1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#################################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
import ctypes
from cuda import __version__, cuda
from cutlass.backend.utils.device import device_cc
_version_splits = [int(x) for x in __version__.split("rc")[0].split(".")]
_supports_cluster_launch = None
def supports_cluster_launch():
global _supports_cluster_launch
if _supports_cluster_launch is None:
major, minor = _version_splits[0], _version_splits[1]
_supports_cluster_launch = device_cc() >= 90 and (major > 11 or (major == 11 and minor >= 8))
return _supports_cluster_launch
class LaunchConfiguration:
def __init__(self, grid=[1, 1, 1], block=[1, 1, 1], smem=0):
self.grid = grid
self.block = block
self.shared_memory_capacity = smem
class ExecutableOperation:
def __init__(self, operation):
self.operation = operation
self.module = None
self.kernel = None
def name(self):
return self.operation.procedural_name()
def emit(self):
return ""
def can_implement(self, configuration, arguments):
raise NotImplementedError()
def get_host_workspace_size(self, arguments):
raise NotImplementedError()
def get_device_workspace_size(self, arguments):
raise NotImplementedError()
def plan(self, arguments):
raise NotImplementedError()
def initialize(self, host_workspace, device_workspace, launch_config, arguments, stream=cuda.CUstream(0)):
raise NotImplementedError()
def run_with_clusters(self, launch_config, kernel_params, stream=cuda.CUstream(0)):
if hasattr(self.operation, "tile_description") and hasattr(self.operation.tile_description, "cluster_shape"):
attr = cuda.CUlaunchAttribute()
attr.value.clusterDim.x, attr.value.clusterDim.y, attr.value.clusterDim.z = self.operation.tile_description.cluster_shape
attr.id = cuda.CUstreamAttrID.CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION
attrs = [attr]
# Allow for non-portable cluster sizes
err, = cuda.cuFuncSetAttribute(
self.kernel, cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED, 1)
if err != cuda.CUresult.CUDA_SUCCESS:
return err
else:
attrs = []
config = cuda.CUlaunchConfig()
config.gridDimX, config.gridDimY, config.gridDimZ = launch_config.grid
config.blockDimX, config.blockDimY, config.blockDimZ = launch_config.block
config.blockDimZ = launch_config.block[2]
config.sharedMemBytes = launch_config.shared_memory_capacity
config.hStream = stream
config.attrs = attrs
config.numAttrs = len(attrs)
err, = cuda.cuLaunchKernelEx(
config, f=self.kernel, kernelParams=kernel_params, extra=0)
return err
def run_without_clusters(self, launch_config, kernel_params, stream=cuda.CUstream(0)):
err, = cuda.cuLaunchKernel(
self.kernel,
launch_config.grid[0], launch_config.grid[1], launch_config.grid[2],
launch_config.block[0], launch_config.block[1], launch_config.block[2],
launch_config.shared_memory_capacity,
stream,
kernel_params,
0)
return err
def run(self, host_workspace, device_workspace, launch_config, stream=cuda.CUstream(0)):
cArg = (ctypes.c_char * len(host_workspace)).from_buffer(host_workspace)
packed = (ctypes.c_void_p * 1)()
packed[0] = ctypes.addressof(cArg)
if supports_cluster_launch():
return self.run_with_clusters(launch_config, packed, stream)
else:
return self.run_without_clusters(launch_config, packed, stream)
|