1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
import ctypes
from cutlass_library import (
DataType,
KernelScheduleType,
TileSchedulerType
)
from cutlass.backend.library import DataTypeSizeBytes
class GemmCoord_(ctypes.Structure):
_fields_ = [
("m", ctypes.c_int),
("n", ctypes.c_int),
("k", ctypes.c_int)
]
def __init__(self, m, n, k) -> None:
self.m = m
self.n = n
self.k = k
class GemmCoordBatched_(ctypes.Structure):
"""
Wrapper around a GemmCoord that also contains batch count. This is used for encoding
batched GEMM inputs to CUTLASS 3 GEMMs.
"""
_fields_ = [
("m", ctypes.c_int),
("n", ctypes.c_int),
("k", ctypes.c_int),
("batch_count", ctypes.c_int)
]
def __init__(self, gemm_coord, batch_count) -> None:
self.m = gemm_coord.m
self.n = gemm_coord.n
self.k = gemm_coord.k
self.batch_count = batch_count
class MatrixCoord_(ctypes.Structure):
_fields_ = [
("row", ctypes.c_int),
("column", ctypes.c_int)
]
class dim3_(ctypes.Structure):
_fields_ = [
("x", ctypes.c_int),
("y", ctypes.c_int),
("z", ctypes.c_int)
]
class StrideBatched_(ctypes.Structure):
"""
CUTLASS 3.0 strides for operands contain one static dimension and two variable dimensions. The
variable dimensions represent the stride along non-unit-stride dimension of the row/column major
layout, and the batch stride. This structure encodes the two variable dimensions.
"""
_fields_ = [
("major_stride", ctypes.c_int64),
("batch_stride", ctypes.c_int64)
]
class GenericMainloopArguments3x_(ctypes.Structure):
"""
Structure representing the superset of possible mainloop arguments.
This structure should not be passed to kernels directly, but, rather,
be used as an input to one of the more specific schedule arguments, which
will each select those arguments relevant to the particular schedule.
"""
_fields_ = [
("ptr_A", ctypes.c_void_p),
("stride_A", StrideBatched_),
("ptr_B", ctypes.c_void_p),
("stride_B", StrideBatched_),
("mma_promotion_interval", ctypes.c_int)
]
class _PersistentTileSchedulerArguments(ctypes.Structure):
_fields_ = [
("max_swizzle_size", ctypes.c_int),
("raster_order_option", ctypes.c_int),
]
class _PersistentTileSchedulerStreamKArguments(ctypes.Structure):
_fields_ = [
("splits", ctypes.c_int),
("max_swizzle_size", ctypes.c_int),
("raster_order_option", ctypes.c_int),
("reduction_mode", ctypes.c_int),
("decomposition_mode", ctypes.c_int),
]
def get_tile_scheduler_arguments_3x(
tile_scheduler: TileSchedulerType,
splits: int = 1):
max_swizzle_size = 1
raster_order_option = 0 # Heuristic
if tile_scheduler == TileSchedulerType.Persistent:
return _PersistentTileSchedulerArguments(
max_swizzle_size,
raster_order_option,
)
elif tile_scheduler == TileSchedulerType.StreamK:
reduction_mode = 0 # Deterministic
decomposition_mode = 0 # Heuristic
return _PersistentTileSchedulerStreamKArguments(
splits,
max_swizzle_size,
raster_order_option,
reduction_mode,
decomposition_mode,
)
def get_mainloop_arguments_3x(
kernel_schedule: KernelScheduleType,
element_A,
element_B,
alignment_A: int,
alignment_B: int) -> ctypes.Structure:
"""
Returns the ctypes structure to be used for the 3.x kernel's mainloop parameters.
:param kernel_schedule: type of kernel schedule to be used in the mainloop
:type kernel_schedule: cutlass_library.KernelScheduleType
:param element_A: data type of operand A
:param element_B: data type of operand B
:param alignment_A: alignment of operand A
:type alignment_A: int
:param alignment_B: alignment of operand B
:type alignment_B: int
:returns: ctypes structure to be used for the 3.x kernel's mainloop parameters
:rtype: ctypes.Structure
"""
class _MainloopArgumentsTma(ctypes.Structure):
_fields_ = [
("ptr_A", ctypes.c_void_p),
("stride_A", StrideBatched_),
("ptr_B", ctypes.c_void_p),
("stride_B", StrideBatched_),
("mma_promotion_interval", ctypes.c_int)
]
@staticmethod
def from_generic_mainloop_args(args: GenericMainloopArguments3x_):
return _MainloopArgumentsTma(
args.ptr_A, args.stride_A, args.ptr_B, args.stride_B,
args.mma_promotion_interval
)
class _MainloopArgumentsMultistage(ctypes.Structure):
_fields_ = [
("ptr_A", ctypes.c_void_p),
("stride_A", StrideBatched_),
("ptr_B", ctypes.c_void_p),
("stride_B", StrideBatched_),
]
@staticmethod
def from_generic_mainloop_args(args: GenericMainloopArguments3x_):
return _MainloopArgumentsMultistage(
args.ptr_A, args.stride_A, args.ptr_B, args.stride_B,
)
