1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief Template for device-level Depthwise Convolution
*/
#pragma once
#include <limits>
#include "cutlass/cutlass.h"
#include "cutlass/device_kernel.h"
#include "cutlass/conv/convolution.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace conv {
namespace device {
/////////////////////////////////////////////////////////////////////////////////////////////////
template<typename DirectConvolutionKernel_>
class DirectConvolution {
public:
using UnderlyingKernel = DirectConvolutionKernel_;
using ElementA = typename UnderlyingKernel::ElementA;
using LayoutA = typename UnderlyingKernel::LayoutA;
using ElementB = typename UnderlyingKernel::ElementB;
using LayoutB = typename UnderlyingKernel::LayoutB;
using ElementC = typename UnderlyingKernel::ElementC;
using LayoutC = typename UnderlyingKernel::LayoutC;
using ElementAccumulator = typename UnderlyingKernel::ElementAccumulator;
using ElementCompute = typename UnderlyingKernel::ElementCompute;
using OperatorClass = typename UnderlyingKernel::OperatorClass;
using ArchTag = typename UnderlyingKernel::ArchTag;
using ThreadblockShape = typename UnderlyingKernel::ThreadblockShape;
using WarpShape = typename UnderlyingKernel::WarpShape;
using InstructionShape = typename UnderlyingKernel::InstructionShape;
using ThreadblockSwizzle = typename UnderlyingKernel::ThreadblockSwizzle;
using EpilogueOutputOp = typename UnderlyingKernel::EpilogueOutputOp;
static int const kStages = UnderlyingKernel::kStages;
static int const kConvDim = UnderlyingKernel::kConvDim;
using WarpMmaOperator = typename UnderlyingKernel::WarpMmaOperator;
using ArchMmaOperator = typename UnderlyingKernel::ArchMmaOperator;
using MathOperator = typename UnderlyingKernel::MathOperator;
static cutlass::conv::Operator const kConvolutionalOperator = UnderlyingKernel::kConvolutionalOperator;
static cutlass::conv::IteratorAlgorithm const kIteratorAlgorithm = UnderlyingKernel::kIteratorAlgorithm;
static cutlass::conv::StrideSupport const kStrideSupport = UnderlyingKernel::kStrideSupport;
static cutlass::conv::GroupMode const kGroupMode = UnderlyingKernel::kGroupMode;
static int const kWarpCount =
(ThreadblockShape::kM / WarpShape::kM) *
(ThreadblockShape::kN / WarpShape::kN) *
(ThreadblockShape::kK / WarpShape::kK);
/// Argument structure
using Arguments = typename UnderlyingKernel::Arguments;
using ReorderKernel = typename UnderlyingKernel::ReorderKernel;
private:
/// Kernel parameters object
typename UnderlyingKernel::Params params_;
public:
/// Constructs Implicit GEMM
DirectConvolution() { }
/// Determines whether the Implicit GEMM can execute the given problem.
static Status can_implement(Arguments const &args) {
// dispatch to iterators
Status status = UnderlyingKernel::Mma::IteratorA::can_implement(args.problem_size);
if (Status::kSuccess != status) {
return status;
}
status = UnderlyingKernel::Mma::IteratorB::can_implement(args.problem_size);
if (Status::kSuccess != status) {
return status;
}
if (kGroupMode != conv::GroupMode::kDepthwise) {
return Status::kErrorInvalidProblem;
}
// C and K should be multiple of groups
if (args.problem_size.K != args.problem_size.groups &&
args.problem_size.C != args.problem_size.groups) {
return Status::kErrorInvalidProblem;
}
static int const kAlignmentC = UnderlyingKernel::Epilogue::OutputTileIterator::kElementsPerAccess;
if (kConvolutionalOperator == conv::Operator::kFprop) {
if (args.problem_size.K % kAlignmentC)
return Status::kErrorMisalignedOperand;
} else if (kConvolutionalOperator == conv::Operator::kDgrad) {
if (args.problem_size.C % kAlignmentC)
return Status::kErrorMisalignedOperand;
} else if (kConvolutionalOperator == conv::Operator::kWgrad) {
if (args.problem_size.C % kAlignmentC)
return Status::kErrorMisalignedOperand;
}
// Determine grid shape
ThreadblockSwizzle threadblock_swizzle;
dim3 grid = threadblock_swizzle.get_grid_shape(
threadblock_swizzle.get_tiled_shape(
kConvolutionalOperator,
args.problem_size,
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
args.problem_size.split_k_slices));
if (!(grid.y <= std::numeric_limits<uint16_t>::max() &&
grid.z <= std::numeric_limits<uint16_t>::max())) {
return Status::kErrorInvalidProblem;
}
return Status::kSuccess;
}
/// Gets the workspace size
static size_t get_workspace_size(Arguments const &args) {
return 0;
}
/// Initializes GEMM state from arguments.
Status initialize(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
// initialize the params structure from the arguments
params_ = typename UnderlyingKernel::Params(
args,
static_cast<int *>(workspace)
);
int smem_size = int(sizeof(typename UnderlyingKernel::SharedStorage));
if (smem_size >= (48 << 10)) {
cudaError_t result = cudaFuncSetAttribute(cutlass::Kernel<UnderlyingKernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (result != cudaSuccess) {
return Status::kErrorInternal;
}
}
return Status::kSuccess;
}
/// Initializes GEMM state from arguments.
Status update(Arguments const &args, void *workspace = nullptr) {
// update the params structure from the arguments
params_.ptr_A = args.ref_A.data();
params_.ptr_B = args.ref_B.data();
params_.ptr_C = args.ref_C.data();
params_.ptr_D = args.ref_D.data();
params_.output_op = args.output_op;
params_.ptr_reordered_B = args.ref_reordered_B.data();;
params_.semaphore = static_cast<int *>(workspace);
return Status::kSuccess;
}
/// Runs the kernel using initialized state.
Status run(cudaStream_t stream = nullptr) {
// Launch reorder kernel
if (params_.ptr_reordered_B != nullptr) {
dim3 grid = ReorderKernel::get_grid_shape(params_);
dim3 block = ReorderKernel::get_block_shape();
cutlass::Kernel<ReorderKernel><<<grid, block, 0, stream>>>(params_);
}
// Launch main kernel
ThreadblockSwizzle threadblock_swizzle;
dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);
dim3 block(32 * kWarpCount, 1, 1);
// Dynamic SMEM size based on input params.
int smem_size = int(params_.get_smem_size());
// Make sure we can use that much shared memory.
cudaError_t status =
cudaFuncSetAttribute(cutlass::Kernel<UnderlyingKernel>, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size);
if (status != cudaSuccess)
return Status::kErrorInternal;
cutlass::Kernel<UnderlyingKernel><<<grid, block, smem_size, stream>>>(params_);
cudaError_t result = cudaGetLastError();
return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
}
/// Runs the kernel using initialized state.
Status operator()(cudaStream_t stream = nullptr) {
return run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace, stream);
if (status == Status::kSuccess) {
status = run(stream);
}
return status;
}
int get_smem_size() { return int(params_.get_smem_size()); }
};
/////////////////////////////////////////////////////////////////////////////////////////////////
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
|