File: memory_manager.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (120 lines) | stat: -rw-r--r-- 4,332 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

import numpy as np

import cutlass
from cutlass.utils.datatypes import is_numpy_tensor

if cutlass.use_rmm:
    import rmm
else:
    from cuda import cudart


class PoolMemoryManager:
    def __init__(self, init_pool_size: int, max_pool_size: int) -> None:
        self.pool = rmm.mr.PoolMemoryResource(
            rmm.mr.CudaMemoryResource(),
            initial_pool_size=init_pool_size,
            maximum_pool_size=max_pool_size
        )
        self.mr = rmm.mr.TrackingResourceAdaptor(self.pool)
        rmm.mr.set_current_device_resource(self.mr)

    def pool_size(self):
        return self.pool.pool_size()


class DevicePtrWrapper:
    """
    Wrapper around a pointer to device memory to provide a uniform interface with the RMM DeviceBuffer
    (at least in terms of the interface used by the CUTLASS Python interface)
    """
    def __init__(self, dev_ptr):
        self.dev_ptr = dev_ptr

    @property
    def ptr(self):
        return self.dev_ptr


def _todevice(host_data):
    """
    Helper for transferring host data to device memory
    """
    if cutlass.use_rmm:
        return rmm.DeviceBuffer.to_device(host_data.tobytes())
    else:
        nbytes = len(host_data.tobytes())
        dev_ptr_wrapper = device_mem_alloc(nbytes)
        err, = cudart.cudaMemcpy(
            dev_ptr_wrapper.ptr,
            host_data.__array_interface__['data'][0],
            nbytes,
            cudart.cudaMemcpyKind.cudaMemcpyHostToDevice
        )
        if err != cudart.cudaError_t.cudaSuccess:
            raise Exception(f"cudaMemcpy failed with error {err}")
        return dev_ptr_wrapper


def todevice(host_data, dtype=np.float32):
    """
    Pass the host_data to device memory
    """
    if isinstance(host_data, list):
        return _todevice(np.array(host_data, dtype=dtype))
    elif is_numpy_tensor(host_data):
        return _todevice(host_data)


def device_mem_alloc(size):
    if cutlass.use_rmm:
        return rmm.DeviceBuffer(size=size)
    else:
        err, ptr = cudart.cudaMalloc(size)
        if err != cudart.cudaError_t.cudaSuccess:
            raise Exception(f"cudaMalloc failed with error {err}")
        return DevicePtrWrapper(ptr)


def align_size(size, alignment=256):
    return ((size + alignment - 1) // alignment) * alignment


def create_memory_pool(init_pool_size=0, max_pool_size=2 ** 34):
    if cutlass.use_rmm:
        memory_pool = PoolMemoryManager(init_pool_size=init_pool_size, max_pool_size=max_pool_size)
        return memory_pool
    else:
        return None