mask: cudnn_tensor, scale: cudnn_tensor]]]): Whether to do dropout. Default is None.
compute_data_type (Optional[cudnn.data_type]): The data type for computation. Default is NOT_SET.
name (Optional[str]): The name of the operation.
Returns:
dQ (cudnn_tensor): The query gradient data.
dK (cudnn_tensor): The key gradient data.
dV (cudnn_tensor): The value gradient data.
amax_dQ (cudnn_tensor): The absolute maximum of query gradient tensor.
amax_dK (cudnn_tensor): The absolute maximum of key gradient tensor.
amax_dV (cudnn_tensor): The absolute maximum of value gradient tensor.
amax_dP (cudnn_tensor): The absolute maximum of dP tensor.
)pbdoc");
m.attr("scaled_dot_product_flash_attention") = m.attr("sdpa");
m.attr("scaled_dot_product_flash_attention_backward") = m.attr("sdpa_backward");
}
} // namespace cudnn_frontend::python_bindings
|