File: direct_convolution.h

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (505 lines) | stat: -rw-r--r-- 18,026 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/***************************************************************************************************
 * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 **************************************************************************************************/
/*! \file
    \brief Template for a multi-staged Depthwise Convolution kernel.
*/

#pragma once

#include "cutlass/cutlass.h"

#include "cutlass/aligned_buffer.h"
#include "cutlass/array.h"
#include "cutlass/numeric_types.h"
#include "cutlass/matrix_shape.h"
#include "cutlass/semaphore.h"
#include "cutlass/tensor_ref.h"
#include "cutlass/layout/tensor.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/conv/convolution.h"
#include "cutlass/conv/conv2d_problem_size.h"
#include "cutlass/conv/conv3d_problem_size.h"
#include "cutlass/epilogue/threadblock/output_iterator_parameter.h"

/////////////////////////////////////////////////////////////////////////////////////////////////

namespace cutlass {
namespace conv {
namespace kernel {

/////////////////////////////////////////////////////////////////////////////////////////////////

/// Parameters structure
template <typename Mma_,                 ///! Threadblock-scoped matrix multiply-accumulate
          typename Epilogue_,            ///! Epilogue
          typename ThreadblockSwizzle_,  ///! Threadblock swizzling function
          conv::Operator ConvOperator,   ///! Convolutional operator (Fprop, Dgrad, Wgrad)
          typename Arguments_,           ///! Kernel Arguments
          typename ConvOutputIteratorParameter_, ///! Output Iterator Params
          typename ConvProblemSize_ = Conv2dProblemSize,  ///! Convolutional operator on 2D or 3D problem
          conv::GroupMode GroupMode_ = conv::GroupMode::kNone,  ///! Group mode
          typename ThreadBlockOutputShape_ = cutlass::conv::TensorNHWCShape<1, 1, 1, 1> >  ///! OutputShape per ThreadBlock
struct DirectConvolutionParams {
  using Mma = Mma_;
  using Epilogue = Epilogue_;
  using EpilogueOutputOp = typename Epilogue::OutputOp;
  using ThreadblockSwizzle = ThreadblockSwizzle_;
  using ThreadBlockOutputShape = ThreadBlockOutputShape_;
  static Operator const kConvolutionalOperator = ConvOperator;
  using ConvProblemSize = ConvProblemSize_;
  using Arguments = Arguments_;
  using ConvOutputIteratorParameter = ConvOutputIteratorParameter_;

  using ThreadblockShape = typename Mma::Shape;
  static IteratorAlgorithm const kIteratorAlgorithm = Mma::IteratorA::kIteratorAlgorithm;
  static conv::GroupMode const kGroupMode = GroupMode_;
  static int const kStages = Mma::kStages;

  ConvProblemSize problem_size;
  cutlass::gemm::GemmCoord grid_tiled_shape;
  gemm::GemmCoord implicit_gemm_problem_size;
  int swizzle_log_tile;
  int smem_size_;

  int gemm_k_iterations;
  int gemm_k_iterations_per_channel;
  typename Mma::IteratorA::Params iterator_A;
  typename Mma::IteratorA::Element const *ptr_A;
  typename Mma::IteratorB::Params iterator_B;
  typename Mma::IteratorB::Element const *ptr_B;
  typename Mma::IteratorB::Element *ptr_reordered_B;
  typename Epilogue::OutputTileIterator::Params iterator_C;
  typename Epilogue::OutputTileIterator::Element *ptr_C;
  typename Epilogue::OutputTileIterator::Params iterator_D;
  typename Epilogue::OutputTileIterator::Element *ptr_D;
  typename EpilogueOutputOp::Params output_op;
  int *semaphore;
  SplitKMode split_k_mode;
  int split_k_slices;

  //
  // Methods
  //

  CUTLASS_HOST_DEVICE
  DirectConvolutionParams() : swizzle_log_tile(0), gemm_k_iterations(0) {}

