1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
################################################################################
#
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
import ctypes
from typing import Union
from cuda import cuda, cudart
import numpy as np
from cutlass_library import (
DataTypeNames,
DataTypeSize,
DataTypeTag,
LayoutType,
SubstituteTemplate
)
import cutlass
from cutlass.backend.c_types import MatrixCoord_, TensorRef2D_, get_reduction_params
from cutlass.backend.frontend import NumpyFrontend, TorchFrontend
from cutlass.backend.library import TensorDescription
from cutlass.backend.memory_manager import DevicePtrWrapper
from cutlass.backend.operation import ExecutableOperation, LaunchConfiguration
from cutlass.shape import MatrixCoord
from cutlass.utils.datatypes import is_numpy_tensor, is_torch_tensor
class ReductionOperation:
pass
class ReductionArguments:
"""
Arguments of reduction
"""
def __init__(
self,
operation: ReductionOperation,
problem_size: "list[int]",
partitions: int,
workspace: cuda.CUdeviceptr,
destination: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]",
source: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]",
**kwargs,
) -> None:
# tensor_C can be interpreted as the bias with bias=True in keyword args
if "bias" in kwargs.keys():
self.bias = kwargs["bias"]
else:
# by default, tensor_C is not bias
self.bias = False
if "stream" in kwargs.keys():
self.stream = kwargs["stream"]
else:
self.stream = cuda.CUstream(0)
self.operation = operation
self.ptr_workspace = workspace
# number of split-k partitions
self.partitions = partitions
if is_numpy_tensor(destination):
self.host_D = destination
self.destination_buffer = NumpyFrontend.argument(destination, True)
self.source_buffer = NumpyFrontend.argument(source, False)
self.ptr_destination = cuda.CUdeviceptr(self.destination_buffer.ptr)
self.ptr_source = cuda.CUdeviceptr(self.source_buffer.ptr)
elif is_torch_tensor(destination):
self.ptr_destination = TorchFrontend.argument(destination)
self.ptr_source = TorchFrontend.argument(source)
elif isinstance(destination, cuda.CUdeviceptr):
self.ptr_destination = destination
self.ptr_source = source
else:
raise TypeError("unknown Type")
self.problem_size = MatrixCoord_(problem_size[0], problem_size[1])
self.partition_stride = (
problem_size[0] * problem_size[1] * DataTypeSize[operation.C.element] // 8
)
if "output_op" in kwargs.keys():
self.output_op = kwargs["output_op"]
else:
self.output_op = self.operation.epilogue_type(1.0, 0.0)
self.get_arguments()
@staticmethod
def get_tensor_ref(
extent: "tuple[int]",
device_ptr: cuda.CUdeviceptr,
layout: LayoutType,
):
if layout == LayoutType.RowMajor:
return TensorRef2D_(int(device_ptr), extent[1])
else:
raise ValueError(f"Unknown layout type {layout}")
def get_arguments(self):
ref_workspace = ReductionArguments.get_tensor_ref(
extent=[
self.problem_size.row,
self.problem_size.column,
],
device_ptr=self.ptr_workspace,
layout=LayoutType.RowMajor,
)
if self.bias:
ref_source = ReductionArguments.get_tensor_ref(
extent=[0, 0],
device_ptr=self.ptr_source,
layout=LayoutType.RowMajor,
)
else:
ref_source = ReductionArguments.get_tensor_ref(
extent=[
self.problem_size.row,
self.problem_size.column,
],
device_ptr=self.ptr_source,
layout=LayoutType.RowMajor,
)
ref_destination = ReductionArguments.get_tensor_ref(
extent=[
self.problem_size.row,
self.problem_size.column,
],
device_ptr=self.ptr_destination,
layout=LayoutType.RowMajor,
)
self.c_arguments = self.operation.argument_type(
self.problem_size,
self.partitions,
self.partition_stride,
ref_workspace,
ref_destination,
ref_source,
self.output_op,
)
params_ = self.operation.rt_module.get_args(ctypes.byref(self.c_arguments))