# Currently all 3.x kernels (CpAsync and Tma) have the same argument structure.
# Should that become not the case, this is the place to return custom ctypes
# structures based on selected kernel schedule.
return _MainloopArgumentsTma
def get_gemm_arguments_3x(mainloop_arguments, epilogue_functor, scheduler_args, default_epilogue):
if not default_epilogue and hasattr(epilogue_functor, "epilogue_type_evt"):
_EpilogueOutputOpParams = epilogue_functor.epilogue_type_evt
else:
_EpilogueOutputOpParams = epilogue_functor.epilogue_type
if hasattr(epilogue_functor, "visitor"):
class _EpilogueArguments(ctypes.Structure):
_fields_ = [
("epilogue", _EpilogueOutputOpParams),
("arg_C", epilogue_functor.arg_c_type),
("arg_D", epilogue_functor.arg_d_type)
]
def __init__(self, output_op, ptr_c, stride_c, ptr_d, stride_d) -> None:
self.epilogue = output_op
self.arg_C = epilogue_functor.arg_c_type(ptr_c)
self.arg_D = epilogue_functor.arg_d_type(ptr_d)
else:
class _EpilogueArguments(ctypes.Structure):
_fields_ = [
("epilogue", _EpilogueOutputOpParams),
("ptr_C", ctypes.c_void_p),
("stride_C", StrideBatched_),
("ptr_D", ctypes.c_void_p),
("stride_D", StrideBatched_),
]
class _HardwareInfo(ctypes.Structure):
_fields_ = [
("device_id", ctypes.c_int),
("sm_count", ctypes.c_int)
]
class _GemmArguments(ctypes.Structure):
_fields_ = [
("mode", ctypes.c_int),
("problem_size", GemmCoordBatched_),
("mainloop", mainloop_arguments),
("epilogue", _EpilogueArguments),
("hw_info", _HardwareInfo),
("scheduler", type(scheduler_args)),
]
return _GemmArguments, _EpilogueArguments, _EpilogueOutputOpParams, _HardwareInfo
def get_gemm_arguments(epilogue_functor):
_EpilogueOutputOpParams = epilogue_functor.epilogue_type
class _GemmArguments(ctypes.Structure):
_fields_ = [
# Arguments from UniversalArgumentsBase
("mode", ctypes.c_int),
("problem_size", GemmCoord_),
("batch_count", ctypes.c_int),
("batch_stride_D", ctypes.c_longlong),
# Remaining arguments
("epilogue", _EpilogueOutputOpParams),
("ptr_A", ctypes.c_void_p),
("ptr_B", ctypes.c_void_p),
("ptr_C", ctypes.c_void_p),
("ptr_D", ctypes.c_void_p),
("batch_stride_A", ctypes.c_longlong),
("batch_stride_B", ctypes.c_longlong),
("batch_stride_C", ctypes.c_longlong),
("stride_a", ctypes.c_longlong),
("stride_b", ctypes.c_longlong),
("stride_c", ctypes.c_longlong),
("stride_d", ctypes.c_longlong),
("lda", ctypes.c_longlong),
("ldb", ctypes.c_longlong),
("ldc", ctypes.c_longlong),
("ldd", ctypes.c_longlong),
("ptr_gather_A_indices", ctypes.c_void_p),
("ptr_gather_B_indices", ctypes.c_void_p),
("ptr_scatter_D_indices", ctypes.c_void_p)
]
return _GemmArguments, _EpilogueOutputOpParams
def get_gemm_arguments_streamk(epilogue_functor):
_EpilogueOutputOpParams = epilogue_functor.epilogue_type
class _GemmArguments(ctypes.Structure):
_fields_ = [
("mode", ctypes.c_int),
("problem_size", GemmCoord_),
("batch_count", ctypes.c_int),
("epilogue", _EpilogueOutputOpParams),
("ptr_A", ctypes.c_void_p),
("ptr_B", ctypes.c_void_p),
("ptr_C", ctypes.c_void_p),
("ptr_D", ctypes.c_void_p),
("batch_stride_A", ctypes.c_longlong),
("batch_stride_B", ctypes.c_longlong),
("batch_stride_C", ctypes.c_longlong),
("batch_stride_D", ctypes.c_longlong),
("stride_a", ctypes.c_longlong),
("stride_b", ctypes.c_longlong),
("stride_c", ctypes.c_longlong),
("stride_d", ctypes.c_longlong),
("lda", ctypes.c_longlong),
("ldb", ctypes.c_longlong),
("ldc", ctypes.c_longlong),
("ldd", ctypes.c_longlong),
("avail_sms", ctypes.c_int)
]
return _GemmArguments, _EpilogueOutputOpParams
###########################################################################################
# GEMM Grouped
###########################################################################################
def get_gemm_grouped_arguments(epilogue_functor):
_EpilogueOutputOpParams = epilogue_functor.epilogue_type
class _GEMMGroupedArguments(ctypes.Structure):
_fields_ = [
("problem_sizes", ctypes.c_void_p),
("problem_count", ctypes.c_int),
