1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
This file contains definitions and utility functions for describing convolution problem sizes in terms of
activation (NHWC), filter (KRSC), output (NPQK), padding (pad_h, pad_w), stride (stride_h, stride_w), and
dilation (dilation_h, dilation_w). Furthermore, it defines helper functions to map CUTLASS's implicit gemm
tensor extents, sizes, and data types to that of the convolution's extents, sizes, and data types.
* Mapping convolutions to Gemm computation *
Cutlass implements convolutions with the Implicit Gemm algorithm. This algorithm performs a gemm
(general matrix-matrix multiply) on the convolution tensors Activation, Filter, and Output.
The underlying gemm operation follows the standard gemm definition:
C = A * B + C
A and B are input matrices
C is source and output matrix
For the three convolutional operators (Fprop, Dgrad, Wgrad), ImplicitGemm matrices A, B, and C are mapped
to convolution tensors Activation, Filter and Output as described in the table below.
___________________________________________________________________________
ConvolutionalOperator | A | B | C
___________________________________________________________________________
| | | | |
| Fprop | Activation | Filter | Output |
| Dgrad | Output | Filter | Activation |
| Wgrad | Output | Activation | Filter |
___________________________________________________________________________
In convolution codebase, DO NOT mix using (A, B, C) with (Activation, Filter, Output).
For example, it's confusing and error prone to document a convolution class or function
as operating on "A, B, Output." Instead, use the mapping functions below,
and adhere to using either A, B, C or Activation, Filter, Output.
Map elements' data types (ImplicitGemm -> Conv): GemmToConvElementMap
Map elements' data types (Conv -> ImplicitGemm): ConvToGemmElementMap
*/
/*
Note: CUTLASS 3x increases the host compiler requirements to C++17. However, certain
existing integrations of CUTLASS require C++11 host compilers.
Until this requirement can be lifted, certain headers with this annotation are required
to be remain consistent with C++11 syntax.
C++11 compatibility is enforced by `cutlass_test_unit_core_cpp11`.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/layout/tensor.h"
#include "cutlass/tensor_coord.h"
#include "cutlass/fast_math.h"
#include "cutlass/gemm/gemm_enumerated_types.h"
#include "cutlass/matrix_coord.h"
namespace cutlass {
namespace conv {
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Convolutional operator
enum class Operator {
kFprop,
kDgrad,
kWgrad
};
/// Distinguishes convolution from cross correlation
enum class Mode {
kCrossCorrelation,
kConvolution
};
/// Selects among several implementation variants trading off performance with simplicity
enum class IteratorAlgorithm {
kAnalytic, ///< functionally correct in all cases but lower performance
kOptimized, ///< optimized for R <= 32, S <= 32 and unity-stride dgrad
kFixedChannels, ///< Analytic algorithm optimized for fixed channel count (C == AccessSize)
kFewChannels, ///< Analytic algorithm optimized for few channels (C divisible by AccessSize)
kFixedStrideDilation ///< Optimized for fixed stride and dilation
};
/// Distinguishes among partial specializations that accelerate certain problems where convolution
/// stride is unit.
enum class StrideSupport {
kStrided, ///< arbitrary convolution stride
kUnity, ///< unit convolution stride
kFixed ///< fixed convolution stride
};
/// Identifies split-K mode
enum class SplitKMode {
kNone,
kSerial,
kParallel
};
/// Identifies group mode
enum class GroupMode {
kNone,
kSingleGroup, ///< One CTA calculates one group or less
kMultipleGroup, ///< One CTA calculates multiple groups
kDepthwise ///< One CTA calculates cta_n groups (problem_size.C == problem_size.K == problem_size.groups)
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Shape of a tensor
template <
int N = 1,
int H = 1,
int W = 1,
int C = 1
>
struct TensorNHWCShape {
static int const kN = N;
static int const kH = H;
static int const kW = W;
static int const kC = C;
static int const kHW = H * W;
static int const kNHW = N * kHW;
static int const kNHWC = N * H * W * C;
static int const kCount = kNHWC;
//
// Static member functions
//
/// Returns a Coord object
CUTLASS_HOST_DEVICE
static Coord<4> toCoord() {
return make_Coord(kN, kH, kW, kC);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace conv
} // namespace cutlass
////////////////////////////////////////////////////////////////////////////////////////////////////
|