1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Layout algebras
"""
from pycute import Layout, composition, make_layout, flatten, product
def _infer_split(old_shape, new_shape):
old_shape = _tuple_to_list(old_shape)
new_shape = _tuple_to_list(new_shape)
if len(old_shape) == 0 and len(new_shape) == 0:
return []
if len(old_shape) == 0:
if product(tuple(new_shape)) != 1:
raise ValueError("Invalid reshape size")
else:
return new_shape
if len(new_shape) == 0:
if product(tuple(old_shape)) != 1:
raise ValueError("Invalid reshape size")
else:
return old_shape
# This is done recursively by only process the last dimension at each time
old_dim = old_shape[-1]
new_dim = new_shape[-1]
# Exact match
if old_dim == new_dim:
return _infer_split(old_shape[:-1], new_shape[:-1]) + [new_dim,]
# Needs split
if old_dim > new_dim and old_dim % new_dim == 0:
residual = old_dim // new_dim
return _infer_split(old_shape[:-1] + [residual,], new_shape[:-1]) + [new_dim,]
# Needs merge
if old_dim < new_dim and new_dim % old_dim == 0:
residual = new_dim // old_dim
return _infer_split(old_shape[:-1], new_shape[:-1] + [residual,]) + [old_dim,]
raise NotImplementedError(f"Unsupported split: {old_shape} -> {new_shape}")
def _infer_merge(flatten_shape, shape):
flatten_shape = _tuple_to_list(flatten_shape)
shape = _tuple_to_list(shape)
idx_flat = 0
merged_shape = []
for dim in shape:
# Exact match
if dim == flatten_shape[idx_flat]:
merged_shape.append(dim)
idx_flat += 1
# Need group
elif dim > flatten_shape[idx_flat] and dim % flatten_shape[idx_flat] == 0:
residual = dim
group = []
while(residual > 1):
group.append(flatten_shape[idx_flat])
residual = residual // flatten_shape[idx_flat]
idx_flat += 1
merged_shape.append(group)
else:
raise NotImplementedError(f"Unsupported merge: {flatten_shape} -> {shape}")
return merged_shape
def _list_to_tuple(nested_list):
if isinstance(nested_list, list) or isinstance(nested_list, tuple):
return tuple(_list_to_tuple(item) for item in nested_list)
return nested_list
def _tuple_to_list(nested_tuple):
if isinstance(nested_tuple, list) or isinstance(nested_tuple, tuple):
return list(_tuple_to_list(item) for item in nested_tuple)
return nested_tuple
def _reverse_tuple(nested_tuple: tuple):
if isinstance(nested_tuple, tuple):
return tuple([_reverse_tuple(item) for item in nested_tuple][::-1])
return nested_tuple
def _get_first_lhs_nonzero_stride(stride_list, idx):
for i in reversed(range(idx)):
if stride_list[i] != 0:
return i
else:
return None
def _get_first_rhs_nonzero_stride(stride_list, idx):
for i in range(idx+1, len(stride_list)):
if stride_list[i] != 0:
return i
else:
return None
def reshape(layout, new_shape):
"""
General reshape of input layout.
It takes two steps:
1. split the dimensions of the old layout
2. merge the splitted dimensions according to the new shape
"""
#
# Step 1: Split the dimensions of the old layout
#
# 1.1 Flat old and new shape
old_flatten_shape = list(flatten(layout.shape))
new_flatten_shape = list(flatten(new_shape))
# 1.2 Infer the flatten splitted shape
splitted_flatten_shape = _infer_split(old_flatten_shape, new_flatten_shape)
# 1.3 Unflat the splitted shape based on the old shape
splited_shape = _infer_merge(splitted_flatten_shape, old_flatten_shape)
# 1.4 Infer the type of each split
# If the split type is in row-major (R), the dimension list is reversed because
# the cute::composition only support column-major split
split_type = [] # the type of each split (ColumnMajor or RowMajor)
permuted_splitted_shape = []
old_flatten_stride = list(flatten(layout.stride))
for idx, dim in enumerate(splited_shape):
if not isinstance(dim, list):
permuted_splitted_shape.append(dim)
split_type.append("C")
else:
lhs_stride = _get_first_lhs_nonzero_stride(old_flatten_stride, idx)
rhs_stride = _get_first_rhs_nonzero_stride(old_flatten_stride, idx)
# Special case for single tuple
# Use column-major by default
if lhs_stride is None and rhs_stride is None:
permuted_splitted_shape.append(dim)
split_type.append("C")
else:
if lhs_stride is not None and rhs_stride is not None:
# We consider shape[idx]:stride[idx]
# Case 1: stride[idx - 1] <= stride[idx] <= stride[idx + 1]: column major
if lhs_stride <= old_flatten_stride[idx] and old_flatten_stride[idx] <= rhs_stride:
permuted_splitted_shape.append(dim)
split_type.append("C")
# Case 2: stride[idx - 1] > stride[idx] > stride[idx + 1]: row major
elif lhs_stride > old_flatten_stride[idx] and old_flatten_stride[idx] > rhs_stride:
permuted_splitted_shape.append([d for d in reversed(dim)])
split_type.append("R")
