1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*
This example demonstrates how to call a CUTLASS GEMM kernel and provides a naive reference
matrix multiply kernel to verify its correctness.
The CUTLASS Gemm template is instantiated in the function CutlassSgemmNN. This is kernel computes
the general matrix product (GEMM) using single-precision floating-point arithmetic and assumes
all matrices have column-major layout.
The threadblock tile size is chosen as 128x128x8 which offers good performance for large matrices.
See the CUTLASS Parallel for All blog post for more exposition on the tunable parameters available
in CUTLASS.
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
Aside from defining and launching the SGEMM kernel, this example does not use any other components
or utilities within CUTLASS. Such utilities are demonstrated elsewhere in other examples and are
prevalent in the CUTLASS unit tests.
This example has delibrately been kept similar to the basic_gemm example from cutlass-1.3 to
highlight the minimum amount of differences needed to transition to cutlass-2.0.
Cutlass-1.3 sgemm: https://github.com/NVIDIA/cutlass/blob/master/examples/00_basic_gemm/basic_gemm.cu
*/
// Standard Library includes
#include <iostream>
#include <sstream>
#include <vector>
// Helper methods to check for errors
#include "helper.h"
//
// CUTLASS includes needed for single-precision GEMM kernel
//
// Defines cutlass::gemm::device::Gemm, the generic Gemm computation template class.
#include "cutlass/gemm/device/gemm.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
//
// This function defines a CUTLASS GEMM kernel instantiation, constructs its parameters object,
// and launches it on the CUDA device.
//
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Define a CUTLASS GEMM template and launch a GEMM kernel.
cudaError_t CutlassSgemmNN(
int M,
int N,
int K,
float alpha,
float const *A,
int lda,
float const *B,
int ldb,
float beta,
float *C,
int ldc) {
// Define type definition for single-precision CUTLASS GEMM with column-major
// input matrices and 128x128x8 threadblock tile size (chosen by default).
//
// To keep the interface manageable, several helpers are defined for plausible compositions
// including the following example for single-precision GEMM. Typical values are used as
// default template arguments. See `cutlass/gemm/device/default_gemm_configuration.h` for more details.
//
// To view the full gemm device API interface, see `cutlass/gemm/device/gemm.h`
using ColumnMajor = cutlass::layout::ColumnMajor;
using CutlassGemm = cutlass::gemm::device::Gemm<float, // Data-type of A matrix
ColumnMajor, // Layout of A matrix
float, // Data-type of B matrix
ColumnMajor, // Layout of B matrix
float, // Data-type of C matrix
ColumnMajor>; // Layout of C matrix
// Define a CUTLASS GEMM type
CutlassGemm gemm_operator;
// Construct the CUTLASS GEMM arguments object.
//
// One of CUTLASS's design patterns is to define gemm argument objects that are constructible
// in host code and passed to kernels by value. These may include pointers, strides, scalars,
// and other arguments needed by Gemm and its components.
//
// The benefits of this pattern are (1.) a structured, composable strategy for passing host-constructible
// arguments to kernels and (2.) minimized initialization overhead on kernel entry.
//
CutlassGemm::Arguments args({M , N, K}, // Gemm Problem dimensions
{A, lda}, // Tensor-ref for source matrix A
{B, ldb}, // Tensor-ref for source matrix B
{C, ldc}, // Tensor-ref for source matrix C
{C, ldc}, // Tensor-ref for destination matrix D (may be different memory than source C matrix)
{alpha, beta}); // Scalars used in the Epilogue
//
// Launch the CUTLASS GEMM kernel.
//
cutlass::Status status = gemm_operator(args);
//
// Return a cudaError_t if the CUTLASS GEMM operator returned an error code.
//
if (status != cutlass::Status::kSuccess) {
return cudaErrorUnknown;
}
// Return success, if no errors were encountered.
return cudaSuccess;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
//
// The source code after this point in the file is generic CUDA using the CUDA Runtime API
// and simple CUDA kernels to initialize matrices and compute the general matrix product.
