1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Common data types and string names/tags for them
"""
import enum
from cutlass_library import (
ComplexTransform,
DataType,
DataTypeSize,
EpilogueScheduleType,
KernelScheduleType,
MathOperation,
OpcodeClass,
TileSchedulerType
)
# The following block implements enum.auto() for Python 3.5 variants that don't include it such
# as the default 3.5.2 on Ubuntu 16.04.
#
# https://codereview.stackexchange.com/questions/177309/reimplementing-pythons-enum-auto-for-compatibility
try:
from enum import auto as enum_auto
except ImportError:
__cutlass_library_auto_enum = 0
def enum_auto() -> int:
global __cutlass_library_auto_enum
i = __cutlass_library_auto_enum
__cutlass_library_auto_enum += 1
return i
class DataTypeSizeBytes:
"""
Static class to mimic the `DataTypeSize` dictionary, but with checks for whether the
data type key is less than a full byte or a non-integer number of bytes.
"""
@staticmethod
def __class_getitem__(datatype):
"""
Returns the number of bytes in size the data type is. Raises an exception if the data type
is either less than a full byte or a non-integer number of bytes in size.
:param datatype: data type to query
:return: number of bytes the data type occupies
:rtype: int
"""
bits = DataTypeSize[datatype]
if bits < 8:
raise Exception(
f"Data type {datatype} is less than one byte in size."
)
elif bits % 8 != 0:
raise Exception(
f"Data type datatype is not an integer number of bytes."
)
return bits // 8
class SchedulerMode(enum.Enum):
Device = enum_auto()
Host = enum_auto()
SchedulerModeTag = {
SchedulerMode.Device: "cutlass::gemm::kernel::GroupScheduleMode::kDeviceOnly",
SchedulerMode.Host: "cutlass::gemm::kernel::GroupScheduleMode::kHostPrecompute",
}
ShortSchedulerModeNames = {SchedulerMode.Device: "Device", SchedulerMode.Host: "Host"}
class FunctionalOp(enum.Enum):
AtomicAdd = enum_auto()
AtomicMaximum = enum_auto()
Divides = enum_auto()
Maximum = enum_auto()
Minimum = enum_auto()
Minus = enum_auto()
Multiplies = enum_auto()
MultiplyAdd = enum_auto()
Plus = enum_auto()
FunctionalOpTag = {
FunctionalOp.AtomicAdd: "cutlass::atomic_add",
FunctionalOp.AtomicMaximum: "cutlass::atomic_maximum",
FunctionalOp.Divides: "cutlass::divides",
FunctionalOp.Maximum: "cutlass::maximum",
FunctionalOp.Minimum: "cutlass::minimum",
FunctionalOp.Minus: "cutlass::minus",
FunctionalOp.Multiplies: "cutlass::multiplies",
FunctionalOp.MultiplyAdd: "cutlass::multiply_add",
FunctionalOp.Plus: "cutlass::plus",
}
class ActivationOp(enum.Enum):
DGelu = enum_auto()
Gelu = enum_auto()
GeluTaylor = enum_auto()
HardSwish = enum_auto()
Identity = enum_auto()
LeakyReLU = enum_auto()
ReLU = enum_auto()
Sigmoid = enum_auto()
SiLU = enum_auto()
Tanh = enum_auto()
ActivationOpTag = {
ActivationOp.DGelu: "cutlass::epilogue::thread::dGELU",
ActivationOp.Gelu: "cutlass::epilogue::thread::GELU",
ActivationOp.GeluTaylor: "cutlass::epilogue::thread::GELU_taylor",
ActivationOp.HardSwish: "cutlass::epilogue::thread::HardSwish",
ActivationOp.Identity: "cutlass::epilogue::thread::Identity",
ActivationOp.LeakyReLU: "cutlass::epilogue::thread::LeakyReLU",
ActivationOp.ReLU: "cutlass::epilogue::thread::ReLu",
ActivationOp.Sigmoid: "cutlass::epilogue::thread::Sigmoid",
ActivationOp.SiLU: "cutlass::epilogue::thread::SiLu",
ActivationOp.Tanh: "cutlass::epilogue::thread::Tanh",
}
def op_tag(op) -> str:
"""
Dispatches `op` to the appropriate *Tag dictionary depending on whether
`op` is an ActivationOp or FunctionalOp. This is useful for cases in which
either type can be used.