# Case 3: stride[idx - 1] <= stride[idx] > stride[idx + 1]: concave
elif lhs_stride <= old_flatten_stride[idx] and old_flatten_stride[idx] > rhs_stride:
if lhs_stride >= rhs_stride:
permuted_splitted_shape.append(dim)
split_type.append("C")
else:
permuted_splitted_shape.append([d for d in reversed(dim)])
split_type.append("R")
# Case 4: stride[idx - 1] > stride[idx] <= stride[idx + 1]: concave
elif lhs_stride > old_flatten_stride[idx] and old_flatten_stride[idx] <= rhs_stride:
if lhs_stride >= rhs_stride:
permuted_splitted_shape.append(dim)
split_type.append("C")
else:
permuted_splitted_shape.append([d for d in reversed(dim)])
split_type.append("R")
else:
raise NotImplementedError()
elif lhs_stride is None:
# Case 1: dim's stride < dim+1's stride, expand in column major
if old_flatten_stride[idx] > rhs_stride:
permuted_splitted_shape.append([d for d in reversed(dim)])
split_type.append("R")
else:
permuted_splitted_shape.append(dim)
split_type.append("C")
else:
# Case 1: dim's stride > dim-1's stride
if old_flatten_stride[idx] < lhs_stride:
permuted_splitted_shape.append([d for d in reversed(dim)])
split_type.append("R")
else:
permuted_splitted_shape.append(dim)
split_type.append("C")
# 1.4 Generate the splitted layout
permuted_splitted_layout = composition(layout, Layout(_list_to_tuple(permuted_splitted_shape)))
# 1.5 Reverse the permutation in 1.4 before merge
splitted_shape = []
splitted_stride = []
for shape_dim, stride_dim, type in zip(
permuted_splitted_layout.shape,
permuted_splitted_layout.stride,
split_type):
if type == "C":
splitted_shape.append(shape_dim)
splitted_stride.append(stride_dim)
else:
splitted_shape.append(tuple([d for d in reversed(shape_dim)]))
splitted_stride.append(tuple([d for d in reversed(stride_dim)]))
splitted_layout = Layout(tuple(splitted_shape), tuple(splitted_stride))
#
# Step 2: Merge the splitted dimensions according to the new shape
#
# 2.1 Merge layout
merged_layout = composition(splitted_layout, Layout(new_shape))
# 2.2 Cleaning up
output_layout = composition(merged_layout, Layout(new_shape))
return output_layout
def permutation(layout, permutation):
"""
Permute the layout
"""
new_shape = tuple([layout.shape[idx] for idx in permutation])
new_stride = tuple([layout.stride[idx] for idx in permutation])
return Layout(new_shape, new_stride)
def _broadcast(layout, new_shape):
if len(layout) == 1 and isinstance(new_shape, int):
old_dim = layout.shape
old_stride = layout.stride
new_dim = new_shape
if old_dim == new_dim:
return Layout(old_dim, old_stride)
elif old_dim == 1:
return Layout(new_dim, 0)
else:
raise NotImplementedError(f"Invalid Broadcast: {old_dim} -> {new_dim}")
# Align the dimensions
old_shape = layout.shape
if isinstance(old_shape, int):
old_shape = (old_shape,)
sub_layouts = [layout,]
else:
sub_layouts = [sub_layout for sub_layout in layout]
rhs_broadcast_layouts = [Layout(1, 0)] * (len(new_shape) - len(old_shape))
# Get the broadcasted layout
broadcast_layouts = []
try:
layout = make_layout(*sub_layouts, *rhs_broadcast_layouts)
broadcast_layouts = []
for idx, sub_layout in enumerate(layout):
broadcast_layouts.append(_broadcast(sub_layout, new_shape[idx]))
except NotImplementedError:
layout = make_layout(*rhs_broadcast_layouts, *sub_layouts)
for idx, sub_layout in enumerate(layout):
broadcast_layouts.append(_broadcast(sub_layout, new_shape[idx]))
return make_layout(*broadcast_layouts)
def broadcast(layout, new_shape):
"""
Broadcast the new layout based on the input shape
The broadcasted shape equals to the new shape
The stride of broadcasted dimensions are 0
"""
return _broadcast(layout, new_shape)
def debroadcast(layout, dims):
"""
Squeeze the 0-stride
"""
for dim in dims:
if layout.stride[dim] != 0:
raise ValueError(f"Dim{dim} cannot be debroadcasted as it has stride {layout.stride[dim]}")
new_shape = tuple([s for idx, s in enumerate(layout.shape) if idx not in dims])
new_stride = tuple([s for idx, s in enumerate(layout.stride) if idx not in dims])
return Layout(new_shape, new_stride)
def canonicalization_(shapes, strides):
if isinstance(shapes, tuple):
c_shapes = []
c_strides = []
for shape, stride in zip(shapes, strides):
c_shape, c_stride = canonicalization_(shape, stride)
c_shapes.append(c_shape)
c_strides.append(c_stride)
return tuple(c_shapes), tuple(c_strides)
else:
if shapes == 1:
return 1, 0
else:
return shapes, strides
def canonicalization(layout):
"""
Canonicalize the input layout
1. set the stride of shape "1" to 0
"""
new_shape, new_stride = canonicalization_(layout.shape, layout.stride)
return Layout(new_shape, new_stride)
|