1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
import ctypes
import json
import os
import sqlite3
import subprocess
import tempfile
from cuda import cuda, nvrtc
from cutlass_library import SubstituteTemplate
import cutlass
from cutlass import CACHE_FILE, CUTLASS_PATH, cuda_install_path, logger
from cutlass.backend.gemm_operation import GemmOperationUniversal
from cutlass.backend.library import ApiVersion
from cutlass.backend.utils.device import device_cc
IncludeTemplate = r"""#include "${include}"
"""
def compile_with_nvcc(cmd, source, error_file):
succeed = True
try:
subprocess.check_output(cmd, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
error_message = e.output.decode()
with open(error_file, "w") as error_out:
error_log = "Compilation error for the following kernel: \n"
error_log += source
error_log += "\nError Message:\n"
error_log += error_message
error_out.write(error_log)
succeed = False
if not succeed:
# Print the error log to stdout if log level is set to warning or higher
# verbosity. Otherwise, simply point to the error log file.
logger.warning(error_log)
raise Exception(f"Invalid Kernel. See '{error_file}' for details.")
class CompilationOptions:
"""
Compilation options.
"""
def __init__(self, flags, arch, include_paths=[]):
self.includes = []
self.include_paths = include_paths
self.flags = flags
self.arch = arch
def get_str(self):
opts = []
for flag in self.flags:
opts.append(flag)
for incl in self.include_paths:
opts.append(f"--include-path={incl}")
arch_flag = f"-arch=sm_{self.arch}"
if self.arch == 90:
arch_flag += "a"
opts.append(arch_flag)
return " ".join(opts)
def get(self):
options = []
for flag in self.flags:
options.append(bytes(str.encode(flag)))
for incl in self.include_paths:
options.append(bytes(str.encode(f" --include-path={incl}")))
arch_flag = f" -arch=sm_{self.arch}"
if self.arch == 90:
arch_flag += "a"
options.append(bytes(str.encode(arch_flag)))
return options
def convertToBinaryData(filename):
with open(filename, "rb") as file:
blobData = file.read()
return blobData
def CDLLBin(host_binary):
tempfile.tempdir = "./"
temp_so = tempfile.NamedTemporaryFile(prefix="host_func", suffix=".so", delete=True)
with open(temp_so.name, "wb") as file:
file.write(host_binary)
host_lib = ctypes.CDLL(temp_so.name)
return host_lib
class ArtifactManager:
"""
Artifact manager
"""
def __init__(self) -> None:
connection = sqlite3.connect(CACHE_FILE)
cursor = connection.cursor()
# Create the table if it does not already exist
sqlite_create_table_query = """
CREATE TABLE IF NOT EXISTS compiled_operations(op_key TEXT NOT NULL UNIQUE,
cubin BLOB NOT NULL,
hostbin BLOB NOT NULL,
op_name TEXT NOT NULL,
op_attrs TEXT NOT NULL)
"""
cursor.execute(sqlite_create_table_query)
connection.commit()
cursor.close()
self._nvrtc_compile_options = ["-std=c++17", "-default-device"]
self._nvcc_compile_options = [
"-std=c++17",
"--expt-relaxed-constexpr",
"-Xcudafe --diag_suppress=esa_on_defaulted_function_ignored",
]
self.nvcc()
self.compiled_cache_device = {}
self.compiled_cache_host = {}
def nvrtc(self):
self.backend = "nvrtc"
self.default_compile_options = self._nvrtc_compile_options
def nvcc(self):
self.backend = "nvcc"
self.default_compile_options = self._nvcc_compile_options
def insert_operation(self, op_key, cubin, hostfile, op_name, op_attrs):
connection = sqlite3.connect(CACHE_FILE)
cursor = connection.cursor()
sqlite_insert_blob_query = """ INSERT OR IGNORE INTO compiled_operations (op_key, cubin, hostbin, op_name, op_attrs) VALUES (?, ?, ?, ?, ?)"""
hostbin = convertToBinaryData(hostfile)
data_tuple = (op_key, cubin, hostbin, op_name, json.dumps(op_attrs))
cursor.execute(sqlite_insert_blob_query, data_tuple)
connection.commit()
cursor.close()
def load_operation(self, op_key, extra_funcs):
connection = sqlite3.connect(CACHE_FILE)
cursor = connection.cursor()
sqlite_fetch_blob_query = """SELECT * from compiled_operations where op_key = ?"""