:param op: operation to emit a tag for
:type op: ActivationOp | FunctionalOp
:return: tag corresponding to op
:rtype: str
"""
if isinstance(op, ActivationOp):
return ActivationOpTag[op]
elif isinstance(op, FunctionalOp):
return FunctionalOpTag[op]
else:
raise Exception(f"Unexpected op type {op}. Must be one of ActivationOp or FunctionalOp.")
class FloatRoundStyle(enum.Enum):
ToNearest = enum_auto()
ToNearestSatfinite = enum_auto()
Indeterminate = enum_auto()
TowardZero = enum_auto()
TowardInfinity = enum_auto()
TowardNegInfinity = enum_auto()
HalfUlpTruncDntz = enum_auto()
HalfUlpTruncate = enum_auto()
FloatRoundStyleTag = {
FloatRoundStyle.ToNearest: "cutlass::FloatRoundStyle::round_to_nearest",
FloatRoundStyle.ToNearestSatfinite: "cutlass::FloatRoundStyle::round_to_nearest_satfinite",
FloatRoundStyle.Indeterminate: "cutlass::FloatRoundStyle::round_indeterminate",
FloatRoundStyle.TowardZero: "cutlass::FloatRoundStyle::round_toward_zero",
FloatRoundStyle.TowardInfinity: "cutlass::FloatRoundStyle::round_toward_infinity",
FloatRoundStyle.TowardNegInfinity: "cutlass::FloatRoundStyle::round_toward_neg_infinity",
FloatRoundStyle.HalfUlpTruncDntz: "cutlass::FloatRoundStyle::round_half_ulp_trunc_dntz",
FloatRoundStyle.HalfUlpTruncate: "cutlass::FloatRoundStyle::round_half_ulp_truncate",
}
class MathInstruction:
"""
Description of a the lowest-level matrix-multiply-accumulate operation to be used in a kernel
"""
def __init__(
self,
instruction_shape,
element_a,
element_b,
element_accumulator,
opcode_class=OpcodeClass.Simt,
math_operation=MathOperation.multiply_add,
):
"""
:param instruction_shape: size of the [M, N, K] dimensions of the instruction
:type instruction_shape: list or tuple
:param element_a: data type of operand A
:param element_b: data type of operand B
:param element_accumulator: data type used in accumulation
:param opcode_class: higher-level class of the instruction (e.g., SIMT or Tensor Core)
:type opcode_class: cutlass_library.library.OpcodeClass
:param math_operation: the type of low-level operation to be performed (e.g., multiply accumulate)
:type math_operation: MathOperation
"""
self.instruction_shape = instruction_shape
self.element_a = element_a
self.element_b = element_b
self.element_accumulator = element_accumulator
self.opcode_class = opcode_class
self.math_operation = math_operation
class TileDescription:
"""
Description of a tile of computation to be performed in the kernel, encompassing threadblock, cluster, and warp shapes,
stage count, and math instruction specification
"""
def __init__(
self,
threadblock_shape,
stages,
warp_count,
math_instruction,
cluster_shape=[1, 1, 1],
kernel_schedule: KernelScheduleType = None,
epilogue_schedule: EpilogueScheduleType = None,
tile_scheduler: TileSchedulerType = None
):
"""
:param threadblock_shape: shape of a threadblock tyle
:type threadblock_shape: list or tuple
:param stages: number of pipline stages in the operation. For SM90 kernels, this can be set to `None` and the maximum
number of stages that can be supported for an operation on a given architecture will be computed at a later time
:type stages: int or None
:param warp_count: number of warps in each [M, N, K] dimension of a threadblock tile
:type warp_count: list, tuple, or None
:param math_instruction: specification of the instruction type and shape to be performed and the types of its operands
:type math_instruction: MathInstruction
:param cluster_shape: number of threadblocks in the [X, Y, Z] dimensions of a threadblock cluster
:param kernel_schedule: type of kernel schedule to use (only available for SM90+)
:type kernel_schedule: cutlass_library.KernelScheduleType
:param epilogue_schedule: type of epilogue schedule to use (only available for SM90+)
:type epilogue_schedule: cutlass_library.EpilogueScheduleType
:param tile_scheduler: type of tile scheduler to use (only available for SM90+)
:type tile_scheduler: cutlass_library.TileSchedulerType
"""
if ((kernel_schedule is None and epilogue_schedule is not None) or
(kernel_schedule is not None and epilogue_schedule is None)):
raise Exception("Kernel and epilogue schedule must either both be Auto or neither be Auto.")