//
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Kernel to initialize a matrix with small integers.
__global__ void InitializeMatrix_kernel(
float *matrix,
int rows,
int columns,
int seed = 0) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
if (i < rows && j < columns) {
int offset = i + j * rows;
// Generate arbitrary elements.
int const k = 16807;
int const m = 16;
float value = float(((offset + seed) * k % m) - m / 2);
matrix[offset] = value;
}
}
/// Simple function to initialize a matrix to arbitrary small integers.
cudaError_t InitializeMatrix(float *matrix, int rows, int columns, int seed = 0) {
dim3 block(16, 16);
dim3 grid(
(rows + block.x - 1) / block.x,
(columns + block.y - 1) / block.y
);
InitializeMatrix_kernel<<< grid, block >>>(matrix, rows, columns, seed);
return cudaGetLastError();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Allocates device memory for a matrix then fills with arbitrary small integers.
cudaError_t AllocateMatrix(float **matrix, int rows, int columns, int seed = 0) {
cudaError_t result;
size_t sizeof_matrix = sizeof(float) * rows * columns;
// Allocate device memory.
result = cudaMalloc(reinterpret_cast<void **>(matrix), sizeof_matrix);
if (result != cudaSuccess) {
std::cerr << "Failed to allocate matrix: "
<< cudaGetErrorString(result) << std::endl;
return result;
}
// Clear the allocation.
result = cudaMemset(*matrix, 0, sizeof_matrix);
if (result != cudaSuccess) {
std::cerr << "Failed to clear matrix device memory: "
<< cudaGetErrorString(result) << std::endl;
return result;
}
// Initialize matrix elements to arbitrary small integers.
result = InitializeMatrix(*matrix, rows, columns, seed);
if (result != cudaSuccess) {
std::cerr << "Failed to initialize matrix: "
<< cudaGetErrorString(result) << std::endl;
return result;
}
return result;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Naive reference GEMM computation.
__global__ void ReferenceGemm_kernel(
int M,
int N,
int K,
float alpha,
float const *A,
int lda,
float const *B,
int ldb,
float beta,
float *C,
int ldc) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
if (i < M && j < N) {
float accumulator = 0;
for (int k = 0; k < K; ++k) {
accumulator += A[i + k * lda] * B[k + j * ldb];
}
C[i + j * ldc] = alpha * accumulator + beta * C[i + j * ldc];
}
}
/// Reference GEMM computation.
cudaError_t ReferenceGemm(
int M,
int N,
int K,
float alpha,
float const *A,
int lda,
float const *B,
int ldb,
float beta,
float *C,
int ldc) {
dim3 block(16, 16);
dim3 grid(
(M + block.x - 1) / block.x,
(N + block.y - 1) / block.y
);
ReferenceGemm_kernel<<< grid, block >>>(M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);
return cudaGetLastError();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Allocate several matrices in GPU device memory and call a single-precision
/// CUTLASS GEMM kernel.
cudaError_t TestCutlassGemm(int M, int N, int K, float alpha, float beta) {
cudaError_t result;
//
// Define several matrices to be used as operands to GEMM kernels.
//
// Compute leading dimensions for each matrix.
int lda = M;
int ldb = K;
int ldc = M;
// Compute size in bytes of the C matrix.
size_t sizeof_C = sizeof(float) * ldc * N;
// Define pointers to matrices in GPU device memory.
float *A;
float *B;
float *C_cutlass;
float *C_reference;
//
// Allocate matrices in GPU device memory with arbitrary seeds.