cursor.execute(sqlite_fetch_blob_query, (op_key,))
record = cursor.fetchall()
if len(record) == 0:
return False
for row in record:
key, cubin_image, host_binary, operation_name, op_attr = row
op_attr = json.loads(op_attr)
err, module = cuda.cuModuleLoadData(cubin_image)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError("Cuda Error: {}".format(err))
err, kernel = cuda.cuModuleGetFunction(module, bytes(str.encode(operation_name)))
self.compiled_cache_device[key] = kernel
compiled_host_fns = {}
host_lib = CDLLBin(host_binary)
func_name = operation_name + "_get_params"
func = getattr(host_lib, func_name)
func.restype = ctypes.POINTER(ctypes.c_char * op_attr[0])
compiled_host_fns["get_args"] = func
func_name = operation_name + "_shared_memory_size"
func = getattr(host_lib, func_name)
compiled_host_fns["shared_memory_capacity"] = func()
for attr in op_attr:
if isinstance(attr, str):
func_name = operation_name + "_" + attr
func = getattr(host_lib, func_name)
# Set the return type of the function
if attr in extra_funcs and extra_funcs[attr] != None:
func.restype = extra_funcs[attr]
compiled_host_fns[attr] = func
self.compiled_cache_host[key] = compiled_host_fns
return True
def emit_compile_(self, operation_list, compilation_options, host_compilation_options):
"""
Compile a list of kernels and store them into database
"""
source_buffer_device = ""
source_buffer_host = ""
# 1. include
includes = []
for operation in operation_list:
for incl in operation.emitter.includes:
if incl not in includes:
includes.append(incl)
includes_host = ["builtin_types.h", "device_launch_parameters.h", "stddef.h"] + includes
for incl in includes:
source_buffer_device += SubstituteTemplate(
IncludeTemplate,
{"include": incl},
)
for incl in includes_host:
source_buffer_host += SubstituteTemplate(
IncludeTemplate,
{"include": incl},
)
# 2. Operations
for operation in operation_list:
source_buffer_device += operation.emit()
source_buffer_host += operation.emit()
values = {
"operation_name": operation.name(),
"operation_suffix": operation.emitter.operation_suffix,
}
source_buffer_device += SubstituteTemplate(
operation.KernelTemplate,
values,
)
source_buffer_host += SubstituteTemplate(operation.HostTemplate, values)
if self.backend == "nvrtc":
# 3. compile
err, program = nvrtc.nvrtcCreateProgram(
str.encode(source_buffer_device),
bytes(str.encode("module.cu")),
0, [], [])
if err != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise RuntimeError("NVRTC Error: {}".format(err))
# Compile program
options = compilation_options.get()
err, = nvrtc.nvrtcCompileProgram(program, len(options), options)
if err != nvrtc.nvrtcResult.NVRTC_SUCCESS:
error_string = "NVRTC Error: {}\n".format(err)
# Get log from compilation
err, logSize = nvrtc.nvrtcGetProgramLogSize(program)
if err != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise RuntimeError("NVRTC Error: {}".format(err))
log = b" " * logSize
err, = nvrtc.nvrtcGetProgramLog(program, log)
if err != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise RuntimeError("NVRTC Error: {}".format(err))
raise RuntimeError(error_string + log.decode() + source_buffer_device)
# Get data from compilation
err, dataSize = nvrtc.nvrtcGetCUBINSize(program)
if err != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise RuntimeError("NVRTC Error: {}".format(err))
cubin_image = b" " * dataSize
(err,) = nvrtc.nvrtcGetCUBIN(program, cubin_image)
if err != nvrtc.nvrtcResult.NVRTC_SUCCESS:
raise RuntimeError("NVRTC Error: {}".format(err))
else: # with nvcc backend
# emit code
tempfile.tempdir = "./"
temp_cu = tempfile.NamedTemporaryFile(
prefix="kernel", suffix=".cu", delete=True)
temp_cubin = tempfile.NamedTemporaryFile(
prefix="kernel", suffix=".cubin", delete=True)
with open(temp_cu.name, "w") as file:
file.write(source_buffer_device)
# compile with nvcc
cmd_template = "${cuda_install_path}/bin/nvcc ${options} -cubin ${srcfile} -o ${tarfile}"
values = {
"cuda_install_path": cuda_install_path(),
"options": compilation_options.get_str(),
"srcfile": temp_cu.name,
"tarfile": temp_cubin.name,
}
cmd = SubstituteTemplate(cmd_template, values)
compile_with_nvcc(cmd.split(" "), source_buffer_device, "./cutlass_python_compilation_device_error.txt")
