1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*
This example demonstrates how to use the PredicatedTileIterator in CUTLASS to load data from
addressable memory, and then store it back into addressable memory.
TileIterator is a core concept in CUTLASS that enables efficient loading and storing of data to
and from addressable memory. The PredicateTileIterator accepts a ThreadMap type, which defines
the mapping of threads to a "tile" in memory. This separation of concerns enables user-defined
thread mappings to be specified.
In this example, a PredicatedTileIterator is used to load elements from a tile in global memory,
stored in column-major layout, into a fragment and then back into global memory in the same
layout.
This example uses CUTLASS utilities to ease the matrix operations.
*/
// Standard Library includes
#include <iostream>
#include <sstream>
#include <vector>
// CUTLASS includes
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
#include "cutlass/layout/pitch_linear.h"
#include "cutlass/transform/pitch_linear_thread_map.h"
//
// CUTLASS utility includes
//
// Defines operator<<() to write TensorView objects to std::ostream
#include "cutlass/util/tensor_view_io.h"
// Defines cutlass::HostTensor<>
#include "cutlass/util/host_tensor.h"
// Defines cutlass::reference::host::TensorFill() and
// cutlass::reference::host::TensorFillBlockSequential()
#include "cutlass/util/reference/host/tensor_fill.h"
#pragma warning( disable : 4503)
///////////////////////////////////////////////////////////////////////////////////////////////////
/// Define PredicatedTileIterators to load and store a M-by-K tile, in column major layout.
template <typename Iterator>
__global__ void copy(
typename Iterator::Params dst_params,
typename Iterator::Element *dst_pointer,
typename Iterator::Params src_params,
typename Iterator::Element *src_pointer,
cutlass::Coord<2> extent) {
Iterator dst_iterator(dst_params, dst_pointer, extent, threadIdx.x);
Iterator src_iterator(src_params, src_pointer, extent, threadIdx.x);
// PredicatedTileIterator uses PitchLinear layout and therefore takes in a PitchLinearShape.
// The contiguous dimension can be accessed via Iterator::Shape::kContiguous and the strided
// dimension can be accessed via Iterator::Shape::kStrided
int iterations = (extent[1] + Iterator::Shape::kStrided - 1) / Iterator::Shape::kStrided;
typename Iterator::Fragment fragment;
for(int i = 0; i < fragment.size(); ++i) {
fragment[i] = 0;
}
src_iterator.load(fragment);
dst_iterator.store(fragment);
++src_iterator;
++dst_iterator;
for(; iterations > 1; --iterations) {
src_iterator.load(fragment);
dst_iterator.store(fragment);
++src_iterator;
++dst_iterator;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// Initializes the source tile with sequentially increasing values and performs the copy into
// the destination tile using two PredicatedTileIterators, one to load the data from addressable
// memory into a fragment (regiser-backed array of elements owned by each thread) and another to
// store the data from the fragment back into the addressable memory of the destination tile.
cudaError_t TestTileIterator(int M, int K) {
// For this example, we chose a <64, 4> tile shape. The PredicateTileIterator expects
// PitchLinearShape and PitchLinear layout.
using Shape = cutlass::layout::PitchLinearShape<64, 4>;
using Layout = cutlass::layout::PitchLinear;
using Element = int;
int const kThreads = 32;
// ThreadMaps define how threads are mapped to a given tile. The PitchLinearStripminedThreadMap
// stripmines a pitch-linear tile among a given number of threads, first along the contiguous
// dimension then along the strided dimension.
using ThreadMap = cutlass::transform::PitchLinearStripminedThreadMap<Shape, kThreads>;
// Define the PredicateTileIterator, using TileShape, Element, Layout, and ThreadMap types
using Iterator = cutlass::transform::threadblock::PredicatedTileIterator<
Shape, Element, Layout, 1, ThreadMap>;
cutlass::Coord<2> copy_extent = cutlass::make_Coord(M, K);
cutlass::Coord<2> alloc_extent = cutlass::make_Coord(M, K);
// Allocate source and destination tensors
cutlass::HostTensor<Element, Layout> src_tensor(alloc_extent);
cutlass::HostTensor<Element, Layout> dst_tensor(alloc_extent);
Element oob_value = Element(-1);
// Initialize destination tensor with all -1s
cutlass::reference::host::TensorFill(dst_tensor.host_view(), oob_value);
// Initialize source tensor with sequentially increasing values
cutlass::reference::host::BlockFillSequential(src_tensor.host_data(), src_tensor.capacity());
dst_tensor.sync_device();
src_tensor.sync_device();
typename Iterator::Params dst_params(dst_tensor.layout());
typename Iterator::Params src_params(src_tensor.layout());
dim3 block(kThreads, 1);
dim3 grid(1, 1);
// Launch copy kernel to perform the copy
copy<Iterator><<< grid, block >>>(
dst_params,
dst_tensor.device_data(),
src_params,
src_tensor.device_data(),
copy_extent
);
cudaError_t result = cudaGetLastError();
if(result != cudaSuccess) {
std::cerr << "Error - kernel failed." << std::endl;
return result;
}
dst_tensor.sync_host();
// Verify results
for(int s = 0; s < alloc_extent[1]; ++s) {
for(int c = 0; c < alloc_extent[0]; ++c) {
Element expected = Element(0);
if(c < copy_extent[0] && s < copy_extent[1]) {
expected = src_tensor.at({c, s});
}
else {
expected = oob_value;
}
Element got = dst_tensor.at({c, s});
bool equal = (expected == got);
if(!equal) {
std::cerr << "Error - source tile differs from destination tile." << std::endl;
return cudaErrorUnknown;
}
}
}
return cudaSuccess;
}
int main(int argc, const char *arg[]) {
cudaError_t result = TestTileIterator(57, 35);
if(result == cudaSuccess) {
std::cout << "Passed." << std::endl;
}
// Exit
return result == cudaSuccess ? 0 : -1;
}
|