  ///
  CUTLASS_HOST_DEVICE
  DirectConvolutionParams(Arguments const &args, int *semaphore = nullptr)
      : problem_size(args.problem_size),
        implicit_gemm_problem_size(
            cutlass::conv::implicit_gemm_problem_size(kConvolutionalOperator, args.problem_size)),
        iterator_A(Mma::IteratorA::getParams(args.problem_size, args.ref_A.layout())),
        ptr_A(args.ref_A.data()),
        iterator_B(Mma::IteratorB::getParams(args.problem_size, args.ref_B.layout())),
        ptr_B(args.ref_B.data()),
        ptr_reordered_B(args.ref_reordered_B.data()),
        iterator_C(ConvOutputIteratorParameter::layout(args.ref_C), args.problem_size),
        ptr_C(args.ref_C.data()),
        iterator_D(ConvOutputIteratorParameter::layout(args.ref_D), args.problem_size),
        ptr_D(args.ref_D.data()),
        output_op(args.output_op),
        semaphore(semaphore),
        split_k_mode(args.split_k_mode),
        split_k_slices(args.problem_size.split_k_slices) {
    gemm_k_iterations =
        depthwise_gemm_k_iterations<ThreadBlockOutputShape::kN,
                                    ThreadBlockOutputShape::kH,
                                    ThreadBlockOutputShape::kW>(kConvolutionalOperator,
                                                                ThreadblockShape::kK,
                                                                args.problem_size,
                                                                kIteratorAlgorithm,
                                                                kGroupMode,
                                                                ThreadblockShape::kN);

    gemm_k_iterations_per_channel = implicit_gemm_k_iterations_per_channel(
        kConvolutionalOperator, args.problem_size, kIteratorAlgorithm);

    ThreadblockSwizzle threadblock_swizzle;

    grid_tiled_shape = threadblock_swizzle.get_tiled_shape(
        kConvolutionalOperator,
        problem_size,
        {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
        args.problem_size.split_k_slices);

    swizzle_log_tile = threadblock_swizzle.get_log_tile(grid_tiled_shape);

    // Dynamic SMEM usage because stride and dilation are runtime params.
    smem_size_ = (iterator_A.activation_size * kStages + iterator_B.filter_size);
  }

  CUTLASS_HOST_DEVICE
  int get_smem_size() {
    // Dynamic Smem Size
    return smem_size_;
  }
};

/////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Params_, typename ElementB_>
struct ReorderKernel {
  using Params = Params_;
  using ElementB = ElementB_;

  union SharedStorage {};

  static unsigned int const kReorderKernelThreadPerCTA = 128;

  CUTLASS_HOST_DEVICE
  ReorderKernel() {}

  CUTLASS_HOST_DEVICE
  static dim3 get_grid_shape(Params const &params) {
    return dim3{static_cast<unsigned int>(
                    (params.problem_size.filter_size() + kReorderKernelThreadPerCTA - 1) /
                    kReorderKernelThreadPerCTA),
                1,
                1};
  }

  CUTLASS_HOST_DEVICE
  static dim3 get_block_shape() { return dim3{kReorderKernelThreadPerCTA, 1, 1}; }

  CUTLASS_HOST_DEVICE
  void operator()(Params const &params, SharedStorage &shared_storage) {
    int64_t m = static_cast<int64_t>(params.problem_size.groups);
    int64_t n = static_cast<int64_t>(params.problem_size.filter_size() / params.problem_size.K);
    const ElementB *src_with_type = static_cast<const ElementB *>(params.ptr_B);
    ElementB *dst_with_type = static_cast<ElementB *>(params.ptr_reordered_B);

    int64_t linear_index = blockIdx.x * kReorderKernelThreadPerCTA + threadIdx.x;
    int64_t index_m = linear_index / n;
    int64_t index_n = linear_index % n;
    int64_t new_linear_index = index_m + index_n * m;

    if (linear_index < m * n) {
      dst_with_type[new_linear_index] = src_with_type[linear_index];
    }
    return;
  }
};

/////////////////////////////////////////////////////////////////////////////////////////////////

template <
  typename Mma_,                                  ///! Threadblock-scoped matrix multiply-accumulate 
  typename Epilogue_,                             ///! Epilogue
  typename ThreadblockSwizzle_,                   ///! Threadblock swizzling function
  conv::Operator ConvOperator,                    ///! Convolutional operator (Fprop, Dgrad, Wgrad)
  typename ConvProblemSize_ = Conv2dProblemSize,  ///! Convolutional operator on 2D or 3D problem
  conv::GroupMode GroupMode_ = conv::GroupMode::kNone,    ///! Group mode
  typename ThreadBlockOutputShape_ = cutlass::conv::TensorNHWCShape<1, 1, 1, 1>
>
struct DirectConvolution {

