File: implicit_gemm_convolution.h

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (328 lines) | stat: -rw-r--r-- 12,078 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/***************************************************************************************************
 * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 **************************************************************************************************/
/* \file
   \brief Template for device-level Implicit GEMM Convolution
*/

#pragma once

#include <limits>

#include "cutlass/cutlass.h"
#include "cutlass/device_kernel.h"
#include "cutlass/conv/convolution.h"

/////////////////////////////////////////////////////////////////////////////////////////////////

namespace cutlass {
namespace conv {
namespace device {

/////////////////////////////////////////////////////////////////////////////////////////////////

template<typename ImplicitGemmKernel_>
class ImplicitGemmConvolution {
public:

  using UnderlyingKernel = ImplicitGemmKernel_;

  using ElementA = typename UnderlyingKernel::ElementA;
  using LayoutA = typename UnderlyingKernel::LayoutA;
  using ElementB = typename UnderlyingKernel::ElementB;
  using LayoutB = typename UnderlyingKernel::LayoutB;
  using ElementC = typename UnderlyingKernel::ElementC;
  using LayoutC = typename UnderlyingKernel::LayoutC;
  using ElementAccumulator = typename UnderlyingKernel::ElementAccumulator;
  using ElementCompute = typename UnderlyingKernel::ElementCompute;
  using OperatorClass = typename UnderlyingKernel::OperatorClass;
  using ArchTag = typename UnderlyingKernel::ArchTag;
  using ThreadblockShape = typename UnderlyingKernel::ThreadblockShape;
  using WarpShape = typename UnderlyingKernel::WarpShape;
  using InstructionShape = typename UnderlyingKernel::InstructionShape;
  using ThreadblockSwizzle = typename UnderlyingKernel::ThreadblockSwizzle;
  using EpilogueOutputOp = typename UnderlyingKernel::EpilogueOutputOp;
  static int const kStages = UnderlyingKernel::kStages;
  static int const kConvDim = UnderlyingKernel::kConvDim;
  using WarpMmaOperator = typename UnderlyingKernel::WarpMmaOperator;
  using ArchMmaOperator = typename UnderlyingKernel::ArchMmaOperator;
  using MathOperator = typename UnderlyingKernel::MathOperator; 

  static cutlass::conv::Operator const kConvolutionalOperator = UnderlyingKernel::kConvolutionalOperator;
  static cutlass::conv::IteratorAlgorithm const kIteratorAlgorithm = UnderlyingKernel::kIteratorAlgorithm;
  static cutlass::conv::StrideSupport const kStrideSupport = UnderlyingKernel::kStrideSupport;
  static cutlass::conv::GroupMode const kGroupMode = UnderlyingKernel::kGroupMode;

  static int const kWarpCount = 
    (ThreadblockShape::kM / WarpShape::kM) * 
    (ThreadblockShape::kN / WarpShape::kN) *
    (ThreadblockShape::kK / WarpShape::kK);

  /// Argument structure
  using Arguments = typename UnderlyingKernel::Arguments;

private:

  /// Kernel parameters object
  typename UnderlyingKernel::Params params_;

public:

  /// Constructs Implicit GEMM
  ImplicitGemmConvolution() { }

  /// Determines whether the Implicit GEMM can execute the given problem.
  static Status can_implement(Arguments const &args) {

    // dispatch to iterators
    Status status = UnderlyingKernel::Mma::IteratorA::can_implement(args.problem_size);
    if (Status::kSuccess != status) {
      return status;
    }

    status = UnderlyingKernel::Mma::IteratorB::can_implement(args.problem_size);
    if (Status::kSuccess != status) {
      return status;
    }

    // check group conv constraint
    if (args.problem_size.groups != 1) {
      if (kGroupMode == conv::GroupMode::kNone) {
        return Status::kErrorInvalidProblem;
      } 

      // C and K should be multiple of groups
      if (args.problem_size.K % args.problem_size.groups ||
        args.problem_size.C % args.problem_size.groups) {
        return Status::kErrorInvalidProblem;
      }

      // split-k is not supported
      if (args.problem_size.split_k_slices != 1) {
        return Status::kErrorInvalidProblem;
      }

      int k_per_group = args.problem_size.K / args.problem_size.groups;
      // k_per_group should be multiple of ThreadblockShape N, one CTA calculate one group
      if (kGroupMode == conv::GroupMode::kSingleGroup && k_per_group % ThreadblockShape::kN) {
        return Status::kErrorInvalidProblem;
      }
      // ThreadblockShape::kN should be divisible by k_per_group, one CTA calculate multiple groups
      if (kGroupMode == conv::GroupMode::kMultipleGroup && ThreadblockShape::kN % k_per_group) {
        return Status::kErrorInvalidProblem;
      }

      // current optimized iterator algo only supports SingleGroup mode
      if (kIteratorAlgorithm == IteratorAlgorithm::kOptimized &&
        kGroupMode != conv::GroupMode::kSingleGroup) {
        return Status::kErrorInvalidProblem;
      }
    }

    static int const kAlignmentC = UnderlyingKernel::Epilogue::OutputTileIterator::kElementsPerAccess;
    if (kConvolutionalOperator == conv::Operator::kFprop) {
      if (args.problem_size.K % kAlignmentC)
        return Status::kErrorMisalignedOperand;
    } else if (kConvolutionalOperator == conv::Operator::kDgrad) {
       if (args.problem_size.C % kAlignmentC)
        return Status::kErrorMisalignedOperand;
    } else if (kConvolutionalOperator == conv::Operator::kWgrad) {
       if (args.problem_size.C % kAlignmentC)
        return Status::kErrorMisalignedOperand;
    }