("threadblock_count", ctypes.c_int),
("output_op", _EpilogueOutputOpParams),
("ptr_A", ctypes.c_void_p),
("ptr_B", ctypes.c_void_p),
("ptr_C", ctypes.c_void_p),
("ptr_D", ctypes.c_void_p),
("lda", ctypes.c_void_p),
("ldb", ctypes.c_void_p),
("ldc", ctypes.c_void_p),
("ldd", ctypes.c_void_p),
("host_problem_sizes", ctypes.c_void_p)
]
return _GEMMGroupedArguments, _EpilogueOutputOpParams
############################################################################################
# Convolution2D
############################################################################################
class Conv2DProblemSize_(ctypes.Structure):
_fields_ = [
("N", ctypes.c_int),
("H", ctypes.c_int),
("W", ctypes.c_int),
("C", ctypes.c_int),
("P", ctypes.c_int),
("Q", ctypes.c_int),
("K", ctypes.c_int),
("R", ctypes.c_int),
("S", ctypes.c_int),
("pad_h", ctypes.c_int),
("pad_w", ctypes.c_int),
("stride_h", ctypes.c_int),
("stride_w", ctypes.c_int),
("dilation_h", ctypes.c_int),
("dilation_w", ctypes.c_int),
("mode", ctypes.c_int), # kCrossCorrelation: 0, kConvolution: 1
("split_k_slices", ctypes.c_int),
("groups", ctypes.c_int)
]
def __init__(self, problem_size) -> None:
for field_name, _ in self._fields_:
setattr(self, field_name, getattr(problem_size, field_name))
class Layout4D(ctypes.Structure):
_fields_ = [("stride", ctypes.c_int * 3)]
def __init__(self, tensor_ref):
stride = tensor_ref.stride()
setattr(self, "stride", (stride.at(0), stride.at(1), stride.at(2)))
class TensorRef_(ctypes.Structure):
_fields_ = [
("ptr", ctypes.c_void_p),
("layout", Layout4D)
]
def __init__(self, tensor_ref):
setattr(self, "ptr", tensor_ref.data())
setattr(self, "layout", Layout4D(tensor_ref.layout()))
class TensorRef2D_(ctypes.Structure):
_fields_ = [
("ptr", ctypes.c_void_p),
("stride", ctypes.c_int)
]
def get_conv2d_arguments(epilogue_functor):
_EpilogueOutputOpParams = epilogue_functor.epilogue_type
class _Conv2dArguments(ctypes.Structure):
_fields_ = [
("conv_kind", ctypes.c_int),
("problem_size", Conv2DProblemSize_),
("ptr_A", ctypes.c_void_p),
("ptr_B", ctypes.c_void_p),
("ptr_C", ctypes.c_void_p),
("ptr_D", ctypes.c_void_p),
("tensor_C_numel", ctypes.c_int),
("output_op", _EpilogueOutputOpParams),
("split_k_mode", ctypes.c_int)
]
return _Conv2dArguments, _EpilogueOutputOpParams
############################################################################################
# Reduction
############################################################################################
def get_reduction_params(epilogue_functor):
_EpilogueOutputParams = epilogue_functor.epilogue_type
class _ReductionParams(ctypes.Structure):
_fields_ = [
("problem_size", MatrixCoord_),
("partitions", ctypes.c_int),
("partition_stride", ctypes.c_longlong),
("workspace", TensorRef2D_),
("destination", TensorRef2D_),
("source", TensorRef2D_),
("output_op", _EpilogueOutputParams),
]
return _ReductionParams, _EpilogueOutputParams
###########################################################################################
# Epilogue Visitor Type Factory
###########################################################################################
class Empty(ctypes.Structure):
_fields_ = []
def __init__(self, *arg) -> None:
pass
class EmptyByte(ctypes.Structure):
_fields_ = [
("byte", ctypes.c_byte)
]
def __init__(self, *arg) -> None:
pass
class EBO:
def __init__(self, index: int, type) -> None:
self.index = index
self.type = type
def __eq__(self, other) -> bool:
if isinstance(other, EBO):
return self.index == other.index and self.type == other.type
return False
def __hash__(self) -> int:
return hash((self.index, self.type))
def __ne__(self, other):
return not self.__eq__(other)
def __str__(self) -> str:
return f"<{self.index}, {self.type}>"
def tuple_factory_(input_tuple, dtype, constants=[0,1]):
"""
The factory function generating cute::Tuple with input tuple
:param input_tuple: the input tuple
:type input_tuple: tuple