self.host_workspace = bytearray(params_.contents)
def sync(self):
(err,) = cudart.cudaDeviceSynchronize()
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError(f"CUDA Error {str(err)}")
if hasattr(self, "host_D"):
(err,) = cuda.cuMemcpyDtoH(
self.host_D,
self.ptr_destination,
self.host_D.size * self.host_D.itemsize,
)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError("CUDA Error %s" % str(err))
self.free()
def free(self):
"""
Frees allocated device-side memory
"""
# Free any device memory allocated manually
if not cutlass.use_rmm:
for attr in ["destination_buffer", "source_buffer"]:
if hasattr(self, attr):
buf = getattr(self, attr)
if isinstance(buf, DevicePtrWrapper):
err, = cudart.cudaFree(buf.ptr)
if err != cudart.cudaError_t.cudaSuccess:
raise RuntimeError(f"cudaFree failed with error {err}")
del buf
class ReductionRT(ExecutableOperation):
"""
ReductionRT manages the CUTLASS runtime components for reduction
"""
KernelTemplate = r"""
extern "C"
__global__ void
${operation_name}(${operation_name}${operation_suffix}::Params params) {
// Dynamic shared memory base pointer
extern __shared__ int SharedStorageBase[];
// Declare pointer to dynamic shared memory.
${operation_name}${operation_suffix}::SharedStorage *shared_storage =
reinterpret_cast<${operation_name}${operation_suffix}::SharedStorage *>(SharedStorageBase);
${operation_name}${operation_suffix} op;
op(params, *shared_storage);
}
"""
HostTemplate = r"""
extern "C" {
// Get the size of params in bytes
int ${operation_name}_get_param_size(){
return sizeof(${operation_name}${operation_suffix}::Params);
}
// Get the size of dynamic shared memory in bytes
int ${operation_name}_shared_memory_size() {
return int(sizeof(${operation_name}${operation_suffix}::SharedStorage));
}
// Get the params as byte array
char* ${operation_name}_get_params(${operation_name}${operation_suffix}::Params* params){
char *bytes = ((char*)(params));
char *output = new char[sizeof(${operation_name}${operation_suffix}::Params)];
for (unsigned int i = 0; i < sizeof(${operation_name}${operation_suffix}::Params); i ++)
output[i] = bytes[i];
return output;
}
}
"""
def __init__(self, operation: ReductionOperation):
super().__init__(operation)
self.operation: ReductionOperation = operation
self.emitter = EmitReductionInstance("_type")
self.elements_per_access = self.operation.count
(
self.argument_type,
self.epilogue_type,
) = get_reduction_params(operation.epilogue_functor)
self.argtype = [ctypes.POINTER(self.argument_type)]
def emit(self):
return self.emitter.emit(self.operation)
def plan(self, arguments: ReductionArguments):
block_shape = [
self.operation.shape.column // self.elements_per_access,
self.operation.shape.row,
1,
]
grid_shape = [
(arguments.problem_size.row + self.operation.shape.row - 1)
// self.operation.shape.row,
(arguments.problem_size.column + self.operation.shape.column - 1)
// self.operation.shape.column,
1,
]
return LaunchConfiguration(
grid_shape,
block_shape,
self.shared_memory_capacity,
)
def initialize(self):
(err,) = cuda.cuFuncSetAttribute(
self.kernel,
attrib=cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES,
value=self.shared_memory_capacity,
)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError(f"CUDA Error: {err}")
class ReductionOperation:
"""
CUTLASS reduction Operation
"""
def __init__(
self,
shape: MatrixCoord,
C: TensorDescription,
element_accumulator,
element_workspace=None,
element_compute=None,
epilogue_functor=None,
count: int = 1,
partitions_per_stage: int = 4,
) -> None:
self.shape = shape
self.epilogue_functor = epilogue_functor
self.element_accumulator = element_accumulator
if element_workspace is None:
