File: frontend.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (107 lines) | stat: -rw-r--r-- 3,813 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

from cuda import cuda
import numpy as np

from cutlass.backend.memory_manager import device_mem_alloc, todevice
from cutlass.utils.datatypes import is_cupy_tensor, is_numpy_tensor, is_torch_tensor


class NumpyFrontend:
    """
    Frontend node for numpy
    """

    @staticmethod
    def argument(np_tensor: "np.ndarray", is_output: "bool") -> cuda.CUdeviceptr:
        """Convert the input numpy tensor to CUDA device pointer

        :param np_tensor: input numpy nd array
        :param is_output: whether the tensor is output

        :return: CUDA device pointer
        """
        # copy the data to device
        if is_output:
            return device_mem_alloc(np_tensor.size * np_tensor.itemsize)
        else:
            return todevice(np_tensor)


class TorchFrontend:
    """
    Frontend node for torch
    """

    @staticmethod
    def argument(torch_tensor: "torch.Tensor") -> cuda.CUdeviceptr:
        """Convert the input torch tensor to CUDA device pointer

        :param torch_tensor: input torch tensor
        :param is_output: whether the tensor is output

        :return: CUDA device pointer
        """

        # check the device of torch_tensor
        if not torch_tensor.is_cuda:
            torch_tensor = torch_tensor.to("cuda")

        return cuda.CUdeviceptr(torch_tensor.data_ptr())


class CupyFrontend:
    """
    Frontend node for cupy
    """

    @staticmethod
    def argument(cupy_ndarray: "cp.ndarray"):
        return cuda.CUdeviceptr(int(cupy_ndarray.data.ptr))


class TensorFrontend:
    """
    Universal Frontend for client-provide tensors
    """

    @staticmethod
    def argument(tensor, is_output=False):
        if is_numpy_tensor(tensor):
            return NumpyFrontend.argument(tensor, is_output)
        elif is_torch_tensor(tensor):
            return TorchFrontend.argument(tensor)
        elif is_cupy_tensor(tensor):
            return CupyFrontend.argument(tensor)
        else:
            raise NotImplementedError("Unknown Tensor Type")