# load the cubin image
with open(temp_cubin.name, "rb") as file:
cubin_image = file.read()
tempfile.tempdir = "./"
temp_src = tempfile.NamedTemporaryFile(
prefix="host_src", suffix=".cu", delete=True)
# Write the host source
with open(temp_src.name, "w") as outfile:
outfile.write(source_buffer_host)
temp_dst = tempfile.NamedTemporaryFile(
prefix="host_func", suffix=".so", delete=True)
# Set up host compilation arguments
cmd = []
cmd.append(f"{cuda_install_path()}/bin/nvcc")
cmd.extend(["-x", "cu", "-Xcompiler=-fpermissive", "-Xcompiler=-w", "-Xcompiler=-fPIC"])
cmd.extend(host_compilation_options.get_str().split(" "))
cmd.extend(["-shared", "-o", temp_dst.name, temp_src.name, "-lcudart", "-lcuda"])
# Comile and load the library
compile_with_nvcc( cmd, source_buffer_host, error_file="./cutlass_python_compilation_host_error.txt")
host_lib = ctypes.CDLL(temp_dst.name)
return cubin_image, host_lib, temp_dst
def add_module(self, operations, compile_options=None, bypass_cache=False):
"""
Insert a new compiled device module
"""
include_paths = [
cuda_install_path() + "/include",
CUTLASS_PATH + "/include",
CUTLASS_PATH + "/tools/util/include",
CUTLASS_PATH + "/python/cutlass/cpp/include",
]
cutlass.initialize_cuda_context()
arch = device_cc()
host_compile_options = CompilationOptions(
self._nvcc_compile_options, arch, include_paths)
if compile_options is None:
compile_options = CompilationOptions(
self.default_compile_options, arch, include_paths)
# save the cubin
operation_key = []
operation_list = []
for operation in operations:
# step 1: get kernel string as key
key = operation.rt_module.emit() + operation.procedural_name() + self.backend
# step 1: check if the operation is in cache
compiled_kernel = self.compiled_cache_device.get(key)
if compiled_kernel is None and not bypass_cache:
hit = self.load_operation(key, getattr( operation.rt_module, "extra_funcs", {}))
if hit:
compiled_kernel = self.compiled_cache_device.get(key)
assert compiled_kernel is not None
if compiled_kernel is not None:
operation.rt_module.kernel = compiled_kernel
compiled_host_fns = self.compiled_cache_host.get(key)
assert compiled_host_fns is not None
for key in compiled_host_fns.keys():
setattr(operation.rt_module, key, compiled_host_fns[key])
operation.rt_module.initialize()
else:
operation_list.append(operation.rt_module)
operation_key.append(key)
if len(operation_list) > 0:
cubin_image, host_lib, host_file = self.emit_compile_(
operation_list, compile_options, host_compile_options)
err, module = cuda.cuModuleLoadData(cubin_image)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError("Cuda Error: {}".format(err))
operation_name = []
operation_attr = []
for operation, key in zip(operation_list, operation_key):
# get device kernels
err, operation.kernel = cuda.cuModuleGetFunction(
module,
bytes(str.encode(operation.name()))
)
operation_name.append(operation.name())
self.compiled_cache_device[key] = operation.kernel
# get host functions
compiled_host_fns = {}
op_attr = []
# get param size
func_name = operation.name() + "_get_param_size"
func = getattr(host_lib, func_name)
param_size = func()
func_name = operation.name() + "_get_params"
func = getattr(host_lib, func_name)
func.argtype = operation.argtype
func.restype = ctypes.POINTER(ctypes.c_char * param_size)
setattr(operation, "get_args", func)
compiled_host_fns["get_args"] = func
# set shared memory size
func_name = operation.name() + "_shared_memory_size"
func = getattr(host_lib, func_name)
setattr(operation, "shared_memory_capacity", func())
compiled_host_fns["shared_memory_capacity"] = func()
# set the maximum dynamic shared size
operation.initialize()
# get extra functions
op_attr.append(param_size)
if hasattr(operation, "extra_funcs"):
for suffix, ret_type in operation.extra_funcs.items():
func_name = operation.name() + "_" + suffix
func = getattr(host_lib, func_name)
if ret_type is not None:
func.restype = ret_type
setattr(operation, suffix, func)
compiled_host_fns[suffix] = func
op_attr.append(suffix)
operation_attr.append(op_attr)
self.compiled_cache_host[key] = compiled_host_fns
for (key, operation_name, operation_attr,) in zip(operation_key, operation_name, operation_attr):
self.insert_operation(
key, cubin_image, host_file.name, operation_name, operation_attr)
|