self.element_workspace = element_accumulator
else:
self.element_workspace = element_workspace
if element_compute is None:
self.element_compute = element_accumulator
else:
self.element_compute = element_compute
self.element_output = C.element
self.C: TensorDescription = C
# Reduce op processing size
self.count: int = count
# Number of partitions to reduce per stage
self.partitions_per_stage: int = partitions_per_stage
self.rt_module: ReductionRT = ReductionRT(self)
self.argument_type = self.rt_module.argument_type
self.epilogue_type = self.rt_module.epilogue_type
def extended_name(self):
extend_name = "${element_workspace}_${element_accumulator}_${element_compute}_${element_output}"
return SubstituteTemplate(
extend_name,
{
"element_workspace": DataTypeNames[self.element_workspace],
"element_accumulator": DataTypeNames[self.element_accumulator],
"element_compute": DataTypeNames[self.element_compute],
"element_output": DataTypeNames[self.element_output],
},
)
def configuration_name(self):
"""The full procedural name indicates architecture, extended name, tile size"""
configuration_name = "cutlass_reduce_split_k_${extended_name}_${threadblock}"
threadblock = "%dx%d" % (
self.shape.row,
self.shape.column,
)
return SubstituteTemplate(
configuration_name,
{
"extended_name": self.extended_name(),
"threadblock": threadblock,
},
)
def procedural_name(self):
"""The full procedural name indicates architeture, extended name, tile size"""
return self.configuration_name()
def run(self, arguments: ReductionArguments) -> cuda.CUresult:
"""
Configure and launch the cuda kernel with input arguments
"""
launch_config = self.rt_module.plan(arguments)
host_workspace = arguments.host_workspace
device_workspace = None
err = self.rt_module.run(
host_workspace,
device_workspace,
launch_config,
arguments.stream
)
if err != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError(f"CUDA Error {str(err)}")
return err
class EmitReductionInstance:
def __init__(self, operation_suffix="") -> None:
self.operation_suffix = operation_suffix
self.includes = [
"cutlass/cutlass.h",
"cutlass/numeric_types.h",
"cutlass/arch/arch.h",
"cutlass/arch/mma.h",
"cutlass/layout/matrix.h",
"cutlass/gemm/device/gemm.h",
"cutlass/gemm/device/gemm_universal_adapter.h",
"cutlass/gemm/kernel/default_gemm_universal.h",
"cutlass/reduction/kernel/reduce_split_k.h",
"cutlass/reduction/thread/reduction_operators.h",
]
self.template = """
// Reduction kernel instance
using ${operation_name}_base =
typename cutlass::reduction::kernel::ReduceSplitK<
cutlass::MatrixShape<${shape_row}, ${shape_column}>,
${epilogue_functor},
cutlass::reduction::thread::ReduceAdd<
${element_accumulator},
${element_output},
${count}>,
${partition_per_stage}>;
struct ${operation_name}${operation_suffix}:
public ${operation_name}_base { };
"""
def emit(self, operation: ReductionOperation):
vector_length_bits = min(operation.C.alignment * DataTypeSize[operation.C.element], 128)
epilogue_vector_length = vector_length_bits // DataTypeSize[operation.C.element]
values = {
"operation_name": operation.configuration_name(),
"operation_suffix": self.operation_suffix,
"shape_row": str(operation.shape.row),
"shape_column": str(operation.shape.column),
"epilogue_functor": operation.epilogue_functor.emit(),
"element_output": DataTypeTag[operation.element_output],
"epilogue_vector_length": str(epilogue_vector_length),
"element_accumulator": DataTypeTag[operation.element_accumulator],
"element_compute": DataTypeTag[operation.element_compute],
"element_workspace": DataTypeTag[operation.element_workspace],
"count": str(operation.count),
"partition_per_stage": str(operation.partitions_per_stage),
}
return SubstituteTemplate(self.template, values)
|