//
result = AllocateMatrix(&A, M, K, 0);
if (result != cudaSuccess) {
return result;
}
result = AllocateMatrix(&B, K, N, 17);
if (result != cudaSuccess) {
cudaFree(A);
return result;
}
result = AllocateMatrix(&C_cutlass, M, N, 101);
if (result != cudaSuccess) {
cudaFree(A);
cudaFree(B);
return result;
}
result = AllocateMatrix(&C_reference, M, N, 101);
if (result != cudaSuccess) {
cudaFree(A);
cudaFree(B);
cudaFree(C_cutlass);
return result;
}
result = cudaMemcpy(C_reference, C_cutlass, sizeof_C, cudaMemcpyDeviceToDevice);
if (result != cudaSuccess) {
std::cerr << "Failed to copy C_cutlass matrix to C_reference: "
<< cudaGetErrorString(result) << std::endl;
cudaFree(C_reference);
cudaFree(C_cutlass);
cudaFree(B);
cudaFree(A);
return result;
}
//
// Launch CUTLASS GEMM.
//
result = CutlassSgemmNN(M, N, K, alpha, A, lda, B, ldb, beta, C_cutlass, ldc);
if (result != cudaSuccess) {
std::cerr << "CUTLASS GEMM kernel failed: "
<< cudaGetErrorString(result) << std::endl;
cudaFree(C_reference);
cudaFree(C_cutlass);
cudaFree(B);
cudaFree(A);
return result;
}
//
// Verify.
//
// Launch reference GEMM
result = ReferenceGemm(M, N, K, alpha, A, lda, B, ldb, beta, C_reference, ldc);
if (result != cudaSuccess) {
std::cerr << "Reference GEMM kernel failed: "
<< cudaGetErrorString(result) << std::endl;
cudaFree(C_reference);
cudaFree(C_cutlass);
cudaFree(B);
cudaFree(A);
return result;
}
// Copy to host and verify equivalence.
std::vector<float> host_cutlass(ldc * N, 0);
std::vector<float> host_reference(ldc * N, 0);
result = cudaMemcpy(host_cutlass.data(), C_cutlass, sizeof_C, cudaMemcpyDeviceToHost);
if (result != cudaSuccess) {
std::cerr << "Failed to copy CUTLASS GEMM results: "
<< cudaGetErrorString(result) << std::endl;
cudaFree(C_reference);
cudaFree(C_cutlass);
cudaFree(B);
cudaFree(A);
return result;
}
result = cudaMemcpy(host_reference.data(), C_reference, sizeof_C, cudaMemcpyDeviceToHost);
if (result != cudaSuccess) {
std::cerr << "Failed to copy Reference GEMM results: "
<< cudaGetErrorString(result) << std::endl;
cudaFree(C_reference);
cudaFree(C_cutlass);
cudaFree(B);
cudaFree(A);
return result;
}
//
// Free device memory allocations.
//
cudaFree(C_reference);
cudaFree(C_cutlass);
cudaFree(B);
cudaFree(A);
//
// Test for bit equivalence of results.
//
if (host_cutlass != host_reference) {
std::cerr << "CUTLASS results incorrect." << std::endl;
return cudaErrorUnknown;
}
return cudaSuccess;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Entry point to basic_gemm example.
//
// usage:
//
// 00_basic_gemm <M> <N> <K> <alpha> <beta>
//
int main(int argc, const char *arg[]) {
//
// Parse the command line to obtain GEMM dimensions and scalar values.
//
// GEMM problem dimensions.
int problem[3] = { 128, 128, 128 };
for (int i = 1; i < argc && i < 4; ++i) {
std::stringstream ss(arg[i]);
ss >> problem[i - 1];
}
// Scalars used for linear scaling the result of the matrix product.
float scalars[2] = { 1, 0 };
for (int i = 4; i < argc && i < 6; ++i) {
std::stringstream ss(arg[i]);
ss >> scalars[i - 4];
}
//
// Run the CUTLASS GEMM test.
//
cudaError_t result = TestCutlassGemm(
problem[0], // GEMM M dimension
problem[1], // GEMM N dimension
problem[2], // GEMM K dimension
scalars[0], // alpha
scalars[1] // beta
);
if (result == cudaSuccess) {
std::cout << "Passed." << std::endl;
}
// Exit.
return result == cudaSuccess ? 0 : -1;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
|