:param dtype: the data type for non-constant values
:type dtype: str, "int32_t", "int", "int64_t"
:param constant: the values that will be treated as constants
:type constant: list[int]
:return: ctype structure representing the cute::Tuple
:return: the empty base classes of the tuple
"""
# The empty base classes of the current tuple
empty_bases = []
# The first non empty base class
first_non_empty_base = None
# The ctype fields of the current tuple
ctype_fields = []
for idx, entry in enumerate(input_tuple):
# For nested tuples
if isinstance(entry, tuple):
sub_tuple_ctype, sub_empty_bases = tuple_factory_(entry, dtype, constants)
if ctypes.sizeof(sub_tuple_ctype) == 0:
# The empty tuple base class is also an empty EBO
empty_bases.append(EBO(idx, entry))
else:
if first_non_empty_base is None:
first_non_empty_base = sub_empty_bases
ctype_fields.append((f"entry_{idx}", sub_tuple_ctype))
else:
if entry in constants:
empty_bases.append(EBO(idx, entry))
ctype_fields.append((f"entry_{idx}", Empty))
else:
ctype_fields.append((f"entry_{idx}", dtype))
if first_non_empty_base is None:
first_non_empty_base = []
# Determine whether or not add an additional byte for empty base classes
additional_byte = False
# Special case for constant tuple
if first_non_empty_base is None:
additional_byte = False
else:
for base in first_non_empty_base:
if base in empty_bases:
additional_byte = True
break
if additional_byte:
ctype_fields = [("empty_byte", EmptyByte), ] + ctype_fields
# Create the ctype tuple
class TupleType(ctypes.Structure):
_fields_ = ctype_fields
def __init__(self, args) -> None:
if additional_byte:
fields = self._fields_[1:]
else:
fields = self._fields_
assert len(fields) == len(args)
for field, arg in zip(fields, args):
name = field[0]
field_type = field[1]
setattr(self, name, field_type(arg))
return TupleType, empty_bases
def tuple_factory(input_tuple, dtype: str, constants=[0,1]):
"""
The factory function generating cute::Tuple with input tuple
:param input_tuple: the input tuple
:type input_tuple: tuple
:param dtype: the data type for non-constant values
:type dtype: str, "int32_t", "int", "int64_t"
:param constant: the values that will be treated as constants
:type constant: list[int]
:return: ctype structure representing the cute::Tuple
:return: the empty base classes of the tuple
"""
# Step 1: convert the dtype
if dtype == "int64_t":
dtype = ctypes.c_longlong
elif dtype in ["int", "int32_t"]:
dtype = ctypes.c_int32
else:
raise NotImplementedError(f"Type {dtype} is not supported")
tuple_type, _ = tuple_factory_(input_tuple, dtype, constants)
if ctypes.sizeof(tuple_type) == 0:
return EmptyByte
return tuple_type
def visitor_factory(node_types, node_names):
"""
Creates the argument type of epilogue visitor type
:param node_types: list of argument types under ctypes
:param node_names: list of argument names under str
:return: tuple type in ctypes.Structure
"""
ctypes_field = []
# Struct is used when number of nodes < 4
# Because the Sm90VisitorImplBase has specification up to 4 nodes
# in `include/cutlass/epilogue/fusion/sm90_visitor_tma_warpspecialized.hpp`
if len(node_types) <= 4:
for idx, node_type in enumerate(node_types):
if ctypes.sizeof(node_type) == 0:
# Special case for empty struct
# 1 byte placeholder is used for correct alignment
ctypes_field.append((node_names[idx], ctypes.c_byte))
else:
ctypes_field.append((node_names[idx], node_type))
class VisitorType(ctypes.Structure):
_fields_ = ctypes_field
def __init__(self, kwargs) -> None:
for field in self._fields_:
fname, ftype = field
if ftype != ctypes.c_byte:
setattr(self, fname, ftype(kwargs))
# For cases with more than 4 nodes, tuple is used
else:
for idx, node_type in enumerate(node_types):
ctypes_field.append((node_names[idx], node_type))
class VisitorType(ctypes.Structure):
_fields_ = ctypes_field
def __init__(self, kwargs) -> None:
for field in self._fields_:
fname, ftype = field
setattr(self, fname, ftype(kwargs))
return VisitorType
|