  using Mma = Mma_;
  using Epilogue = Epilogue_;
  using EpilogueOutputOp = typename Epilogue::OutputOp;
  using ThreadblockSwizzle = ThreadblockSwizzle_;
  using ThreadBlockOutputShape = ThreadBlockOutputShape_;
  static Operator const kConvolutionalOperator = ConvOperator;

  using ElementA = typename Mma::IteratorA::Element;
  using LayoutA = typename Mma::IteratorA::Layout;
  using ElementB = typename Mma::IteratorB::Element;
  using LayoutB = typename Mma::IteratorB::Layout;
  using ElementC = typename EpilogueOutputOp::ElementOutput;

  /// Set output tensor C layout
  using LayoutC = LayoutA;

  using ElementAccumulator = typename EpilogueOutputOp::ElementAccumulator;
  using ElementCompute = typename EpilogueOutputOp::ElementCompute;

  using WarpMmaOperator = typename Mma::Policy::Operator;

  using ArchMmaOperator = typename WarpMmaOperator::ArchMmaOperator;
  using MathOperator = typename ArchMmaOperator::Operator;
  
  using OperatorClass = typename WarpMmaOperator::OperatorClass;
  using ArchTag = typename WarpMmaOperator::ArchTag;

  using ThreadblockShape = typename Mma::Shape;
  using WarpShape = typename WarpMmaOperator::Shape;
  using InstructionShape = typename cutlass::gemm::GemmShape<1, 1, 1>;

  static int const kStages = Mma::kStages;
  static IteratorAlgorithm const kIteratorAlgorithm = Mma::IteratorA::kIteratorAlgorithm; 
  static StrideSupport const kStrideSupport = Mma::IteratorA::kStrideSupport;

  /// Warp count (concept: GemmShape)
  using WarpCount = typename Mma::WarpCount;
  static int const kThreadCount = 32 * WarpCount::kCount;

  using TensorRefA = typename Mma::IteratorA::TensorRef;
  using TensorRefB = typename Mma::IteratorB::TensorRef;
  using TensorRefC = cutlass::TensorRef<ElementC, LayoutC>;

  /// Check iterator A and B convolution dimension are the same and 
  // set device::ImplicitGemmConvolution::kConvDim
  static_assert(Mma::IteratorA::kConvDim == Mma::IteratorB::kConvDim, 
    "Convolution on different different dimensions is not supported");
  static int const kConvDim = Mma::IteratorA::kConvDim;

  /// Conv dimension and problem size structure (Conv2d or Conv3d)
  using ConvProblemSize = ConvProblemSize_;

  static conv::GroupMode const kGroupMode = GroupMode_;


  //
  //
  //
  using ConvOutputIteratorParameter = epilogue::threadblock::ConvOutputIteratorParameter<
    LayoutC,
    typename Epilogue::OutputTileIterator::Layout, 
    TensorRefC,
    ConvOperator,
    ConvProblemSize
    >;


  /// Argument structure
  struct Arguments {

    //
    // Data members
    //

    ConvProblemSize problem_size;
    TensorRefA ref_A;
    TensorRefB ref_B;
    TensorRefB ref_reordered_B;
    TensorRefC ref_C;
    TensorRefC ref_D;
    typename EpilogueOutputOp::Params output_op;
    SplitKMode split_k_mode;

    //
    // Methods
    //

    /// Default ctor
    CUTLASS_HOST_DEVICE
    Arguments() { }
   
    CUTLASS_HOST_DEVICE 
    Arguments(
      ConvProblemSize const & problem_size
    ):
      problem_size(problem_size) { }

    CUTLASS_HOST_DEVICE
    Arguments(
      ConvProblemSize const & problem_size,
      TensorRefA const & ref_A,
      TensorRefB const & ref_B,
      TensorRefC const & ref_C,
      TensorRefC const & ref_D,
      typename EpilogueOutputOp::Params const & output_op,
      TensorRefB const & ref_reordered_B = nullptr,
      SplitKMode const & split_k_mode = SplitKMode::kSerial
    ):
      problem_size(problem_size),
      ref_A(ref_A),
      ref_B(ref_B),
      ref_C(ref_C),
      ref_D(ref_D),
      output_op(output_op),
      ref_reordered_B(ref_reordered_B),
      split_k_mode(split_k_mode)
    {