    // check for unsupported problem sizes for strided dgrad implementation
    if (kConvolutionalOperator == conv::Operator::kDgrad && 
      kStrideSupport == conv::StrideSupport::kStrided) {

      // split-k (serial or parallel) is not supported for strided dgrad
      if(args.problem_size.split_k_slices > 1) {
        return Status::kErrorNotSupported;
      }
      
      // dilation > {1x1} is not supported for strided dgrad
      if(args.problem_size.dilation_h > 1 || args.problem_size.dilation_w > 1) {
        return Status::kErrorNotSupported;
      }
    }

    // Determine grid shape
    ThreadblockSwizzle threadblock_swizzle;

    dim3 grid = threadblock_swizzle.get_grid_shape(
      threadblock_swizzle.get_tiled_shape(
        kConvolutionalOperator,
        args.problem_size,
        {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
        args.problem_size.split_k_slices));

    if (!(grid.y <= std::numeric_limits<uint16_t>::max() &&
          grid.z <= std::numeric_limits<uint16_t>::max())) {

      return Status::kErrorInvalidProblem;
    }

    return Status::kSuccess;
  }

  /// Gets the workspace size
  static size_t get_workspace_size(Arguments const &args) {
  
    size_t workspace_bytes = 0;

    // Determine grid shape
    ThreadblockSwizzle threadblock_swizzle;

    cutlass::gemm::GemmCoord grid_tiled_shape = threadblock_swizzle.get_tiled_shape(
        kConvolutionalOperator,
        args.problem_size,
        {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
        args.problem_size.split_k_slices);

    if(args.split_k_mode == SplitKMode::kParallel) {

      // Split-K parallel: CTAs in k-dimension write the partial results in a temporary workspace.
      // The user needs to call a reduction operator to optain the final output tensor
      workspace_bytes = 
        sizeof(ElementAccumulator) *
        size_t(cutlass::conv::implicit_gemm_tensor_c_size(kConvolutionalOperator, args.problem_size)) *
        size_t(grid_tiled_shape.k());
    }

    else if(args.split_k_mode == SplitKMode::kSerial && args.problem_size.split_k_slices > 1) {

      // Split-K serial: The user workspace is used to store semaphore and serialize writing the 
      // final reduced output to user's output tensor
      workspace_bytes = sizeof(int) * size_t(grid_tiled_shape.m()) * size_t(grid_tiled_shape.n());
    }

    return workspace_bytes;
  }

  /// Initializes GEMM state from arguments.
  Status initialize(
    Arguments const &args, 
    void *workspace = nullptr, 
    cudaStream_t stream = nullptr) {
   
    if (args.problem_size.split_k_slices > 1) {

      if (!workspace) {
        return Status::kErrorWorkspaceNull;
      }

      cudaError_t status = cudaMemsetAsync(workspace, 0, get_workspace_size(args), stream);

      if (status != cudaSuccess) {
        return Status::kErrorInternal;
      }
    }

    // initialize the params structure from the arguments
    params_ = typename UnderlyingKernel::Params(
    	args,
    	static_cast<int *>(workspace)
    );
    
    int smem_size = int(sizeof(typename UnderlyingKernel::SharedStorage));

    if (smem_size >= (48 << 10)) {
      cudaError_t result = cudaFuncSetAttribute(cutlass::Kernel<UnderlyingKernel>,
                                    cudaFuncAttributeMaxDynamicSharedMemorySize,
                                    smem_size);

      if (result != cudaSuccess) {
        return Status::kErrorInternal;
      }
    }
    
    return Status::kSuccess;
  }

  /// Initializes GEMM state from arguments.
  Status update(Arguments const &args, void *workspace = nullptr) {

    // update the params structure from the arguments
    params_.ptr_A = args.ref_A.data();
    params_.ptr_B = args.ref_B.data();
    params_.ptr_C = args.ref_C.data();
    params_.ptr_D = args.ref_D.data();
    params_.output_op = args.output_op;
    params_.semaphore = static_cast<int *>(workspace);

    return Status::kSuccess;
  }

  /// Runs the kernel using initialized state.
  Status run(cudaStream_t stream = nullptr) {


    ThreadblockSwizzle threadblock_swizzle;

    dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);
    dim3 block(32 * kWarpCount, 1, 1);

    int smem_size = int(sizeof(typename UnderlyingKernel::SharedStorage));

    cutlass::Kernel<UnderlyingKernel><<<grid, block, smem_size, stream>>>(params_);

    cudaError_t result = cudaGetLastError();

    return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
  }

  /// Runs the kernel using initialized state.
  Status operator()(cudaStream_t stream = nullptr) {
    return run(stream);
  }

  /// Runs the kernel using initialized state.
  Status operator()(
    Arguments const &args, 
    void *workspace = nullptr, 
    cudaStream_t stream = nullptr) {
    
    Status status = initialize(args, workspace, stream);
    
    if (status == Status::kSuccess) {
      status = run(stream);
    }

    return status;
  }
};

/////////////////////////////////////////////////////////////////////////////////////////////////

}
}
}

/////////////////////////////////////////////////////////////////////////////////////////////////