self.threadblock_shape = threadblock_shape
self.cluster_shape = cluster_shape
self.kernel_schedule = kernel_schedule
self.epilogue_schedule = epilogue_schedule
self.tile_scheduler = tile_scheduler
self.stages = stages
self.math_instruction = math_instruction
self.instruction_shape = math_instruction.instruction_shape
# Number of warps along x, y, z directions
self.warp_count = warp_count
def clone_and_update(self, td: dict):
attrs = {
"cluster_shape": None,
"threadblock_shape": None,
"warp_count": None,
"stages": None,
"instruction_shape": None,
"kernel_schedule": None,
"epilogue_schedule": None,
"tile_scheduler": None
}
for key in attrs.keys():
if key in td.keys():
attrs[key] = td[key]
else:
attrs[key] = getattr(self, key)
attrs["math_instruction"] = MathInstruction(
attrs["instruction_shape"],
self.math_instruction.element_a,
self.math_instruction.element_b,
self.math_instruction.element_accumulator,
self.math_instruction.opcode_class,
self.math_instruction.math_operation
)
# Remove the instruction shape
del attrs["instruction_shape"]
return TileDescription(**attrs)
@property
def num_threads(self):
"""
Returns the number of threads in the threadblock
:return: number of threads in the threadblock
:rtype: int or None (if warp count is None)
"""
if self.warp_count is not None:
threads = 32
for cnt in self.warp_count:
threads *= cnt
return threads
return None
def procedural_name(self):
"""
Returns a name identifying the tile description
:return: name identifying the tile description
:rtype: int
"""
emit_stages = 0 if self.stages is None else self.stages
name = "%dx%dx%d_%dx%d_%dx%d" % (
self.cluster_shape[0],
self.cluster_shape[1],
self.cluster_shape[2],
self.threadblock_shape[0],
self.threadblock_shape[1],
self.threadblock_shape[2],
emit_stages
)
return name
def procedural_name_2x(self):
"""
Returns a name identifying the tile description
:return: name identifying the tile description
:rtype: int
"""
return "%dx%d_%dx%d" % (self.threadblock_shape[0], self.threadblock_shape[1], self.threadblock_shape[2], self.stages)
def __str__(self):
"""
Returns a string with containing each of the tile description's values
:return: contents of tile description
:rtype: str
"""
if self.kernel_schedule is not None:
kschedule = self.kernel_schedule
else:
kschedule = KernelScheduleType.ScheduleAuto
if self.epilogue_schedule is not None:
eschedule = self.epilogue_schedule
else:
eschedule = EpilogueScheduleType.ScheduleAuto
if self.tile_scheduler is not None:
tschedule = self.tile_scheduler.name
else:
tschedule = "None"
return f"""
{{
ClusterShape: {self.cluster_shape}
ThreadblockShape: {self.threadblock_shape}
WarpCount: {self.warp_count}
Stages: {self.stages if self.stages is not None else 'Auto'}
InstructionShape: {self.math_instruction.instruction_shape}
Kernel schedule: {kschedule.name}
Epilogue schedule: {kschedule.name}
TileScheduler: {tschedule}
}}"""
class TensorDescription:
def __init__(self, element, layout, alignment=1, complex_transform=ComplexTransform.none):
self.element = element
self.layout = layout
if element != DataType.void:
self.alignment = min(128 // DataTypeSize[self.element], alignment)
else:
self.alignment = alignment
self.complex_transform = complex_transform
def CalculateSmemUsagePerStage(operation):
"""
Returns the amount of shared memory in bytes consumed in a single stage of a kernel.
:param op: operation for which the maximum stages should be computed. If stages are
set via the `op.tile_description.stages` parameter, this setting is ignored
in the present calculation
:type op: cutlass.backend.Operation
:return: number of bytes of shared memory consumed by a single stage
:rtype: int
"""
m, n, k = operation.tile_description.threadblock_shape
if operation.operation_kind == OperationKind.Gemm:
stage_barrier_bytes = 32
return (
(DataTypeSize[operation.A.element] * m * k // 8)
+ (DataTypeSize[operation.B.element] * k * n // 8)
+ stage_barrier_bytes
)
else:
raise Exception("Unsupported operation kind {}.".format(operation.operation_kind))
def CalculateSmemUsage(operation):
"""
Returns the amount of shared memory in bytes consumed by a kernel.
:param op: operation for which the maximum stages should be computed. If stages are
set via the `op.tile_description.stages` parameter, this setting is ignored
in the present calculation
:type op: cutlass.backend.Operation
:return: int
"""
return operation.tile_description.stages * CalculateSmemUsagePerStage(operation)
class ApiVersion(enum.Enum):
"""
Differentiate between CUTLASS 2.x and 3.x API versions
"""
v2x = enum_auto()
v3x = enum_auto()
def api_version(arch, opclass, dtype):
"""
Returns whether the architecture, opcode class, and datatype in question require using CUTLASS 2.x
or 3.x for code emission.
:param arch: compute capability of device on which to run
:type arch: int
:param opclass: class of the operation being performed
:type opclass: cutlass_library.OpcodeClass
:param dtype: data type to be used in operation (assumes that ElementA and ElementB are the same)
:type dtype: cutlass_library.DataType
:return: API version to be used in code emission
:rtype: ApiVersion
"""
if (arch >= 90 and
opclass == OpcodeClass.TensorOp and
(dtype != DataType.f64)):
return ApiVersion.v3x
else:
return ApiVersion.v2x
class EmissionType(enum.Enum):
"""
Tags for whether to emit a kernel- or device-level operation
"""
Kernel = enum_auto()
Device = enum_auto()
|