1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
from cuda import cuda
import numpy as np
from cutlass.backend.memory_manager import device_mem_alloc, todevice
from cutlass.utils.datatypes import is_cupy_tensor, is_numpy_tensor, is_torch_tensor
class NumpyFrontend:
"""
Frontend node for numpy
"""
@staticmethod
def argument(np_tensor: "np.ndarray", is_output: "bool") -> cuda.CUdeviceptr:
"""Convert the input numpy tensor to CUDA device pointer
:param np_tensor: input numpy nd array
:param is_output: whether the tensor is output
:return: CUDA device pointer
"""
# copy the data to device
if is_output:
return device_mem_alloc(np_tensor.size * np_tensor.itemsize)
else:
return todevice(np_tensor)
class TorchFrontend:
"""
Frontend node for torch
"""
@staticmethod
def argument(torch_tensor: "torch.Tensor") -> cuda.CUdeviceptr:
"""Convert the input torch tensor to CUDA device pointer
:param torch_tensor: input torch tensor
:param is_output: whether the tensor is output
:return: CUDA device pointer
"""
# check the device of torch_tensor
if not torch_tensor.is_cuda:
torch_tensor = torch_tensor.to("cuda")
return cuda.CUdeviceptr(torch_tensor.data_ptr())
class CupyFrontend:
"""
Frontend node for cupy
"""
@staticmethod
def argument(cupy_ndarray: "cp.ndarray"):
return cuda.CUdeviceptr(int(cupy_ndarray.data.ptr))
class TensorFrontend:
"""
Universal Frontend for client-provide tensors
"""
@staticmethod
def argument(tensor, is_output=False):
if is_numpy_tensor(tensor):
return NumpyFrontend.argument(tensor, is_output)
elif is_torch_tensor(tensor):
return TorchFrontend.argument(tensor)
elif is_cupy_tensor(tensor):
return CupyFrontend.argument(tensor)
else:
raise NotImplementedError("Unknown Tensor Type")
|