1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
from math import prod
from typing import Union
from cuda import cuda, cudart
import numpy as np
import cutlass
from cutlass.backend.frontend import CupyFrontend, NumpyFrontend, TorchFrontend
from cutlass.backend.memory_manager import DevicePtrWrapper
from cutlass.utils.datatypes import is_cupy_tensor, is_numpy_tensor, is_torch_tensor
class ArgumentBase:
"""
Base class for operation arguments
"""
def __init__(
self,
A: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]",
B: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]",
C: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]",
D: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]",
**kwargs,
) -> None:
# tensor_C can be interpreted as the bias with bias=True in keyword args
self.bias = kwargs.get("bias", False)
self.stream = kwargs.get("stream", cuda.CUstream(0))
# RMM buffers used to track tensor lifetime
self.buffers = {}
# Host tensor to copy the computed result back
self.host_tensors = {}
self.ptr_A = self.tensor_to_ptr(A, "A")
self.ptr_B = self.tensor_to_ptr(B, "B")
self.ptr_C = self.tensor_to_ptr(C, "C")
self.ptr_D = self.tensor_to_ptr(D, "D", is_output=True)
if C is not None:
if not isinstance(C, cuda.CUdeviceptr):
self.tensor_c_numel = prod(C.shape)
def tensor_to_ptr(self, tensor, name, is_output=False):
"""
Convert and remember the input tensor to cuda.CUdeviceptr used by cuda python
For numpy.ndarray, it also remembers the host buffer for synchronization
"""
if tensor is None:
return cuda.CUdeviceptr(0)
if is_numpy_tensor(tensor):
if is_output:
assert name
self.buffers[name] = NumpyFrontend.argument(tensor, is_output)
if is_output:
self.host_tensors[name] = tensor
return self.buffers[name].ptr
elif is_torch_tensor(tensor):
return TorchFrontend.argument(tensor)
elif isinstance(tensor, cuda.CUdeviceptr):
return tensor
elif is_cupy_tensor(tensor):
return CupyFrontend.argument(tensor)
else:
raise TypeError("Unsupported Frontend. Only support numpy and torch")
def sync(self, stream_sync=True):
if stream_sync:
(err,) = cudart.cudaDeviceSynchronize()
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError("CUDA Error %s" % str(err))
for key in self.host_tensors.keys():
host_tensor = self.host_tensors[key]
(err,) = cuda.cuMemcpyDtoH(
host_tensor,
self.buffers[key].ptr,
host_tensor.size * host_tensor.itemsize,
)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError("CUDA Error %s" % str(err))
self.free()
def free(self):
"""
Frees allocated device-side memory
"""
# Free any device memory allocated manually
if not cutlass.use_rmm:
for name, buf in self.buffers.items():
if isinstance(buf, DevicePtrWrapper):
err, = cudart.cudaFree(buf.ptr)
if err != cudart.cudaError_t.cudaSuccess:
raise RuntimeError(f"cudaFree failed with error {err}")
if hasattr(self, "workspace_buffer") and isinstance(self.workspace_buffer, DevicePtrWrapper):
err, = cudart.cudaFree(self.workspace_buffer.ptr)
if err != cudart.cudaError_t.cudaSuccess:
raise RuntimeError(f"cudaFree failed with error {err}")
del self.workspace_buffer
|