File: tensor.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (130 lines) | stat: -rw-r--r-- 4,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#################################################################################################
#
# Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

"""
High-level class for tensor
"""

from cutlass_library import LayoutType

from cutlass.backend.evt.ir.layout_algorithm import (
    Layout,
    broadcast,
    canonicalization,
    permutation,
    reshape,
    _reverse_tuple
)
from cutlass.utils.datatypes import get_datatype_and_layout, get_tensor_shape, library_type


class Tensor:
    """
    The tensor abstracts the data type
    """
    def __init__(self, tensor=None, element=None, shape=None, layout_tag=None, is_constant=False) -> None:
        if element is not None and tensor is not None:
            raise Exception(f"Must not specify both element and tensor")
        elif shape is not None and tensor is not None:
            raise Exception(f"Must not specify both shape and tensor")
        elif layout_tag is not None and tensor is not None:
            raise Exception(f"Must not specify both layout_tag and tensor")
        elif (element is None or layout_tag is None or shape is None) and (tensor is None) :
            raise Exception(f"Must specify one of (element, shape, layout) or (tensor)")

        if isinstance(tensor, Tensor):
            # Directly copy all the attributes
            self.__dict__.update(vars(tensor))
        else:
            if tensor is None:
                self.element = library_type(element)
            else:
                self.element, layout_tag = get_datatype_and_layout(tensor)
                shape = get_tensor_shape(tensor)
            if layout_tag == LayoutType.RowMajor:
                self.layout = Layout(shape[::-1])
            elif layout_tag == LayoutType.ColumnMajor:
                self.layout = permutation(Layout(shape), [idx for idx in reversed(range(len(shape)))])
            self.layout = canonicalization(self.layout)

            self.is_constant = is_constant
            # Save the tensor value if it is constant
            if is_constant and tensor is not None:
                self.value = tensor

    @property
    def shape(self):
        """
        Returns the RowMajor layout shape
        """
        return _reverse_tuple(self.layout.shape)

    @property
    def stride(self):
        """
        Returns the RowMajor layout stride
        """
        return _reverse_tuple(self.layout.stride)

    @property
    def rank(self):
        """
        Returns the rank of the tensor
        """
        return len(self.shape)

    #
    # Layout Algorithms
    #

    def broadcast(self, shape):
        """
        Broadcast self.layout to shape
        """
        assert isinstance(shape, tuple)
        self.layout = broadcast(self.layout, _reverse_tuple(shape))

    def reshape(self, shape):
        """
        Reshape self.layout to shape
        """
        assert isinstance(shape, tuple)
        reverse_shape = _reverse_tuple(shape)
        self.layout = reshape(self.layout, reverse_shape)

    def permute(self, indices):
        """
        Permute self.layout according to indices
        """
        length = len(indices)
        indices = [length - idx - 1 for idx in indices]
        self.layout = permutation(self.layout, indices[::-1])