File: operation.py

package info (click to toggle)
nvidia-cutlass 3.4.1%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 48,488 kB
  • sloc: cpp: 206,571; ansic: 69,215; python: 25,487; sh: 16; makefile: 15
file content (133 lines) | stat: -rw-r--r-- 5,523 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################

import ctypes

from cuda import __version__, cuda

from cutlass.backend.utils.device import device_cc

_version_splits = [int(x) for x in __version__.split("rc")[0].split(".")]
_supports_cluster_launch = None


def supports_cluster_launch():
    global _supports_cluster_launch
    if _supports_cluster_launch is None:
        major, minor = _version_splits[0], _version_splits[1]
        _supports_cluster_launch = device_cc() >= 90 and (major > 11 or (major == 11 and minor >= 8))
    return _supports_cluster_launch


class LaunchConfiguration:
    def __init__(self, grid=[1, 1, 1], block=[1, 1, 1], smem=0):
        self.grid = grid
        self.block = block
        self.shared_memory_capacity = smem


class ExecutableOperation:
    def __init__(self, operation):
        self.operation = operation
        self.module = None
        self.kernel = None

    def name(self):
        return self.operation.procedural_name()

    def emit(self):
        return ""

    def can_implement(self, configuration, arguments):
        raise NotImplementedError()

    def get_host_workspace_size(self, arguments):
        raise NotImplementedError()

    def get_device_workspace_size(self, arguments):
        raise NotImplementedError()

    def plan(self, arguments):
        raise NotImplementedError()

    def initialize(self, host_workspace, device_workspace, launch_config, arguments, stream=cuda.CUstream(0)):
        raise NotImplementedError()

    def run_with_clusters(self, launch_config, kernel_params, stream=cuda.CUstream(0)):
        if hasattr(self.operation, "tile_description") and hasattr(self.operation.tile_description, "cluster_shape"):
            attr = cuda.CUlaunchAttribute()
            attr.value.clusterDim.x, attr.value.clusterDim.y, attr.value.clusterDim.z = self.operation.tile_description.cluster_shape
            attr.id = cuda.CUstreamAttrID.CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION
            attrs = [attr]

            # Allow for non-portable cluster sizes
            err, = cuda.cuFuncSetAttribute(
                self.kernel, cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED, 1)
            if err != cuda.CUresult.CUDA_SUCCESS:
                return err
        else:
            attrs = []

        config = cuda.CUlaunchConfig()
        config.gridDimX, config.gridDimY, config.gridDimZ = launch_config.grid
        config.blockDimX, config.blockDimY, config.blockDimZ = launch_config.block
        config.blockDimZ = launch_config.block[2]
        config.sharedMemBytes = launch_config.shared_memory_capacity
        config.hStream = stream
        config.attrs = attrs
        config.numAttrs = len(attrs)

        err, = cuda.cuLaunchKernelEx(
            config, f=self.kernel, kernelParams=kernel_params, extra=0)
        return err

    def run_without_clusters(self, launch_config, kernel_params, stream=cuda.CUstream(0)):
        err, = cuda.cuLaunchKernel(
            self.kernel,
            launch_config.grid[0], launch_config.grid[1], launch_config.grid[2],
            launch_config.block[0], launch_config.block[1], launch_config.block[2],
            launch_config.shared_memory_capacity,
            stream,
            kernel_params,
            0)

        return err

    def run(self, host_workspace, device_workspace, launch_config, stream=cuda.CUstream(0)):
        cArg = (ctypes.c_char * len(host_workspace)).from_buffer(host_workspace)
        packed = (ctypes.c_void_p * 1)()
        packed[0] = ctypes.addressof(cArg)

        if supports_cluster_launch():
            return self.run_with_clusters(launch_config, packed, stream)
        else:
            return self.run_without_clusters(launch_config, packed, stream)