    }

  };

  using Params =
      typename cutlass::conv::kernel::DirectConvolutionParams<Mma,
                                                              Epilogue,
                                                              ThreadblockSwizzle,
                                                              kConvolutionalOperator,
                                                              Arguments,
                                                              ConvOutputIteratorParameter,
                                                              ConvProblemSize,
                                                              kGroupMode,
                                                              ThreadBlockOutputShape>;

  using ReorderKernel = typename cutlass::conv::kernel::ReorderKernel<Params, ElementB>;

  /// Shared memory storage structure
  union SharedStorage {
    typename Mma::SharedStorage main_loop;
    typename Epilogue::SharedStorage epilogue;
  };

  //
  // Methods
  //

  CUTLASS_HOST_DEVICE
  DirectConvolution() { } 

  /// Executes one ImplicitGEMM
  CUTLASS_DEVICE
  void operator()(Params const &params, SharedStorage &shared_storage) {

    // Compute threadblock location
    ThreadblockSwizzle threadblock_swizzle;

    cutlass::gemm::GemmCoord threadblock_tile_idx =
        threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);

    // Early exit if threadblock is out of range
    if (params.grid_tiled_shape.m() <= threadblock_tile_idx.m() ||
      params.grid_tiled_shape.n() <= threadblock_tile_idx.n()) {

      return;
    }

    // Compute position within threadblock
    int thread_idx = threadIdx.x;
    int iterator_column_offset = 0;
    int filter_row_offset = 0;
    if (kGroupMode != GroupMode::kNone) {
      if (kGroupMode == GroupMode::kDepthwise) {
        iterator_column_offset += threadblock_tile_idx.n() * Mma::Shape::kN;
      }
    } 

    // Construct iterators to A and B operands
    typename Mma::IteratorA iterator_A(
      params.iterator_A,
      params.problem_size,
      params.ptr_A,
      thread_idx,
      MatrixCoord(
        threadblock_tile_idx.m() + threadblock_tile_idx.k(),
        iterator_column_offset
      )
    );
    
    typename Mma::IteratorB iterator_B(
      params.iterator_B,
      params.problem_size,
      params.ptr_reordered_B,
      thread_idx,
      MatrixCoord(
        filter_row_offset,
        iterator_column_offset
      )
    );

    // Broadcast the warp_id computed by lane 0 to ensure dependent code
    // is compiled as warp-uniform.
    int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
    int lane_idx = threadIdx.x % 32;

    //
    // Main loop
    //

    // Construct thread-scoped matrix multiply
    Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);

    typename Mma::FragmentC accumulators;

    accumulators.clear();

    //
    // Epilogue
    //

    EpilogueOutputOp output_op(params.output_op);
    
    // Compute logical position within grid
    threadblock_tile_idx =
        threadblock_swizzle.get_tile_offset(params.swizzle_log_tile);


    MatrixCoord threadblock_offset(
      threadblock_tile_idx.m() + threadblock_tile_idx.k(),
      threadblock_tile_idx.n() * Mma::Shape::kN
    );

    // Tile iterator writing to destination tensor
    typename Epilogue::OutputTileIterator iterator_D(
      params.iterator_D,
      params.ptr_D,
      ConvOutputIteratorParameter::extent(params.problem_size),
      thread_idx,
      threadblock_offset
    );
    
    // Tile iterator reading from source accumulator tensor
    typename Epilogue::OutputTileIterator iterator_C(
      params.iterator_C,
      params.ptr_C,
      ConvOutputIteratorParameter::extent(params.problem_size),
      thread_idx,
      threadblock_offset
    );


    // Construct the epilogue
    Epilogue epilogue(
      shared_storage.epilogue, 
      thread_idx, 
      warp_idx, 
      lane_idx);


    // Compute threadblock-scoped matrix multiply-add
    // Epilogue is fused in the mainloop
    mma(params.gemm_k_iterations,
        accumulators,
        iterator_A,
        params.iterator_A,
        iterator_B,
        params.iterator_B,
        accumulators,
        epilogue,
        output_op,
        iterator_D,
        iterator_C,
        params.split_k_slices);
  }
};

/////////////////////////////////////////////////////////////////////////////////////////////////

} // namespace kernel
} // namespace conv
} // namespace cutlass

/////////////////////////////////////////////////////////////////////////////////////////////////